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Abstract

We exhibit a strong link between frequentist PAC-Bayesian risk bounds and the
Bayesian marginal likelihood. That is, for the negative log-likelihood loss func-
tion, we show that the minimization of PAC-Bayesian generalization risk bounds
maximizes the Bayesian marginal likelihood. This provides an alternative expla-
nation to the Bayesian Occam’s razor criteria, under the assumption that the data
is generated by an i.i.d. distribution. Moreover, as the negative log-likelihood is
an unbounded loss function, we motivate and propose a PAC-Bayesian theorem
tailored for the sub-gamma loss family, and we show that our approach is sound on
classical Bayesian linear regression tasks.

1 Introduction

Since its early beginning [32, 47], the PAC-Bayesian theory claims to provide “PAC guarantees
to Bayesian algorithms” (McAllester [32]). However, despite the amount of work dedicated to
this statistical learning theory—many authors improved the initial results [9, 29, 33, 43, 48] and/or
generalized them for various machine learning setups [4, 14, 20, 28, 38, 44, 45, 46]—it is mostly used
as a frequentist method. That is, under the assumptions that the learning samples are i.i.d.-generated
by a data-distribution, this theory expresses probably approximately correct (PAC) bounds on the
generalization risk. In other words, with probability 1−δ, the generalization risk is at most ε away
from the training risk. The Bayesian side of PAC-Bayes comes mostly from the fact that these bounds
are expressed on the averaging/aggregation/ensemble of multiple predictors (weighted by a posterior
distribution) and incorporate prior knowledge. Although it is still sometimes referred as a theory that
bridges the Bayesian and frequentist approach [e.g., 21], it has been merely used to justify Bayesian
methods until now.1

In this work, we provide a direct connection between Bayesian inference techniques [summarized
by 6, 15] and PAC-Bayesian risk bounds in a general setup. Our study is based on a simple
but insightful connection between the Bayesian marginal likelihood and PAC-Bayesian bounds
(previously mentioned by Grünwald [16]) obtained by considering the negative log-likelihood loss
function (Section 3). By doing so, we provide an alternative explanation for the Bayesian Occam’s
razor criteria [23, 30] in the context of model selection, expressed as the complexity-accuracy
trade-off appearing in most PAC-Bayesian results. In Section 4, we extend PAC-Bayes theorems
to regression problems with unbounded loss, adapted to the negative log-likelihood loss function.
Finally, we study the Bayesian model selection from a PAC-Bayesian perspective (Section 5), and
illustrate our finding on classical Bayesian regression tasks (Section 6).

2 PAC-Bayesian Theory

We denote the learning sample (X,Y )={(xi, yi)}ni=1∈(X×Y)n, that contains n input-output pairs.
The main assumption of frequentist learning theories—including PAC-Bayes—is that (X,Y ) is

1Some existing connections [3, 7, 16, 25, 42, 43, 49] are discussed in Appendix A.1.
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randomly sampled from a data generating distribution that we denoteD. Thus, we denote (X,Y )∼Dn
the i.i.d. observation of n elements. From a frequentist perspective, we consider in this work loss
functions ` : F×X×Y → R, where F is a (discrete or continuous) set of predictors f : X → Y , and
we write the empirical risk on the sample (X,Y ) and the generalization error on distribution D as

L̂ `X,Y (f) =
1

n

n∑
i=1

`(f, xi, yi) ; L `D(f) = E
(x,y)∼D

`(f, x, y) .

The PAC-Bayesian theory [32, 33] studies an averaging of the above losses according to a posterior
distribution ρ̂ over F . That is, it provides probably approximately correct generalization bounds
on the (unknown) quantity Ef∼ρ̂ L `D(f) = Ef∼ρ̂ E(x,y)∼D `(f, x, y) , given the empirical estimate
Ef∼ρ̂ L̂ `X,Y (f) and some other parameters. Among these, most PAC-Bayesian theorems rely on
the Kullback-Leibler divergence KL(ρ̂‖π) = Ef∼ρ̂ ln[ρ̂(f)/π(f)] between a prior distribution π
over F—specified before seeing the learning sample X,Y—and the posterior ρ̂—typically obtained
by feeding a learning process with (X,Y ).

Two appealing aspects of PAC-Bayesian theorems are that they provide data-driven generalization
bounds that are computed on the training sample (i.e., they do not rely on a testing sample), and
that they are uniformly valid for all ρ̂ over F . This explains why many works study them as model
selection criteria or as an inspiration for learning algorithm conception. Theorem 1, due to Catoni [9],
has been used to derive or study learning algorithms [12, 22, 34, 37].
Theorem 1 (Catoni [9]). Given a distribution D over X × Y , a hypothesis set F , a loss function
`′ : F × X × Y → [0, 1], a prior distribution π over F , a real number δ ∈ (0, 1], and a real number
β > 0, with probability at least 1− δ over the choice of (X,Y ) ∼ Dn, we have

∀ρ̂ on F : E
f∼ρ̂
L `
′

D (f) ≤ 1

1− e−β

[
1− e−β Ef∼ρ̂ L̂ `

′
X,Y (f)− 1

n

(
KL(ρ̂‖π)+ ln

1
δ

)]
. (1)

Theorem 1 is limited to loss functions mapping to the range [0, 1]. Through a straightforward rescaling
we can extend it to any bounded loss, i.e., ` : F ×X ×Y → [a, b], where [a, b] ⊂ R. This is done by
using β := b− a and with the rescaled loss function `′(f, x, y) := (`(f, x, y)−a)/(b−a) ∈ [0, 1] .
After few arithmetic manipulations, we can rewrite Equation (1) as

∀ρ̂ on F : E
f∼ρ̂
L `D(f) ≤ a+ b−a

1−ea−b

[
1− exp

(
−E
f∼ρ̂
L̂ `X,Y (f)+a− 1

n

(
KL(ρ̂‖π)+ ln 1

δ

))]
. (2)

From an algorithm design perspective, Equation (2) suggests optimizing a trade-off between the
empirical expected loss and the Kullback-Leibler divergence. Indeed, for fixed π, X , Y , n, and δ,
minimizing Equation (2) is equivalent to find the distribution ρ̂ that minimizes

n E
f∼ρ̂
L̂ `X,Y (f) + KL(ρ̂‖π) . (3)

It is well known [1, 9, 12, 29] that the optimal Gibbs posterior ρ̂∗ is given by

ρ̂∗(f) = 1
ZX,Y

π(f) e−n L̂
`
X,Y (f) , (4)

where ZX,Y is a normalization term. Notice that the constant β of Equation (1) is now absorbed in
the loss function as the rescaling factor setting the trade-off between the expected empirical loss
and KL(ρ̂‖π).

3 Bridging Bayes and PAC-Bayes

In this section, we show that by choosing the negative log-likelihood loss function, minimizing the
PAC-Bayes bound is equivalent to maximizing the Bayesian marginal likelihood. To obtain this
result, we first consider the Bayesian approach that starts by defining a prior p(θ) over the set of
possible model parameters Θ. This induces a set of probabilistic estimators fθ ∈ F , mapping x to a
probability distribution over Y . Then, we can estimate the likelihood of observing y given x and θ,
i.e., p(y|x, θ) ≡ fθ(y|x).2 Using Bayes’ rule, we obtain the posterior p(θ|X,Y ):

p(θ|X,Y ) =
p(θ) p(Y |X, θ)

p(Y |X)
∝ p(θ) p(Y |X, θ) , (5)

where p(Y |X, θ) =
∏n
i=1 p(yi|xi, θ) and p(Y |X) =

∫
Θ
p(θ) p(Y |X, θ) dθ.

2To stay aligned with the PAC-Bayesian setup, we only consider the discriminative case in this paper. One
can extend to the generative setup by considering the likelihood of the form p(y, x|θ) instead.
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To bridge the Bayesian approach with the PAC-Bayesian framework, we consider the negative
log-likelihood loss function [3], denoted `nll and defined by

`nll(fθ, x, y) ≡ − ln p(y|x, θ) . (6)

Then, we can relate the empirical loss L̂ `X,Y of a predictor to its likelihood:

L̂ `nll
X,Y (θ) =

1

n

n∑
i=1

`nll(θ, xi, yi) = − 1

n

n∑
i=1

ln p(yi|xi, θ) = − 1

n
ln p(Y |X, θ) ,

or, the other way around,
p(Y |X, θ) = e−n L̂

`nll
X,Y (θ) . (7)

Unfortunately, existing PAC-Bayesian theorems work with bounded loss functions or in very specific
contexts [e.g., 10, 49], and `nll spans the whole real axis in its general form. In Section 4, we explore
PAC-Bayes bounds for unbounded losses. Meanwhile, we consider priors with bounded likelihood.
This can be done by assigning a prior of zero to any θ yielding ln 1

p(y|x,θ) /∈ [a, b].

Now, using Equation (7) in the optimal posterior (Equation 4) simplifies to

ρ̂∗(θ) =
π(θ) e−n L̂

`nll
X,Y (θ)

ZX,Y
=

p(θ) p(Y |X, θ)
p(Y |X)

= p(θ|X,Y ) , (8)

where the normalization constant ZX,Y corresponds to the Bayesian marginal likelihood:

ZX,Y ≡ p(Y |X) =

∫
Θ

π(θ) e−n L̂
`nll
X,Y (θ)dθ . (9)

This shows that the optimal PAC-Bayes posterior given by the generalization bound of Theorem 1
coincides with the Bayesian posterior, when one chooses `nll as loss function and β := b−a (as in
Equation 2). Moreover, using the posterior of Equation (8) inside Equation (3), we obtain

n E
θ∼ρ̂∗

L̂ `nll
X,Y (θ) + KL(ρ̂∗‖π) (10)

= n

∫
Θ

π(θ) e
−n L̂ `nll

X,Y
(θ)

ZX,Y
L̂ `nll
X,Y (θ) dθ +

∫
Θ

π(θ) e
−n L̂ `nll

X,Y
(θ)

ZX,Y
ln
[
π(θ) e

−n L̂ `nll
X,Y

(θ)

π(θ)ZX,Y

]
dθ

=

∫
Θ

π(θ) e
−n L̂ `nll

X,Y
(θ)

ZX,Y

[
ln 1

ZX,Y

]
dθ =

ZX,Y
ZX,Y

ln 1
ZX,Y

= − lnZX,Y .

In other words, minimizing the PAC-Bayes bound is equivalent to maximizing the marginal likeli-
hood. Thus, from the PAC-Bayesian standpoint, the latter encodes a trade-off between the averaged
negative log-likelihood loss function and the prior-posterior Kullback-Leibler divergence. Note that
Equation (10) has been mentioned by Grünwald [16], based on an earlier observation of Zhang
[49]. However, the PAC-Bayesian theorems proposed by the latter do not bound the generalization
loss directly, as the “classical” PAC-Bayesian results [9, 32, 42] that we extend to regression in
forthcoming Section 4 (see the corresponding remarks in Appendix A.1).

We conclude this section by proposing a compact form of Theorem 1 by expressing it in terms of the
marginal likelihood, as a direct consequence of Equation (10).

Corollary 2. Given a data distribution D, a parameter set Θ, a prior distribution π over Θ, a
δ ∈ (0, 1], if `nll lies in [a, b], we have, with probability at least 1− δ over the choice of (X,Y ) ∼ Dn,

E
θ∼ρ̂∗

L`nll
D (θ) ≤ a+ b−a

1−ea−b

[
1− ea n

√
ZX,Y δ

]
,

where ρ̂∗ is the Gibbs optimal posterior (Eq. 8) and ZX,Y is the marginal likelihood (Eq. 9).

In Section 5, we exploit the link between PAC-Bayesian bounds and Bayesian marginal likelihood to
expose similarities between both frameworks in the context of model selection. Beforehand, next
Section 4 extends the PAC-Bayesian generalization guarantees to unbounded loss functions. This is
mandatory to make our study fully valid, as the negative log-likelihood loss function is in general
unbounded (as well as other common regression losses).
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4 PAC-Bayesian Bounds for Regression

This section aims to extend the PAC-Bayesian results of Section 3 to real valued unbounded loss.
These results are used in forthcoming sections to study `nll, but they are valid for broader classes of
loss functions. Importantly, our new results are focused on regression problems, as opposed to the
usual PAC-Bayesian classification framework.

The new bounds are obtained through a recent theorem of Alquier et al. [1], stated below (we provide
a proof in Appendix A.2 for completeness).
Theorem 3 (Alquier et al. [1]). Given a distribution D over X × Y , a hypothesis set F , a loss
function ` : F × X × Y → R, a prior distribution π over F , a δ ∈ (0, 1], and a real number λ > 0,
with probability at least 1−δ over the choice of (X,Y ) ∼ Dn, we have

∀ρ̂ on F : E
f∼ρ̂
L `D(f) ≤ E

f∼ρ̂
L̂ `X,Y (f) +

1

λ

[
KL(ρ̂‖π) + ln

1

δ
+ Ψ`,π,D(λ, n)

]
, (11)

where Ψ`,π,D(λ, n) = ln E
f∼π

E
X′,Y ′∼Dn

exp
[
λ
(
L `D(f)− L̂ `X′,Y ′(f)

)]
. (12)

Alquier et al. used Theorem 3 to design a learning algorithm for {0, 1}-valued classification losses.
Indeed, a bounded loss function ` : F × X × Y → [a, b] can be used along with Theorem 3 by
applying the Hoeffding’s lemma to Equation (12), that gives Ψ`,π,D(λ, n) ≤ λ2(b−a)2/(2n). More
specifically, with λ := n, we obtain the following bound

∀ρ̂ on F : E
f∼ρ̂
L `D(f) ≤ E

f∼ρ̂
L̂ `X,Y (f) + 1

n

[
KL(ρ̂‖π) + ln 1

δ

]
+ 1

2 (b− a)2. (13)

Note that the latter bound leads to the same trade-off as Theorem 1 (expressed by Equation 3).
However, the choice λ := n has the inconvenience that the bound value is at least 1

2 (b− a)2, even
at the limit n → ∞. With λ :=

√
n the bound converges (a result similar to Equation (14) is also

formulated by Pentina and Lampert [38]):

∀ρ̂ on F : E
f∼ρ̂
L `D(f) ≤ E

f∼ρ̂
L̂ `X,Y (f) + 1√

n

[
KL(ρ̂‖π) + ln 1

δ + 1
2 (b− a)2

]
. (14)

Sub-Gaussian losses. In a regression context, it may be restrictive to consider strictly bounded loss
functions. Therefore, we extend Theorem 3 to sub-Gaussian losses. We say that a loss function ` is
sub-Gaussian with variance factor s2 under a prior π and a data-distributionD if it can be described by
a sub-Gaussian random variable V=L `D(f)−`(f, x, y), i.e., its moment generating function is upper
bounded by the one of a normal distribution of variance s2 (see Boucheron et al. [8, Section 2.3]):

ψ
V

(λ) = ln E eλV = ln E
f∼π

E
(x,y)∼D

exp
[
λ
(
L `D(f)− `(f, x, y)

)]
≤ λ2s2

2 , ∀λ ∈ R . (15)

The above sub-Gaussian assumption corresponds to the Hoeffding assumption of Alquier et al. [1],
and allows to obtain the following result.
Corollary 4. GivenD,F , `, π and δ defined in the statement of Theorem 3, if the loss is sub-Gaussian
with variance factor s2, we have, with probability at least 1−δ over the choice of (X,Y ) ∼ Dn,

∀ρ̂ on F : E
f∼ρ̂
L `D(f) ≤ E

f∼ρ̂
L̂ `X,Y (f) + 1

n

[
KL(ρ̂‖π) + ln 1

δ

]
+ 1

2 s
2 .

Proof. For i = 1 . . . n, we denote `i a i.i.d. realization of the random variable L `D(f)− `(f, x, y).

Ψ`,π,D(λ, n) = ln E exp
[
λ
n

∑n
i=1 `i

]
= ln

∏n
i=1 E exp

[
λ
n`i
]

=
∑n
i=1 ψ`i(

λ
n ) ≤ nλ

2s2

2n2 = λ2s2

2n ,

where the inequality comes from the sub-Gaussian loss assumption (Equation 15). The result is then
obtained from Theorem 3, with λ := n.

Sub-gamma losses. We say that an unbounded loss function ` is sub-gamma with a variance
factor s2 and scale parameter c, under a prior π and a data-distribution D, if it can be described by a
sub-gamma random variable V (see Boucheron et al. [8, Section 2.4]), that is

ψ
V

(λ) ≤ s2

c2 (− ln(1−λc)− λc) ≤ λ2s2

2(1−cλ) , ∀λ ∈ (0, 1
c ) . (16)

Under this sub-gamma assumption, we obtain the following new result, which is necessary to study
linear regression in the next sections.
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Corollary 5. Given D, F , `, π and δ defined in the statement of Theorem 3, if the loss is sub-gamma
with variance factor s2 and scale c < 1, we have, with probability at least 1−δ over (X,Y ) ∼ Dn,

∀ρ̂ on F : E
f∼ρ̂
L `D(f) ≤ E

f∼ρ̂
L̂ `X,Y (f) + 1

n

[
KL(ρ̂‖π) + ln 1

δ

]
+ 1

2(1−c) s
2 . (17)

As a special case, with ` := `nll and ρ̂ := ρ̂∗ (Equation 8), we have

E
θ∼ρ̂∗

L`nll
D (θ) ≤ s2

2(1−c) −
1
n ln (ZX,Y δ) . (18)

Proof. Following the same path as in the proof of Corollary 4 (with λ := n), we have

Ψ`,π,D(n, n) = ln E exp [
∑n
i=1 `i] = ln

∏n
i=1 E exp [`i] =

∑n
i=1 ψ`i(1) ≤ n s2

2(1−c) = n s2

2(1−c) ,

where the inequality comes from the sub-gamma loss assumption, with 1 ∈ (0, 1
c ).

Squared loss. The parameters s and c of Corollary 5 rely on the chosen loss function and prior,
and the assumptions concerning the data distribution. As an example, consider a regression problem
where X×Y ⊂ Rd×R, a family of linear predictors fw(x) = w · x, with w ∈ Rd, and a Gaussian
prior N (0, σ2

π I). Let us assume that the input examples are generated by x∼N (0, σ2
x I) with label

y = w∗·x+ ε, where w∗∈Rd and ε∼N (0, σ2
ε ) is a Gaussian noise. Under the squared loss function

`sqr(w,x, y) = (w · x− y)2 , (19)

we show in Appendix A.4 that Corollary 5 is valid with s2 ≥ 2
[
σ2
x(σ2

πd+ ‖w∗‖2) + σ2
ε (1− c)

]
and c ≥ 2σ2

xσ
2
π . As expected, the bound degrades when the noise increases

Regression versus classification. The classical PAC-Bayesian theorems are stated in a classifi-
cation context and bound the generalization error/loss of the stochastic Gibbs predictor Gρ̂. In
order to predict the label of an example x ∈ X , the Gibbs predictor first draws a hypothesis h ∈ F
according to ρ̂, and then returns h(x). Maurer [31] shows that we can generalize PAC-Bayesian
bounds on the generalization risk of the Gibbs classifier to any loss function with output between
zero and one. Provided that y ∈ {−1, 1} and h(x) ∈ [−1, 1], a common choice is to use the
linear loss function `′01(h, x, y) = 1

2 −
1
2y h(x). The Gibbs generalization loss is then given by

RD(Gρ̂) = E(x,y)∼D Eh∼ρ̂ `
′
01(h, x, y) . Many PAC-Bayesian works use RD(Gρ̂) as a surrogate

loss to study the zero-one classification loss of the majority vote classifier RD(Bρ̂):

RD(Bρ̂) = Pr
(x,y)∼D

(
y E
h∼ρ̂

h(x) < 0
)

= E
(x,y)∼D

I
[
y E
h∼ρ̂

h(x) < 0
]
, (20)

where I[·] being the indicator function. Given a distribution ρ̂, an upper bound on the Gibbs risk
is converted to an upper bound on the majority vote risk by RD(Bρ̂) ≤ 2RD(Gρ̂) [28]. In some
situations, this factor of two may be reached, i.e., RD(Bρ̂) ' 2RD(Gρ̂). In other situations, we
may have RD(Bρ̂) = 0 even if RD(Gρ̂) = 1

2−ε (see Germain et al. [13] for an extensive study).
Indeed, these bounds obtained via the Gibbs risk are exposed to be loose and/or unrepresentative of
the majority vote generalization error.3

In the current work, we study regression losses instead of classification ones. That is, the provided
results express upper bounds on Ef∼ρ̂ L `D(f) for any (bounded, sub-Gaussian, or sub-gamma)
losses. Of course, one may want to bound the regression loss of the averaged regressor Fρ̂(x) =
Ef∼ρ̂ f(x). In this case, if the loss function ` is convex (as the squared loss), Jensen’s inequality
gives L `D(Fρ̂) ≤ Ef∼ρ̂ L `D(f) . Note that a strict inequality replaces the factor two mentioned above
for the classification case, due to the non-convex indicator function of Equation (20).

Now that we have generalization bounds for real-valued loss functions, we can continue our study
linking PAC-Bayesian results to Bayesian inference. In the next section, we focus on model selection.

3It is noteworthy that the best PAC-Bayesian empirical bound values are so far obtained by considering
a majority vote of linear classifiers, where the prior and posterior are Gaussian [2, 12, 28], similarly to the
Bayesian linear regression analyzed in Section 6.
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5 Analysis of Model Selection

We consider L distinct models {Mi}Li=1, each one defined by a set of parameters Θi. The PAC-
Bayesian theorems naturally suggest selecting the model that is best adapted for the given task by
evaluating the bound for each model {Mi}Li=1 and selecting the one with the lowest bound [2, 33, 49].
This is closely linked with the Bayesian model selection procedure, as we showed in Section 3 that
minimizing the PAC-Bayes bound amounts to maximizing the marginal likelihood. Indeed, given a
collection of L optimal Gibbs posteriors—one for each model—given by Equation (8),

p(θ|X,Y,Mi) ≡ ρ̂∗i (θ) = 1
ZX,Y,i

πi(θ) e
−n L̂ `nll

X,Y (θ), for θ ∈ Θi , (21)

the Bayesian Occam’s razor criteria [23, 30] chooses the one with the higher model evidence

p(Y |X,Mi) ≡ ZX,Y,i =

∫
Θi

πi(θ) e
−n L̂ `X,Y (θ) dθ . (22)

Corollary 6 below formally links the PAC-Bayesian and the Bayesian model selection. To obtain
this result, we simply use the bound of Corollary 5 L times, together with `nll and Equation (10).
From the union bound (a.k.a. Bonferroni inequality), it is mandatory to compute each bound with a
confidence parameter of δ/L, to ensure that the final conclusion is valid with probability at least 1−δ.
Corollary 6. Given a data distribution D, a family of model parameters {Θi}Li=1 and associated
priors {πi}Li=1—where πi is defined over Θi— , a δ ∈ (0, 1], if the loss is sub-gamma with parameters
s2 and c < 1, then, with probability at least 1− δ over (X,Y ) ∼ Dn,

∀i ∈ {1, . . . , L} : E
θ∼ρ̂∗i

L`nll
D (θ) ≤ 1

2(1−c) s
2 − 1

n ln
(
ZX,Y,i

δ
L

)
.

where ρ̂∗i is the Gibbs optimal posterior (Eq. 21) and ZX,Y,i is the marginal likelihood (Eq. 22).

Hence, under the uniform prior over the L models, choosing the one with the best model evidence is
equivalent to choosing the one with the lowest PAC-Bayesian bound.

Hierarchical Bayes. To perform proper inference on hyperparameters, we have to rely on the
Hierarchical Bayes approach. This is done by considering an hyperprior p(η) over the set of
hyperparameters H. Then, the prior p(θ|η) can be conditioned on a choice of hyperparameter η. The
Bayes rule of Equation (5) becomes p(θ, η|X,Y ) = p(η) p(θ|η) p(Y |X,θ)

p(Y |X) .

Under the negative log-likelihood loss function, we can rewrite the results of Corollary 5 as a
generalization bound on Eη∼ρ̂0 Eθ∼ρ̂∗η L

`nll
D (θ), where ρ̂0(η) ∝ π0(η)ZX,Y,η is the hyperposterior

on H and π0 the hyperprior. Indeed, Equation (18) becomes

E
θ∼ρ̂∗

L`nll
D (θ) = E

η∼ρ̂∗0
E

θ∼ρ̂∗η
L`nll
D (θ) ≤ 1

2(1−c) s
2 − 1

n ln

(
E

η∼π0

ZX,Y,η δ

)
. (23)

To relate to the bound obtained in Corollary 6, we consider the case of a discrete hyperparameter set
H = {ηi}Li=1, with a uniform prior π0(ηi) = 1

L (from now on, we regard each hyperparameter ηi as
the specification of a model Θi). Then, Equation (23) becomes

E
θ∼ρ̂∗

L`nll
D (θ) = E

η∼ρ̂∗0
E

θ∼ρ̂∗η
L`nll
D (θ) ≤ 1

2(1−c) s
2 − 1

n ln
(∑L

i=1 ZX,Y,ηi
δ
L

)
.

This bound is now a function of
∑L
i=1 ZX,Y,ηi instead of maxi ZX,Y,ηi as in the bound given by

the “best” model in Corollary 6. This yields a tighter bound, corroborating the Bayesian wisdom
that model averaging performs best. Conversely, when selecting a single hyperparameter η∗ ∈ H,
the hierarchical representation is equivalent to choosing a deterministic hyperposterior, satisfying
ρ̂0(η∗) = 1 and 0 for every other values. We then have

KL(ρ̂||π) = KL(ρ̂0||π0) + E
η∼ρ̂0

KL(ρ̂η||πη) = ln(L) + KL(ρ̂η∗ ||πη∗) .

With the optimal posterior for the selected η∗, we have

n E
θ∼ρ̂
L̂ `nll
X,Y (θ) + KL(ρ̂||π) = n E

θ∼ρ̂∗η
L̂ `nll
X,Y (θ) + KL(ρ̂∗η∗ ||πη∗) + ln(L)

= − ln(ZX,Y,η∗) + ln(L) = − ln
(
ZX,Y,η∗

L

)
.

Inserting this result into Equation (17), we fall back on the bound obtained in Corollary 6. Hence,
by comparing the values of the bounds, one can get an estimate on the consequence of performing
model selection instead of model averaging.
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6 Linear Regression

In this section, we perform Bayesian linear regression using the parameterization of Bishop [6]. The
output space is Y := R and, for an arbitrary input space X , we use a mapping function φφφ :X→Rd.

The model. Given (x, y) ∈ X × Y and model parameters θ := 〈w, σ〉 ∈ Rd × R+, we consider
the likelihood p(y|x, 〈w, σ〉) = N (y|w ·φφφ(x), σ2). Thus, the negative log-likelihood loss is

`nll(〈w, σ 〉, x, y) = − ln p(y|x, 〈w, σ 〉) = 1
2 ln(2πσ2) + 1

2σ2 (y −w ·φφφ(x))2 . (24)

For a fixed σ2, minimizing Equation (24) is equivalent to minimizing the squared loss function of
Equation (19). We also consider an isotropic Gaussian prior of mean 0 and variance σ2

π: p(w|σπ) =
N (w|0, σ2

πI). For the sake of simplicity, we consider fixed parameters σ2 and σ2
π . The Gibbs optimal

posterior (see Equation 8) is then given by

ρ̂∗(w) ≡ p(w|X,Y, σ, σπ) = p(w|σπ) p(Y |X,w,σ)
p(Y |X,σ,σπ) = N (w | ŵ, A−1) , (25)

where A := 1
σ2 ΦTΦ + 1

σ2
π
I ; ŵ := 1

σ2A
−1ΦTy ; Φ is a n×d matrix such that the ith line is φφφ(xi) ;

y := [y1, . . . yn] is the labels-vector ; and the negative log marginal likelihood is

− ln p(Y |X,σ, σπ) = 1
2σ2 ‖y −Φŵ‖2 + n

2 ln(2πσ2) + 1
2σ2
π
‖ŵ‖2 + 1

2 log |A|+ d lnσπ

= n L̂ `nll
X,Y (ŵ) + 1

2σ2 tr(ΦTΦA−1)︸ ︷︷ ︸
nEw∼ρ̂∗ L̂

`nll
X,Y (w)

+ 1
2σ2
π

tr(A−1)− d
2 + 1

2σ2
π
‖ŵ‖2 + 1

2 log |A|+ d lnσπ︸ ︷︷ ︸
KL
(
N (ŵ,A−1) ‖N (0,σ2

πI)
) .

To obtain the second equality, we substitute 1
2σ2 ‖y−Φŵ‖2+n

2 ln(2πσ2) = n L̂ `nll
X,Y (ŵ) and insert

1
2σ2 tr(ΦTΦA−1) + 1

2σ2
π

tr(A−1) = 1
2 tr( 1

σ2 ΦTΦA−1 + 1
σ2
π
A−1) = 1

2 tr(A−1A) = d
2 .

This exhibits how the Bayesian regression optimization problem is related to the mini-
mization of a PAC-Bayesian bound, expressed by a trade-off between Ew∼ρ̂∗ L̂ `nll

X,Y (w) and
KL
(
N (ŵ, A−1) ‖N (0, σ2

π I)
)
. See Appendix A.5 for detailed calculations.

Model selection experiment. To produce Figures 1a and 1b, we reimplemented the toy experiment
of Bishop [6, Section 3.5.1]. That is, we generated a learning sample of 15 data points according to
y = sin(x) + ε, where x is uniformly sampled in the interval [0, 2π] and ε ∼ N (0, 1

4 ) is a Gaussian
noise. We then learn seven different polynomial models applying Equation (25). More precisely, for
a polynomial model of degree d, we map input x ∈ R to a vector φφφ(x) = [1, x1, x2, . . . , xd] ∈ Rd+1,
and we fix parameters σ2

π = 1
0.005 and σ2 = 1

2 . Figure 1a illustrates the seven learned models.
Figure 1b shows the negative log marginal likelihood computed for each polynomial model, and is
designed to reproduce Bishop [6, Figure 3.14], where it is explained that the marginal likelihood
correctly indicates that the polynomial model of degree d = 3 is “the simplest model which gives a
good explanation for the observed data”. We show that this claim is well quantified by the trade-off
intrinsic to our PAC-Bayesian approach: the complexity KL term keeps increasing with the parameter
d ∈ {1, 2, . . . , 7}, while the empirical risk drastically decreases from d = 2 to d = 3, and only
slightly afterward. Moreover, we show that the generalization risk (computed on a test sample of size
1000) tends to increase with complex models (for d ≥ 4).

Empirical comparison of bound values. Figure 1c compares the values of the PAC-Bayesian
bounds presented in this paper on a synthetic dataset, where each input x∈R20 is generated by
a Gaussian x∼N (0, I). The associated output y∈R is given by y=w∗ · x + ε, with ‖w∗‖= 1

2 ,
ε∼N (0, σ2

ε ), and σ2
ε= 1

9 . We perform Bayesian linear regression in the input space, i.e., φφφ(x)=x,
fixing σ2

π= 1
100 and σ2=2. That is, we compute the posterior of Equation (25) for training samples of

sizes from 10 to 106. For each learned model, we compute the empirical negative log-likelihood loss
of Equation (24), and the three PAC-Bayes bounds, with confidence parameter of δ= 1

20 . Note that
this loss function is an affine transformation of the squared loss studied in Section 4 (Equation 19), i.e.,
`nll(〈w, σ〉,x, y)= 1

2 ln(2πσ2)+ 1
2σ2 `sqr(w,x, y). It turns out that `nll is sub-gamma with parameters

s2 ≥ 1
σ2

[
σ2
x(σ2

πd+‖w∗‖2)+σ2
ε (1−c)

]
and c ≥ 1

σ2 (σ2
xσ

2
π), as shown in Appendix A.6. The bounds

of Corollary 5 are computed using the above mentioned values of ‖w∗‖, d, σ, σx, σε, σπ, leading
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Figure 1: Model selection experiment (a-b); and comparison of bounds values (c).

to s2 ' 0.280 and c ' 0.005. As the two other bounds of Figure 1c are not suited for unbounded
loss, we compute their value using a cropped loss [a, b] = [1, 4]. Different parameter values could
have been chosen, sometimes leading to another picture: a large value of s degrades our sub-gamma
bound, as a larger [a, b] interval does for the other bounds.
In the studied setting, the bound of Corollary 5—that we have developed for (unbounded) sub-
gamma losses—gives tighter guarantees than the two results for [a, b]-bounded losses (up to n=106).
However, our new bound always maintains a gap of 1

2(1−c)s
2 between its value and the generalization

loss. The result of Corollary 2 (adapted from Catoni [9]) for bounded losses suffers from a similar
gap, while having higher values than our sub-gamma result. Finally, the result of Theorem 3 (Alquier
et al. [1]), combined with λ = 1/

√
n (Eq. 14), converges to the expected loss, but it provides good

guarantees only for large training sample (n & 105). Note that the latter bound is not directly
minimized by our “optimal posterior”, as opposed to the one with λ = 1/n (Eq. 13), for which we
observe values between 5.8 (for n=106) and 6.4 (for n=10)—not displayed on Figure 1c.

7 Conclusion

The first contribution of this paper is to bridge the concepts underlying the Bayesian and the PAC-
Bayesian approaches; under proper parameterization, the minimization of the PAC-Bayesian bound
maximizes the marginal likelihood. This study motivates the second contribution of this paper, which
is to prove PAC-Bayesian generalization bounds for regression with unbounded sub-gamma loss
functions, including the squared loss used in regression tasks.
In this work, we studied model selection techniques. On a broader perspective, we would like to
suggest that both Bayesian and PAC-Bayesian frameworks may have more to learn from each other
than what has been done lately (even if other works paved the way [e.g., 7, 16, 43]). Predictors
learned from the Bayes rule can benefit from strong PAC-Bayesian frequentist guarantees (under the
i.i.d. assumption). Also, the rich Bayesian toolbox may be incorporated in PAC-Bayesian driven
algorithms and risk bounding techniques.
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A Supplementary Material

A.1 Related Work

In this section, we discuss briefly other works containing (more or less indirect) links between
Bayesian inference and PAC-Bayesian theory, and explain how they relate to the current paper.

Seeger (2002, 2003) [42, 43] . Soon after the initial work of McAllester [32, 33], Seeger shows
how to apply the PAC-Bayesian theorems to bound the generalization error of Gaussian Processes in
a classification context. By building upon the PAC-Bayesian theorem initially appearing in Langford
and Seeger [27]—where the divergence between the training error and the generalization one is
given by the Kullback-Leibler divergence between two Bernoulli distributions—it achieves very tight
generalization bounds.4 Also, the thesis of Seeger [43, Section 3.2] foresees this by noticing that “the
log marginal likelihood incorporates a similar trade-off as the PAC-Bayesian theorem”, but using
another variant of the PAC-Bayes bound and in the context of classification.

Banerjee (2006) [3] . This paper shows similarities between the early PAC-Bayesian results
(McAllester [33], Langford and Seeger [27]), and the Bayesian log-loss bound (Freund and Schapire
[11], Kakade and Ng [24]). This is done by highlighting that the proof of all these results are strongly
relying on the same compression lemma [3, Lemma 1], which is equivalent to our change of measure
used in the proof of Theorem 3 (see forthcoming Equation 26). Note that the loss studied in the
Bayesian part of Banerjee [3] is the negative log-likelihood of Equation (6). Also, as in Equation (10),
the Bayesian log-loss bound contains the Kullback-Leibler divergence between the prior and the
posterior. However, the latter result is not a generalization bound, but a bound on the training loss that
is obtained by computing a surrogate training loss in the specific context of online learning. Moreover,
the marginal likelihood and the model selection techniques are not addressed in Banerjee [3].

Zhang (2006) [49] . This paper presents a family of information theoretical bounds for randomized
estimators that have a lot in common with PAC-Bayesian results (although the bounded quantity
is not directly the generalization error). Minimizing these bounds leads to the same optimal Gibbs
posterior of Equation (4). The author noted that using the negative log-likelihood (Equation 6) leads
to the Bayesian posterior, but made no connection with the marginal likelihood.

Grünwald (2012) [16] . This paper proposes the Safe Bayesian algorithm, which selects a proper
Bayesian learning rate — that is analogous to the parameter β of our Equation (1), and the parameter
λ of our Equation (11) — in the context of misspecified models.5 The standard Bayesian inference
method is obtained with a fixed learning rate, corresponding to the case λ := n (that is the case we
focus on the current paper, see Corollaries 4 and 5). The analysis of Grünwald [16] relies both on the
Minimum Description Length principle [19] and PAC-Bayesian theory. Building upon the work of
Zhang [49] discussed above, they formulate the result that we presented as Equation (10), linking the
marginal likelihood to the inherent PAC-Bayesian trade-off. However, they do not compute explicit
bounds on the generalization loss, which required us to take into account the complexity term of
Equation (12).

Lacoste (2015) [25] . In a binary classification context, it is shown that the parameter β of Theo-
rem 1 can be interpreted as a Bernoulli label noise model from a Bayesian likelihood standpoint. For
more details, we refer the reader to Section 2.2 of this thesis.

Bissiri et al. (2016) [7] . This recent work studies Bayesian inference through the lens of loss
functions. When the loss function is the negative log-likelihood (Equation 6), the approach of Bissiri
et al. [7] coincides with the Bayesian update rule. As mentioned by the authors, there is some
connection between their framework and the PAC-Bayesian one, but “the motivation and construction
are very different.”

4The PAC-Bayesian results for Gaussian processes are summarized in Rasmussen and Williams [39, Sec-
tion 7.4]

5The empirical model selection capabilities of the Safe Bayesian algorithm has been further studied in
Grünwald and van Ommen [18].
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Other references. See also Grünwald and Langford [17], Lacoste-Julien et al. [26], Meir and
Zhang [35], Ng and Jordan [36], Rousseau [40] for other studies drawing links between frequentist
statistics and Bayesian inference, but outside the PAC-Bayesian framework.

A.2 Proof of Theorem 3

Recall that Theorem 3 originally comes from Alquier et al. [1, Theorem 4.1]. We present below
a different proof that follows the key steps of the very general PAC-Bayesian theorem presented
in Bégin et al. [5, Theorem 4].

Proof of Theorem 3. The Donsker-Varadhan’s change of measure states that, for any measurable
function φ : F → R, we have

E
f∼ρ̂

φ(f) ≤ KL(ρ̂‖π) + ln

(
E
f∼π

eφ(f)

)
. (26)

Thus, with φ(f):=λ
(
L `D(f)−L̂ `X,Y (f)

)
, we obtain ∀ ρ̂ on F :

λ
(

E
f∼ρ̂
L `D(f)− E

f∼ρ̂
L̂ `X,Y (f)

)
= E

f∼ρ̂
λ
(
L `D(f)− L̂ `X,Y (f)

)
≤ KL(ρ̂‖π) + ln

(
E
f∼π

eλ
(
L `D(f)−L̂ `X,Y (f)

))
.

Now, we apply Markov’s inequality on the random variable ζπ(X,Y ) := E
f∼π

eλ
(
L `D(f)−L̂ `X,Y (f)

)
:

Pr
X,Y∼Dn

(
ζπ(X,Y ) ≤ 1

δ
E

X′,Y ′∼Dn
ζπ(X ′, Y ′)

)
≥ 1− δ .

This implies that with probability at least 1−δ over the choice of X,Y ∼ Dn, we have ∀ ρ̂ on F :

E
f∼ρ̂
L `D(f) ≤ E

f∼ρ̂
L̂ `X,Y (f) +

1

λ

KL(ρ̂‖π) + ln

E
X′,Y ′∼Dn

ζπ(X ′, Y ′)

δ

 .

A.3 Proof of Equations (13) and (14)

Proof. Given a loss function ` : F × X × Y , and a fixed predictor f ∈ F , we consider the
random experiment of sampling (x, y) ∈ D. We denote `i a realization of the random variable
L `D(f)− `(f, x, y), for i = 1 . . . n. Each `i is i.i.d., zero mean, and bounded by a− b and b− a, as
`(f, x, y) ∈ [a, b]. Thus,

E
X′,Y ′∼Dn

exp
[
λ
(
L `D(f)− L̂ `X′,Y ′(f)

)]
= E exp

[
λ

n

n∑
i=1

`i

]

=

n∏
i=1

E exp

[
λ

n
`i

]

≤
n∏
i=1

exp

[
λ2(a− b− (b− a))2

8n2

]

=

n∏
i=1

exp

[
λ2(b− a)2

2n2

]
= exp

[
λ2(b− a)2

2n

]
,

where the inequality comes from Hoeffding’s lemma.
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With λ := n, Equation (11) becomes Equation (13) :

E
f∼ρ̂
L `D(f) ≤ E

f∼ρ̂
L̂ `X,Y (f) +

1

n

[
KL(ρ̂‖π) + ln

1

δ
+
n2(b− a)2

2n

]
= E

f∼ρ̂
L̂ `X,Y (f) +

1

n

[
KL(ρ̂‖π) + ln

1

δ

]
+

1

2
(b− a)2 .

Similarly, with λ :=
√
n, Equation (11) becomes Equation (14) .

A.4 Study of the Squared Loss

We consider a regression problem whereX×Y ⊂ Rd×R, a family of linear predictors fw(x) = w·x,
with w ∈ Rd, and a Gaussian prior N (0, σ2

π I). Let us assume that the input examples are generated
according to N (0, σ2

xI) and ε ∼ N (0, σ2
ε ) is a Gaussian noise.

We study the squared loss `sqr(w,x, y) = (w · x− y)2 such that:

• w ∼ N (0, σ2
π I) is given by the prior π,

• x ∼ N (0, σ2
xI) (and x ∈ Rd),

• y = w∗ · x + ε, where ε ∼ N (0, σ2
ε ), corresponds to the labeling function.

Thus y|x ∼ N (x ·w∗, σ2
ε ).

Let us consider the random variable v =
[
Ex Ey|x `sqr(w,x, y)

]
− `sqr(w,x, y). To show that v is a

sub-gamma random variable, we will find values of c and s such that the criterion of Equation (16) is
fulfilled, i.e.,

ψv(λ) = ln E eλv ≤ λ2s2

2(1−cλ) , ∀λ ∈ (0, 1
c ) .

We have,

ψv(λ) = ln E
x

E
y|x

E
w

exp
(
λ
[
E
x

E
y|x

(y −w · x)2
]
− λ(y −w · x)2

)
≤ ln E

w
exp

(
λE

x
E
y|x

(y −w · x)2
)

= ln E
w

exp
(
λE

x
[x · (w∗ −w)]2 + λσ2

ε

)
= ln E

w
exp

(
λσ2

x‖w∗ −w‖2 + λσ2
ε

)
= ln

1

(1− 2λσ2
xσ

2
π)

d
2

exp
( λσ2

x‖w∗‖2

1− 2λσ2
xσ

2
π

+ λσ2
ε

)
= −d

2
ln(1− 2λσ2

xσ
2
π) +

λσ2
x‖w∗‖2

1− 2λσ2
xσ

2
π

+ λσ2
ε

≤ λσ2
xσ

2
πd

1− 2λσ2
xσ

2
π

+
λσ2

x‖w∗‖2

1− 2λσ2
xσ

2
π

+ λσ2
ε

=
λ(σ2

πσ
2
xd+ σ2

x‖w∗‖2 + (1− 2λσ2
xσ

2
π)σ2

ε )

1− 2λσ2
xσ

2
π

=
λ2s2

2(1− λc)
,

with s2 =
2

λ

[
σ2
x(σ2

πd+ ‖w∗‖2) + σ2
ε (1− λc)

]
and c = 2σ2

xσ
2
π .

Recall that Corollary 5 is obtained with λ := 1.

A.5 Linear Regression : Detailed calculations

Recall that, from Equation (25), the Gibbs optimal posterior of the described model is given by

p(w|X,Y, σ, σπ) = N (w | ŵ, A−1) ,
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with A := 1
σ2 ΦT Φ + 1

σ2
π
I ; ŵ := 1

σ2A
−1ΦTy ; Φ is a n×d matrix such that the ith line is φφφ(xi) ;

y := [y1, . . . yn] is the labels-vector. For the complete derivation leading to this posterior distribution,
see Bishop [6, Section 3.3] or Rasmussen and Williams [39, Section 2.1.1].

Marginal likelihood. We decompose of the marginal likelihood into the PAC-Bayesian trade-off:

− ln p(Y |X,σ, σπ)

= 1
2σ2 ‖y −Φŵ‖2 + n

2 ln(2πσ2) + 1
2σ2
π
‖ŵ‖2 + 1

2 log |A|+ d lnσπ (†)

= n L̂ `nll
X,Y (ŵ) + 1

2σ2 tr(ΦTΦA−1)︸ ︷︷ ︸
nEw∼ρ̂∗ L̂

`nll
X,Y (w)

+ 1
2σ2
π

tr(A−1)− d
2 + 1

2σ2
π
‖ŵ‖2 + 1

2 log |A|+ d lnσπ︸ ︷︷ ︸
KL
(
N (ŵ,A−1) ‖N (0,σ2

πI)
) . (?)

Line (†) corresponds to the classic form of the negative log marginal likelihood in a Bayesian linear
regression context (see Bishop [6, Equation 3.86]).

Line (?) introduces three terms that cancel out : 1
2σ2 tr

(
ΦTΦA−1

)
+ 1

2σ2
π

tr
(
A−1

)
− 1

2d = 0 .

The latter equality follows from the trace operator properties and the definition of matrix A:

1
2σ2 tr

(
ΦTΦA−1

)
+ 1

2σ2
π

tr
(
A−1

)
= tr

(
1

2σ2 ΦTΦA−1 + 1
2σ2
π
A−1

)
= tr

(
1
2A
−1( 1

σ2 ΦTΦ + 1
σ2
π
I)
)

= tr
(

1
2A
−1A

)
= 1

2 d .

We show below that the expected loss Ew∼ρ̂∗ L̂ `nll
X,Y (w) corresponds to the left part of Line (?). Note

that a proof of equality Ew∼ρ̂ wTΦTΦw = tr
(
ΦTΦA−1

)
+ ŵTΦTΦŵ (Line ♣ below), known

as the “expectation of the quadratic form”, can be found in Seber and Lee [41, Theorem 1.5].

n E
w∼ρ̂
L̂ `nll
X,Y (w) = E

w∼ρ̂

n∑
i=1

− ln p(yi|xi,w)

= E
w∼ρ̂

(
n

2
ln(2πσ2) +

1

2σ2

n∑
i=1

(yi −w ·φφφ(xi))
2

)

=
n

2
ln(2πσ2) +

1

2σ2
E

w∼ρ̂
‖y −Φw‖2

=
n

2
ln(2πσ2) +

1

2σ2
E

w∼ρ̂

(
‖y‖2 − 2yΦw + wTΦTΦw

)
=
n

2
ln(2πσ2) +

1

2σ2

(
‖y‖2 − 2yΦŵ + E

w∼ρ̂
wTΦTΦw

)
=
n

2
ln(2πσ2) +

1

2σ2

(
‖y‖2 − 2yΦŵ + tr

(
ΦTΦA−1

)
+ ŵTΦTΦŵ

)
(♣)

=
n

2
ln(2πσ2) +

1

2σ2
‖y −Φŵ‖2 +

1

2σ2
tr
(
ΦTΦA−1

)
= n L̂ `nll

X,Y (ŵ) +
1

2σ2
tr
(
ΦTΦA−1

)
.

Finally, the right part of Line (?) is equal to the Kullback-Leibler divergence between the two
multivariate normal distributions N (ŵ, A−1) and N (0, σ2

πI) :

KL
(
N (ŵ, A−1) ‖N (0, σ2

πI)
)

=
1

2

(
tr
(
(σ2
πI)−1A−1

)
+

1

σ2
π

‖ŵ‖2 − d+ log
|σ2
πI|
|A|

)
=

1

2

(
1

σ2
π

tr
(
A−1

)
+

1

σ2
π

‖ŵ‖2 − d+ log |A|+ d lnσ2
π

)
.
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A.6 Linear Regression: PAC-Bayesian sub-gamma bound coefficients

We follow then exact same steps as in Section A.4, except that we replace the random variable v
(giving the squared loss value) by a random variable v′ giving the value of the loss

`nll(〈w, σ 〉,x, y) = 1
2 ln(2πσ2) + 1

2σ2 (y −w · x)2 ,

where w, x and y are generated as described in Section A.4. We aim to find the values of c and s
such that the criterion of Equation (16) is fulfilled, i.e.,

ψv′(λ) = ln E eλv
′
≤ λ2s2

2(1−cλ) , ∀λ ∈ (0, 1
c ) .

We obtain

ψv′(λ) = ln E
x

E
y|x

E
w

exp
(

λ
2σ2

[
E
x

E
y|x

(y −w · x)2
]
− λ(y −w · x)2

)
≤ ln E

w
exp

(
λ

2σ2 E
x

E
y|x

(y −w · x)2
)

... (27)

=
λ

2σ2 (σ2
πσ

2
xd+ σ2

x‖w∗‖2 + (1− 2 λ
2σ2σ

2
xσ

2
π)σ2

ε )

1− 2 λ
2σ2σ2

xσ
2
π

=
λ2s2

2(1− λc)
,

with

c = 1
2σ2

[
2σ2

xσ
2
π

]
= 1

σ2 (σ2
xσ

2
π) ,

s2 = 1
2σ2

[ 2

λ

[
σ2
x(σ2

πd+ ‖w∗‖2) + σ2
ε (1− λc)

] ]
=

1

λσ2

[
σ2
x(σ2

πd+ ‖w∗‖2) + σ2
ε (1− λc)

]
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