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Abstract—Big data stream analytics platforms not only need
to support performance-dictated elasticity benefiting for instance
from Cloud environments. They should also support analytics
that can evolve dynamically from the application viewpoint,
given data nature can change so the necessary treatments on
them. The benefit is that this can avoid to undeploy the current
analytics, modify it off-line, redeploy the new version, and resume
the analysis, missing data that arrived in the meantime. We
also believe that such evolution should better be driven by
autonomic behaviors whenever possible. We argue that a software
component based technology, as the one we have developed so
far, GCM/ProActive, can be a good fit to these needs. Using it,
we present our solution, still under development, named GCM-
streaming, which to our knowledge seems to be quite original.

I. INTRODUCTION

Analytics of big data streams can be considered as one of
the application domains of HPC. Indeed, this domain translates
into in-memory and on-line (as opposed to batch, off-line)
data intensive computing. Typical examples of data stream
analytics consist in analyzing big data produced from social
network activities, Internet of Things, etc. For decision makers,
the benefit is to extract relevant knowledge, and detect trends,
anomalies, or opportunities. Moreover, when a situation that
requires a reaction is detected, the decision makers can react
on the fly and provide alternative strategies that they foresee
to be better fitted to the considered situation; once such an
adaptation is performed, the data analytics can be resumed
with the new scenario.

One of our long-term research goals is to provide a stream
analytics middleware, capable to autonomously support such a
reactive behaviour, that is: adapting the current analytics to an
evolving situation, allowing it to always provide meaningful
analysis. We argue in this paper that a fully flexible tech-
nology, encompassing both the programming and supporting
runtime levels, is needed; flexible in terms of 1) the functional
viewpoint, i.e. what the analytics aims to deliver as ”business”
outcome, and 2) the non-functional (quality of service, like e.g.
response time) viewpoint as a secondary and more classical
objective.

In this paper we expose our arguments why an approach
originating from software component based technologies can
be a real asset towards this goal. Started years ago, in the
context of HPC on cluster then on grid computing, now on
cloud platforms, we developed a programming library named
Grid Component Model (GCM for short) implemented by
leveraging the ProActive parallel and distributed open source
technology [1]. GCM permits to define software components,
well-delimited hierarchical and autonomous software entities
that feature parallelism, distribution, and also a clear support
for autonomic computing thanks to a well-defined separation
of the functional and the non-functional aspects a programmer
has to handle.

In Section II we analyze the requirements towards this
overall goal and summarize the corresponding state-of-the art
solutions. Section III gives the necessary GCM background.
Section IV gives a general view of our GCM-based proposi-
tion, named GCM-streaming for supporting a stream analytics.
Section V focuses on the autonomic dynamic reconfiguration
capabilities and sketches envisioned scenarios that should
constitute relevant illustrations of our approach. We conclude
in Section VI.

II. REQUIREMENTS ANALYSIS AND STATE OF THE ART

Stream processing can rely on various approaches, but the
one which seems the most appropriate is based upon Stream
Processing Engines as opposed to database management sys-
tems and rule engines [2].

We do not want to rely on an approach that translates an
abstract expression of the analytics into an internal representa-
tion that ends up being a very optimized data flow fine-grained
parallel program (as in Stratosphere, Spark). Instead, we wish
to allow the programmer to express the stream processing
program accompanied with the adaption rules to permit this
program to dynamically evolve. To ease that dual level of
expressiveness, we believe it is preferable to adopt a runtime
representation of the computation that is very close to the
abstract view of the stream processing application. It does not
prevent this abstract description to benefit from a relatively
high-level language, like Spade/SPL [3] for example which



then compiles into IBM’s System S/InfoSphere Streams mid-
dleware format. The resulting transformation gives a dataflow
graph (which could be cyclic), where each operator is a node
whose respectively input/output links correspond to incom-
ing/outgoing data streams from/to sources/sinks or from/to
other operators that precedes/succeeds it in the graph. Even
if being coarse-grained, it does not prevent to scale in and out
each operator.

Indeed, a lot of platforms for big data stream analytic offer
some flexibility and support – vertical or horizontal– elasticity
in order to face the intrinsic unpredictable volume of incoming
data from the input streams, but also the possible complexity
of operators. The goal is to ensure a given performance
level even if the volume of data to process evolves, while
not overspending or under-spending resources. Given this last
aspect, cloud computing is really a must [4] as resources can
be acquired or released easily. However some anticipation is
needed to acquire new nodes on the cloud and deploy all
necessary software for them, before they are ready to be used
by the analytics.

To be elastic, besides traditional lowest level resource
management (including failure management), and mapping
and scheduling of tasks on allocated resources, some more
stream-related problems [2] have to be addressed: tolerate
or be resilient against data miss or original data ordering
loss induced by the introduction/removal/migration/restart of
operator replica. One relevant aspect for our work pertains
to how the data gets effectively routed to the right opera-
tor replica after a reconfiguration of elastic operators. This
requires the platform to support channel connections recon-
figuration through for instance dynamic routing tables [5], or
through the reconfiguration of collective communications as
multicast/unicast after a re-mapping of the static set of parallel
operators slices on the available hosts [6].

Sometimes, horizontal and vertical elasticity is handled
through an autonomic control approach (i.e. more or less ex-
plicitly following the typical Monitor-Analysis-Plan-Execute
methodology). For instance, [7], [8] propose very well de-
signed algorithms for auto-parallelization of operators within
a parallel or even distributed setting comprised of hosts/cores.
[6] relies on an elasticity enforcer and associated elastic poli-
cies. [9] handles the autonomic allocation of tasks to workers
running on the targeted middleware; these tasks resulting from
an original stream computing model consisting of replicated
data-stream oriented workflows composed of Petri net like
tasks. One original proposition is to not only sense system
level performance parameters, like CPU or memory consump-
tion, but to also install application triggers [10]. Indeed, ”a
signal inside the data generated by an application can serve
as an earlier indicator that there will be a load change in
the near future” [10]. In [10], tweets per minute, classified
after the sentiment analysis operator treatment as expressing
positive, neutral or negative sentiment are used. However [10]
only demonstrates better resource usage than when relying
on CPU usage sensors, using a simulator and not a real
system. How the programmer can easily identify which are the

relevant application-level produced data that should be used
by the autonomic control part of the supporting platform is
not addressed. Our approach will include a solution to that
software engineering level question: it will clearly promote a
clean separation of the core stream processing at functional
level and the elements that are required for programming the
meta-level responsible of the autonomic adaptation. We believe
such strong and strict separation of concerns is important
to ease operator programming, and operator reuse in various
settings.

Towards this software engineering oriented goal and in
particular concerning dynamic configuration capabilities, we
are only aware of few solutions. One of them is Floe [11]
where either a single operator of the analytics graph can
be updated at runtime under some restrictions for easing
state operator transfer, or even a sub-graph can be replaced
by a new one but exhibiting a higher reconfiguration delay.
The motivation is the same as ours: support always-on data
flow analytics that by definition may need to change the
applications logic in response to external operational needs.
However, Floe does not try to offer a meta-level support for
the programmer to express the conditions under which the
dynamic modification of the data flow graph should occur.
Consequently, their aim is not to feature a self-adaptable
approach like the one suggested here; as a minimum, Floe
supports some self-adaptation strategies to resource usage (as
noticed above in works like [8]) only. Floe, like our solution
based on GCM, adopts a component model of application
execution so that a single centralized dataflow orchestrator is
not a bottleneck. [12] based upon the System S IBM’s stream
analytics platform features the same goals as us but offers a
different, not integrated, approach from what we intend to do:
developers program in advance (in ORCA) an external (and
centralized) orchestrator that corresponds to their applications
management policy. They express which events (pertaining to
either functional or non-functional aspects) are of interest and
how the application should adapt upon the occurrence of these
events. Application adaptation consists in dynamically and
automatically connecting it with other applications from/to it
features dependencies that thus may be started or canceled on-
demand, which enforces application reuse. So, the adaptation
logic is limited to the control of application submission and
cancellation, and not to the full-fledged adaptation of a data
stream graph proposed in our approach.

Overall, we aim at contributing to the improvement of
industry-level software tools dedicated to stream analytics,
for instance by enabling easy customization of the data-
stream analytics and also capability of dynamic evolution, as
summarized by Table I. None of the solutions we quoted above
fulfills all these requirements as shown on Table II.

III. BACKGROUND ON GCM
A. Functional layer

GCM (Grid Component Model) [1] is a hierarchical
component-oriented model for building parallel and distributed
software. It is a framework that uses autonomous components



TABLE I
OUR REQUIREMENTS FOR A DATA STREAM ANALYTICS PLATFORM

R1 Coarse grained dataflow graph, close to the runtime view
R2 Support elasticy of dataflow graph operators
R3 Support on-the-fly replacement of used graph operators
R4 Strategies for managing data streams tuples during reconfiguration
R5 Autonomic control of runtime modification of the graph
R6 Fully distributed control of the adaptation
R7 High expressiveness for graph definition & adaptation rules

TABLE II
MAJOR FOCUS OF STUDIED SOLUTIONS W.R.T. OUR REQUIREMENTS

R1 R2 R3 R4 R5 R6 R7
[3] [5],[6] [11],[5] [6],[7],[8],[9] [3],[12],[10]

as the building block for building applications, each of which
communicates and sends messages (in the form of remote
method or service calls) to each other to accomplish the
execution of the defined tasks. By autonomous, we mean
that the GCM programming model enforces to define loosely
coupled components that do not share memory nor control, and
thus can be considered as independent entities. The core of a
component is made of a ProActive multi-active object. Each
call may produce a reply, in this case the reply is transparently
awaited and handled by the caller through a mechanism known
as a future. Pending calls to be served by a component are
held in a queue managed in FIFO order by default; and
can be served one by one or by multiple threads hosted by
the component following the multi-active object programming
paradigm: some annotations of the method signature indicate
which of the methods can be safely executed concurrently.
So far, the dynamic management of the number of available
threads for serving method calls is not totally open to the
programmer; it is a future work to allow that management at
runtime and in an autonomic way (as done e.g. in [7]).

Each component works as an independent and autonomous
piece of software that exposes one or many interfaces that
can be used by the others, and at the same time requiring
services from others. Despite this set of requirements, the
components have a life-cycle of their own and can be managed
to be rewired during the execution of an application which
will be one of the key points we leverage in this work.
Incoming method calls triggered by the components that are
using the component being reconfigured are automatically
made pending, i.e they are kept in the queue of the component
under reconfiguration, they are not served until it is restarted.

Components can be assembled within composite compo-
nents, thus forming a hierarchically organized structure. A
composite can be deployed on several nodes of a distributed
platform. The implementation of GCM on top of the ProActive
technology made it possible to easily express in a high-level
way how nodes map to physical or virtual hosts (through the
concept of virtual ProActive nodes). As a meta scheduler,
ProActive then is in charge to get access to such hosts,
from any possibly heterogeneous combination of computing
platforms be they servers, cluster or grid nodes, or VMs in

private or public clouds. Composite composition can help for
managing elasticity. For instance, a composite component can
duplicate one of its inner component, deploy it on a new
node, and add a connection towards this new component in
its exposed client interface. For this the multicast kind of
interfaces, defined in the GCM model, is particularly useful;
it represents the one-to-many interfaces. As the behaviour
of multicast interface can also be customized, including at
runtime, it becomes possible to express the needed policy of
sharing incoming service calls between the set of bound slaves
inside the composite. Symmetrically the gathercast collective
interface allows many-to-one connections; it makes it possible
for a component to gather in a configurable (and a more or less
strong synchronized way) the outgoing method calls triggered
by the components that are bound to it.

While composite components allow the programmer to
compose complex applications, primitive components are the
place where the programmer expresses the functional logic.
Each method of exposed interfaces is implemented by default
in Java even if some native code wrapping is also possible.
On the contrary, a composite component does not feature
a customizable functional logic, and each of its functional
methods consists in routing the incoming method call to the
bound inner component interface, going through the membrane
as can be seen in Figure 1.

B. Non-functional layer

Each component is equipped with what is named a mem-
brane, which contains all the controllers that govern the non-
functional behaviour of the component, thus named the host
component.

By-default controllers permit to manage the lifecycle and
the host component architecture that is its bindings, and its
content in the case of a composite. Attribute controllers can
be used to get and set some properties of the business code
in a practical way, this provides a limited form of dynamic
adaptation of the component behaviour. Besides, some of
the controllers can themselves be GCM components bound
together, forming an embedded GCM architecture part of
the membrane. One such predefined architecture consists of
a MAPE control loop, where each element of the MAPE
loop translates into a component bound to the necessary
others. In Figure 1, component C could be replaced by 4
bound components acting respectively as Monitor, Analysis,
Planning, Execution forming a MAPE framework exposing
adequate APIs (refer to [1] for more details).

Considering monitoring of components, sensing information
can be obtained and relayed to the monitor component through
JMX events. Predefined JMX events exist for monitoring
classical resource usage, information on the host component,
request service performance, etc. for instance one classical
monitoring functionality is to compute the mean delay for the
component to serve a request. If needed, JMX events can also
be generated by the programmer application code, and the
MAPE monitor component can subscribe to them. Rules to
support analysis and planning of decisions can be expressed



and also modified at runtime through a specific API defined
for the MAPE GCM architecture. Actions handled within the
execution component to reconfigure the architecture of the
GCM application are either expressed by using the GCM
programming API (for creating a new component, establish
some bindings, etc), or by using a high-level scripting language
named GCM-script.

A host component exposes non-functional client or server
interfaces, by promoting the functional client or server inter-
faces of its controllers. These non-functional interfaces can ei-
ther be internal or external: components within the membrane
of the host component can be bound through non-functional
interfaces to the membrane (binding to non-functional inter-
faces) of inner components, or to the membrane of components
at the same hierarchical level as the host component (e.g.
components that are connected with the host component).
This is illustrated in Figure 2. All this machinery allows
the programming of distributed and hierarchical autonomic
strategies, as they encompass more than one single component.

Finally, we provide an interceptor mechanism to intercept
each incoming or outgoing method call on a functional
interface. Contrary to an application-level JMX event, the
interception mechanism works only for method calls, and as
in Aspect Oriented Programming (AOP) can act before or
after the method call is received or sent by the component.
An interceptor takes the form of a component plugged in the
membrane of the host component. Such components can also
be composed in an ordered chain of interceptors, like aspects
that can be woven in the context of AOP. Such interceptor
components can also be bound to the other component con-
trollers present in the membrane, through their respective func-
tional interfaces. This allows the injection of some functional
level information to the membrane, that can then be handled
by the adaptation layer implemented within the membrane;
this can allow the membrane to steer the dynamic adaptation
of the component architecture depending on information on
the functional requests targeting the component. Moreover,
interceptors can also be added/removed dynamically to fit the
needs of a dynamic adaptation of the control logic itself.

Figure 1 summarizes these elements by showing all parts of
the host composite component. A and B are inner components,
C a membrane component; different types of binding involving
functional and non-functional interfaces are shown.

GCM is a rich technology ready to be used to build a
complex application, featuring dynamic and even autonomic
reconfiguration capabilities. Such an application can itself act
as a middleware, this last point of view can be compared
to solutions like [13]. In the sequel, we describe such a
middleware dedicated to support end-user data stream ana-
lytics applications. By relying upon the dynamic adaptation
capabilities of this middleware, our goal is to deliver self-
adaptable analytics.

IV. GCM-streaming HIGH-LEVEL DESCRIPTION

GCM-streaming stands for our support to provide
component-oriented autonomic stream analytics. It is to be

Fig. 1. Typical composite component architecture. Green color for client
interfaces, red for server interfaces

Fig. 2. Example of a more elaborated composite component architecture. Each
involved component, including composite A, is managed by an autonomic
manager component. Autonomic Manager of A component can act upon
an external component or upon each inner component respective autonomic
manager (through the broadcast interface). Manager of C can interact if needed
with it, whereas manager of B can interact with manager of C

considered as a GCM application, made of components that
are either taken off-the-shelves, or can be programmed from
scratch. Those components are composed and bound together
to form the data analytics graph. Because it can compose
existing analyses but also new components, this GCM ap-
plication can be viewed as a framework. So, for easing this
programming, we provide a library1 of predefined compo-
nents corresponding to typical operators, as can be found in
SPADE/SPL, Storm, Floe [11] or other similar systems, that
the user has simply to customize by providing the specific
functional logic.

A. Operator customization

Type compatibility for binding interfaces of the var-
ious operator components instances requires that ex-
posed service interfaces are of a similar Java inter-
face type than client interfaces. The definition of this
Java type is as follows: public interface InStream
{ void receive(List<Tuple> tuples);}. The re-

1https://github.com/moliva/gcm-streaming



ceive method of each operator type implementing InStream
is implemented in an abstract class. Besides, depending on
the operator type, or role, one abstract method is prepared.
For instance, for the operator named Operator (see below
in IV-B), one abstract method named processTuples is
predefined. To customize the selected operator instance to his
needs, the programmer simply extends this abstract class. We
provide1 some examples of such concrete extension classes
(e.g., counting words by key, analyze/classify text, etc). Below
is the code of the abstract class serving as a basis for the
Operator component.
public abstract class BaseOperator extends

MulticastInStreamBindingController
implements InStream {
protected abstract List<? extends Tuple>

processTuples(List<Tuple> tuplesToProcess);
public void receive(final int inputSource,

final List<Tuple> newTuples) {
if (inputSource > 0) {

throw new RoutingException("this
operator doesn’t allow an input
source greater than 0, invalid
input source "+ inputSource);

}
send(processTuples(newTuples));
//inherited send method transmits operator
//result (as list) to the bound components

}

B. Data stream operator types
The predefined components to be customized, subsequently

instantiated and bound at runtime, are as follows:
• InTap to read data from an external source transforming

it into tuples that can be pushed to the next component
through its client interface. Examples of this kind of
operation could be a file or console reader, database
queries, Tweet fetcher or streamers for other APIs.

• Operator to represent an operation. It acts as an inter-
mediate process in a data flow graph, taking tuples from
its server interface processing tuples and transforming
them and forwarding the result to the next component.
Typical processing steps include text normalizing, fil-
tering (whether the tuple holds a certain property or
not), reducing (as a group or sort operation), buffering,
under some typical window behavior (tumbling, sliding
windows).

• OutTap to write tuples in an external system or file, like
a file writer, writing to console or a database, exposing
only a server interface from tuples are received.

• Operator(s) with a map-reduce flavor. This is a compos-
ite component that contains by default a master and one
slave. The master receives the tuples, distribute them in
a balanced way to workers that apply the map function.
In the first flavor the reduce operation simply aggregates
map results, in this case, map workers are directly bound
to an internal gathercast interface acting as server so to
push results to the next operator forward. In the second
(refer to Figure 3), map results are sent back as (future)
return values to the master that applies the reduction
to obtain new tuples pushed forward in the graph. A

Fig. 3. A possible flavor of a map-reduce (master worker) operator

third flavor could embed a binary tree of reducers within
the composite to implement a parallel reduction before
pushing the results forward.

All of these operator definitions work by default with multicast
client interface (see green client interface of type multicast at
the very right hand side in Figures 3 or 4 for instance). This
enables the application developer to build graphs of operations
where the result from one of them can then be used by more
than one operation in the forward direction (e.g. like from
the Text Normalizer component in Figure 5, which duplicates
output tuples to two operators). These multicast interfaces
work by default in a broadcast fashion, sending the same list
of tuples to all the different clients attached to it. This also
enables the developer to plug in a new branch of operations
during runtime if these results could be used for a new process
in the business.

An operator (except InTap) exposes one single unicast
server interface. It is possible that many client interfaces are
bound to such a server interface. Meaning that the lists of
tuples received through it are stored in the queue of the
component according to their arbitrary arrival order, without
being able to distinguish from which previous component they
come from.

So, a last useful operator is Aggregator. It will receive
already generated tuples from a previous operation and will
forward new tuples after a certain process. The main difference
with a simple operator is that in this case, the Aggregator needs
to combine tuples that come from different input sources,
identifying the source origin to come up with new results. To
allow for this, the Aggregator must expose not just one but a
variable number of different server interfaces from potentially
different semantics for the list of tuples. In order to provide
this functionality and at the same time maintain our principle
of working with a single kind of interface, shared by all the
operators in the system, we introduced this new component
definition (refer to Figure 4): it is in fact a primitive GCM
component (not a composite one) exposing as many server
interfaces of the same type (InStream) as needed, with
a different name. But the primitive component has just one
such interface to implement. We put in the membrane an
interceptor as a non functional Router component: it intercepts
the received messages (i.e. calls of the receive method)
before they are served by the primitive component (by the



content) as they were all received through a unique server
interface. To this aim, we redirect all of the server interfaces
to this unique internal interface of type InStream. The
interceptor adds an information of the source origin of each
message (like source id), so that messages be then easily
classified by the functional implementation of the receive
method (e.g. aggregate one received tuples list received from
source 1 with one received from source 2, to form a single
aggregated new one, and again).

Fig. 4. A generic (w.r.t. number of sources) aggregator operator

A stream application (as sketched by figure 5), as any other
GCM application, can be designed in a declarative way thanks
to the use of the specific XML-based GCM Architecture
Description Language. Triggering the deployment of the GCM
ADL file will automatically first make sure the necessary hosts
to map GCM virtual nodes used within the ADL file are
ready to run GCM components; second instantiate the GCM
components on the nodes, bind them, and start their respective
lifecyle.

V. TOWARDS AUTONOMIC RECONFIGURATION
MECHANISMS OF GCM-streaming

Figure 5 is a typical example of what kind of analytics graph
our research targets. Notice here that the graph is flat, and
each used component is a primitive component. It is however
totally feasible to follow another design where some of the
component operators are grouped within a composite operator.
Anyway, by default, all components such as those depicted are
part of a single (but distributed) composite component, even
if not shown on the figure.

A. Application dynamism

The main goal is to add dynamic adaptation capabilities
of such graphs, as suggested also in Floe [11]. So far, any
GCM application can be dynamically controlled through the
invocation of methods offered by the exposed non-functional
interfaces of its components. Whatever dynamic modification
is needed, the GCM API or the GCM-script language based
on this API allow one to have an external application (like a
console for an end-user to interact with the graph) that can
safely sequence these control operations. But, this can also
be alternatively embedded as an execution plan triggered by
the autonomic control loop given some programmed analysis

rules that monitor adequate indicators. To this aim, the MAPE
API of GCM allows the dynamic addition or modification of
analysis/planning rules of any MAPE equipped component.
Besides, the membrane of the global composite component
can be equipped with a MAPE loop in order to express a
global autonomic strategy for the whole analytics if needed.
Moreover, this high-level MAPE loop can interact with each
MAPE loop of inner components, supporting multi-level au-
tonomic strategies.

We can for instance change some attributes of components
(through the non-functional interfaces corresponding to at-
tribute controllers which are the only ones depicted in blue on
the figure). In this sentiment analysis application, this allows
us for example to dynamically switch from an English to a
Spanish dictionary when analyzing the received tweets without
un-deploying and redeploying the graph (see Figure 6). In this
simple case, we even do not need to stop the target component
Sentiment Classifier, to modify the attribute that indicates
the selected language. Similar attribute-level modifications
to window operator behaviour (through pre-defined attributes
for changing e.g. the sliding or tumbling window strategies
regarding the tuples that go through the window buffering
operator) is also possible.

Any component can be rebound to another one. To do this,
the component whose client interface needs to be connected
to another server interface simply has to be stopped, rebound,
and then started again. While being rebound, the incoming
messages (here, incoming list of tuples) on its client interfaces
are stored but not treated by the component, and will be served
again when the component is started. Any new component
could be added (or removed) within the composite (the com-
posite must be temporarily stopped during the addition). Such
capability is key as it allows updating any existing operator,
and replacing the component by a better version. For instance,
a more optimized Text Normalizer component could replace
the current one.

All these sorts of reconfiguration actions are expressed using
the GCM API, or GCM-script higher level operations, and
orchestrated from either the outside or the inside (autonomic
part) of components.

More drastic modification of the analytics, i.e. of its archi-
tecture itself, can be achieved as easily. It is just a matter of
adding the necessary new components, and bind them accord-
ingly within the composite graph. The necessary components
can be mapped to run on existing GCM/ProActive nodes
(JVMs), or can also be started on newly acquired hosts of the
computing platform. Acquisition of additional hosts can be
anticipated, and is delegated to the ProActive underlying mid-
dleware which is in charge of launching ProActive nodes using
for instance the ProActive multi-IaaS deployment technology.
Resource management for supporting GCM components is
handled by an API, meaning a specific resource acquisition &
sharing manager for the analytics graph can be programmed as
e.g. a non-functional component plugged within the membrane
of the composite component. Such a manager could act like
as YARN supporting the analytics graph.



Fig. 5. A sentiment analysis data stream GCM application. Reconfiguration is limited to the usage of the exposed attribute controllers (blue interfaces)

Fig. 6. Execution of the sentiment analysis application with dynamic adapta-
tion of the dictionary used to rank the sentiment ( negative -5 to positive +5)
in tweets pertaining to popular terms (Bieber, Obama, a personality which
seems less appreciated by Spanish speakers compared to English speakers).

Whatever modification is enacted to the graph, there is a
clear need to ensure some correctness properties regarding
for instance the awaiting-to-be-processed tuples [8]. Indeed,
removing a component implies its awaiting tuples are stored in
the stopped component. In the near future, we intend to devise
adequate reconfiguration protocols in order to express what has
to be done with such tuples. A reasonable strategy could be to
extract all pending tuples from the queue of the component that
is stopped to be removed, transfer them in front of the queue of
the new one, before this new one gets bound, that is before it
receives tuples from its predecessor(s). An alternative strategy
could allow the two components to run in parallel until the old
one becomes useless and can be garbage-collected. Likewise,
tuples disordering should be addressed by adequate (sequencer
or timestamp-based) protocols if necessary. This can happen
for instance if several workers of a Map-Reduce operator are
processing tuples in parallel in a non-synchronized fashion, but
the reduction should apply on processed tuples conforming to
their initial ordering. Disordering can also happen as tuples
are consumed within an operator component using its native
multi-thread service mechanism. Such protocols to reconfigure

GCM applications can even be proved correct and sound using
adequate formal approaches, like was done in the past [14].

B. Targeted scenarios requiring autonomic functional adapta-
tion

The ”Internet of things” domain features typical situations
that must analyze pervasive sensors and instruments data for
extended periods. Analysis must be always on, if for instance
they control a smart power grid system, a flood detection
system, or any early warning system for natural disaster, or
in situations like urgent computing or crisis management.
Dynamism is needed as data nature, not only data volume,
may evolve in time, requiring not only well-studied elasticity
to meet deadlines but also application changes: add new
sensed data filters or cleaners, modify a machine learning
component used for predictive analytics, etc. We are in partic-
ular interested by detecting specific situations (a.k.a. situation
aware computing through CARE –Classification, Assessment,
Resolution, and Enactment– loops [15]) ; in particular detect
somehow ahead-of-time what the new situation will be, and
consequently what the analytics should become to fit to the
new situation. Obviously, the new deployed analytics must also
be equipped with situation detection autonomic capabilities,
for it to further anticipate new situations in the future.

In practice, we aim at having Analysis GCM MAPE com-
ponents fed with sensed information to detect which is now
the situation among a predefined list of anticipated situations.
Once the new situation gets identified, the framework will
Plan and Execute the dynamic deployment and activation of a
new sub-graph of the current analytics that will take over the
obsolete sub-graph.

The richness of the GCM architecture description language
(ADL) permits to define in a declarative way a possibly com-
plex GCM architecture, with its functional and non-functional
levels, whose deployment can be autonomously triggered. This
ADL file can be considered as a deployment plan that must
be enacted by an autonomic loop once new situation detected
and decision adaptation taken. The way the end user will
be able to define such adaptation plan without having any
deep expertise in GCM and distributed systems is still to be



defined. To realize this, we need: JMX events or functional
interceptors to be automatically woven to the functional logic,
Event-Condition-Action rules or machine learning algorithms
as analysis/planning components of the loop in order to take
reaction decision, or better to anticipatory act (like suggested
by [16]). All would better be expressed by some specifically
designed Domain Specific Languages we may need now to
work on.

Another functional adaptation need pertains to ”what-if”
hypothesis testing. Dynamically, a data scientist may want
to manually or automatically add to the current running
analysis graph some new branches in order to explore alternate
hypothesis; without needing to undeploy then redeploy the
running core analysis that must be always running.

VI. CONCLUSION

In this paper, we have explained why we believe the
GCM technology can be a perfect fit to support data stream
autonomous analytics.

Indeed, GCM features (1) native dynamic reconfiguration
capabilities and hierarchical definition, that can be handled
by the runtime GCM API and a declarative architecture de-
scription language, (2) clear still inter-operable functional and
non-functional levels that can host predefined or user-designed
control loop components. Consequently, this greatly improves
the expressiveness compared to the existing approaches.

From the performance viewpoint, particularly important for
handling big data, it incorporates both distributed and multi-
core native support as it relies upon the multi-active parallel
and distributed active object technology, and the ProActive
platform for dynamic host acquisition. Thus, operators of
the analytics can run efficiently. However, we lack yet some
resource management autonomic adaptation strategies to be
able to adapt the number of threads at multi-active object
scheduling level, or to adapt the number of hosts allocated to
the analytics graph given some constraints for optimizing the
cost of hired cloud resources, or to share available resources
the best among the GCM components. Reconfiguration of the
GCM-streaming analytics needs to be performant, however,
it will always be less time consuming to apply dynamic
reconfiguration of the already deployed analytics, compared
to having to destroy it, and redeploy a new one from scratch.

In the near future, our priority is to work at the adaptation
logic expressiveness and to better gear it towards the end-users.
In particular, this adaptation logic has to be translated into the
corresponding GCM non-functional aspects. Then we plan to
illustrate our approach in well chosen scenarios like the ones
sketched above that require online application dynamism, both
in the composition and in performance.
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