C. Abourached, K. L. Lesnik, and H. Liu, Enhanced power generation and energy conversion of sewage sludge by CEA???microbial fuel cells, Bioresource Technology, vol.166, pp.229-234, 2014.
DOI : 10.1016/j.biortech.2014.05.027

P. Aelterman, S. Freguia, J. Keller, W. Verstraete, and K. Rabaey, The anode potential regulates bacterial activity in microbial fuel cells, Applied Microbiology and Biotechnology, vol.41, issue.5, pp.409-418, 2008.
DOI : 10.1007/s00253-007-1327-8

J. P. Badalamenti, R. Krajmalnik-brown, and C. I. Torres, Generation of High Current Densities by Pure Cultures of Anode-Respiring Geoalkalibacter spp. under Alkaline and Saline Conditions in Microbial Electrochemical Cells, mBio, vol.4, issue.3, pp.144-157, 2013.
DOI : 10.1128/mBio.00144-13

E. Blanchet, E. Desmond, B. Erable, A. Bridier, T. Bouchez et al., Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: Application to food waste treatment, Bioresource Technology, vol.185, pp.106-115, 2015.
DOI : 10.1016/j.biortech.2015.02.097

URL : https://hal.archives-ouvertes.fr/hal-01149751

D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments, Science, vol.295, issue.5554, pp.483-485, 2002.
DOI : 10.1126/science.1066771

D. R. Bond and D. R. Lovley, Electricity Production by Geobacter sulfurreducens Attached to Electrodes, Applied and Environmental Microbiology, vol.69, issue.3, pp.1548-1555, 2003.
DOI : 10.1128/AEM.69.3.1548-1555.2003

A. A. Carmona-martinez, M. Pierra, E. Trably, and N. Bernet, High current density via direct electron transfer by the halophilic anode respiring bacterium Geoalkalibacter subterraneus, Physical Chemistry Chemical Physics, vol.6, issue.45, pp.19699-19707, 2013.
DOI : 10.1128/mBio.00144-13

URL : https://hal.archives-ouvertes.fr/hal-01131065

B. Cercado, N. Byrne, M. Bertrand, D. Pocaznoi, M. Rimboud et al., Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics, Bioresource Technology, vol.134, pp.276-284, 2013.
DOI : 10.1016/j.biortech.2013.01.123

URL : https://hal.archives-ouvertes.fr/hal-00878185

K. Chae, M. Choi, J. Lee, K. Kim, and I. S. Kim, Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells, Bioresource Technology, vol.100, issue.14, pp.3518-3525, 2009.
DOI : 10.1016/j.biortech.2009.02.065

S. Freguia, E. H. Teh, N. Boon, K. M. Leung, J. Keller et al., Microbial fuel cells operating on mixed fatty acids, Bioresource Technology, vol.101, issue.4, pp.1233-1238, 2010.
DOI : 10.1016/j.biortech.2009.09.054

K. Fricke, F. Harnisch, and U. Schröder, On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells, Energy & Environmental Science, vol.4, issue.1, pp.144-147, 2008.
DOI : 10.1039/b802363h

H. Friman, A. Schechter, Y. Nitzan, and R. Cahan, Effect of external voltage on Pseudomonas putida F1 in a bio electrochemical cell using toluene as sole carbon and energy source, Microbiology, vol.158, issue.2, pp.414-423, 2012.
DOI : 10.1099/mic.0.053298-0

J. Jiang, Q. Zhao, J. Zhang, G. Zhang, and D. Lee, Electricity generation from bio-treatment of sewage sludge with microbial fuel cell, Bioresource Technology, vol.100, issue.23, pp.5808-5812, 2009.
DOI : 10.1016/j.biortech.2009.06.076

K. P. Katuri, P. Kavanagh, S. Rengaraj, and D. Leech, Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: insights using cyclic voltammetry, Chemical Communications, vol.53, issue.26, pp.4758-4760, 2010.
DOI : 10.1128/AEM.00027-10

A. Kaur, J. R. Kim, I. Michie, R. M. Dinsdale, A. J. Guwy et al., Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities, Biosensors and Bioelectronics, vol.47, pp.50-55, 2013.
DOI : 10.1016/j.bios.2013.02.033

S. F. Ketep, E. Fourest, and A. Bergel, Experimental and theoretical characterization of microbial bioanodes formed in pulp and paper mill effluent in electrochemically controlled conditions, Bioresource Technology, vol.149, pp.117-125, 2013.
DOI : 10.1016/j.biortech.2013.09.025

URL : https://hal.archives-ouvertes.fr/hal-00877725

O. Lefebvre, T. T. Ha-nguyen, A. Al-mamun, I. S. Chang, and H. Y. Ng, T-RFLP reveals high ??-Proteobacteria diversity in microbial fuel cells enriched with domestic wastewater, Journal of Applied Microbiology, vol.128, issue.3, pp.839-850, 2010.
DOI : 10.1111/j.1365-2672.2010.04735.x

A. K. Marcus, C. I. Torres, and B. E. Rittman, Conduction-based modeling of the biofilm anode of a microbial fuel cell, Biotechnology and Bioengineering, vol.95, issue.6, pp.1171-1182, 2007.
DOI : 10.1002/bit.21533

E. Marsili, J. Sun, and D. R. Bond, Voltammetry and Growth Physiology of Geobacter sulfurreducens Biofilms as a Function of Growth Stage and Imposed Electrode Potential, Electroanalysis, vol.10, issue.7-8, pp.865-874, 2010.
DOI : 10.1002/elan.200800007

M. Yusoff, M. Z. Hu, A. Feng, C. Maeda, T. Shirai et al., Influence of pretreated activated sludge for electricity generation in microbial fuel cell application, Bioresource Technology, vol.145, pp.90-96, 2013.
DOI : 10.1016/j.biortech.2013.03.003

O. Nercessian, S. Parot, M. Delia, A. Bergel, and W. Achouak, Harvesting Electricity with Geobacter bremensis Isolated from Compost, PLoS ONE, vol.7, issue.3, p.34216, 2012.
DOI : 10.1371/journal.pone.0034216.s003

URL : https://hal.archives-ouvertes.fr/hal-00880543

J. Niessen, U. Schroder, F. Harnisch, and F. Scholz, Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation, Letters in Applied Microbiology, vol.169, issue.3, pp.286-290, 2005.
DOI : 10.1007/s002530100710

S. Oh, J. Y. Yoon, A. Gurung, and D. Kim, Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells, Bioresource Technology, vol.165, pp.21-26, 2014.
DOI : 10.1016/j.biortech.2014.03.018

D. Pant, G. Van-bogaert, L. Diels, and K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresource Technology, vol.101, issue.6, pp.1533-1543, 2010.
DOI : 10.1016/j.biortech.2009.10.017

D. Pocaznoi, A. Calmet, L. Etcheverry, B. Erable, and A. Bergel, Stainless steel is a promising electrode material for anodes of microbial fuel cells, Energy & Environmental Science, vol.4, issue.11, pp.9645-9652, 2012.
DOI : 10.1039/c2cp42571h

D. Pocaznoi, B. Erable, L. Etcheverry, M. Delia, and A. Bergel, Towards an engineering-oriented strategy for building microbial anodes for microbial fuel cells, Physical Chemistry Chemical Physics, vol.10, issue.38, pp.13332-13343, 2012.
DOI : 10.1039/c2cp42571h

M. Rimboud, E. Desmond-le-quemener, B. Erable, T. Bouchez, and A. Bergel, The current provided by oxygen-reducing microbial cathodes is related to the composition of their bacterial community, Bioelectrochemistry, vol.102, pp.42-49, 2015.
DOI : 10.1016/j.bioelechem.2014.11.006

URL : https://hal.archives-ouvertes.fr/hal-01149734

M. Rimboud, D. Pocaznoi, B. Erable, and A. Bergel, Electroanalysis of microbial anodes for bioelectrochemical systems: basics, progress and perspectives, Physical Chemistry Chemical Physics, vol.8, issue.31, pp.16349-16366, 2014.
DOI : 10.1039/C4CP01698J

URL : https://hal.archives-ouvertes.fr/hal-01250378

D. Rivière, V. Desvignes, E. Pelletier, S. Chaussonnerie, S. Guermazi et al., Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge, The ISME Journal, vol.62, issue.6, pp.700-714, 2009.
DOI : 10.1016/j.anaerobe.2007.05.004

C. I. Torres, R. Krajmalnik-brown, P. Parameswaran, A. K. Marcus, G. Wanger et al., Selecting Anode-Respiring Bacteria Based on Anode Potential: Phylogenetic, Electrochemical, and Microscopic Characterization, Environmental Science & Technology, vol.43, issue.24, pp.9519-9524, 2009.
DOI : 10.1021/es902165y

V. K. Tyagi and S. Lo, Sludge: A waste or renewable source for energy and resources recovery?, Renewable and Sustainable Energy Reviews, vol.25, pp.708-728, 2013.
DOI : 10.1016/j.rser.2013.05.029

Z. Wang, X. Mei, J. Ma, and Z. Wu, Recent Advances in Microbial Fuel Cells Integrated with Sludge Treatment, Chemical Engineering & Technology, vol.22, issue.1, pp.1733-1743, 2012.
DOI : 10.1002/ceat.201200132

B. Xiao, F. Yang, and J. Liu, Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments, Journal of Hazardous Materials, vol.189, issue.1-2, pp.444-449, 2011.
DOI : 10.1016/j.jhazmat.2011.02.058

F. Yang, L. Ren, Y. Pu, and B. E. Logan, Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells, Bioresource Technology, vol.128, pp.784-787, 2013.
DOI : 10.1016/j.biortech.2012.10.021

T. Yoshizawa, M. Miyahara, A. Kouzuma, and K. Watanabe, Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation, Journal of Bioscience and Bioengineering, vol.118, issue.5, pp.533-539, 2014.
DOI : 10.1016/j.jbiosc.2014.04.009

W. Zhi, Z. Ge, Z. He, and H. Zhang, Methods for understanding microbial community structures and functions in microbial fuel cells: A review, Bioresource Technology, vol.171, pp.461-468, 2014.
DOI : 10.1016/j.biortech.2014.08.096

X. Zhu, M. D. Yates, M. C. Hatzell, H. A. Rao, P. E. Saikaly et al., Microbial Community Composition Is Unaffected by Anode Potential, Environmental Science & Technology, vol.48, issue.2, pp.1352-1358, 2014.
DOI : 10.1021/es404690q

X. Zhu, M. D. Yates, and B. E. Logan, Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms, Electrochemistry Communications, vol.22, pp.116-119, 2012.
DOI : 10.1016/j.elecom.2012.06.013