D. Ma, E. Banks, R. Poplin, K. Garimella, J. Maguire et al., A framework for variation discovery and genotyping using next-generation DNA sequencing data, Nature Genetics. 2011, vol.443, issue.5, pp.491-498

G. Van-der-auwera, M. Carneiro, C. Hartl, R. Poplin, G. Del-angel et al., From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline, Current Protocols in Bioinformatics, vol.29, pp.1-11, 2013.
DOI : 10.1002/0471250953.bi1110s43

K. Reinert, B. Langmead, D. Weese, and D. Evers, Alignment of Next-Generation Sequencing Reads, Annual Review of Genomics and Human Genetics, vol.16, issue.1, p.150504161622003, 2015.
DOI : 10.1146/annurev-genom-090413-025358

P. Ribeca, . Short-read, and . Mapping, In: Bioinformatics for High Throughput Sequencing, pp.107-125, 2012.

H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013 3;p. 3. Available from

B. Langmead and S. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature Methods, vol.9, issue.4, pp.357-366
DOI : 10.1093/bioinformatics/btp352

S. Marco-sola, M. Sammeth, R. Guigó, and P. Ribeca, The GEM mapper: fast, accurate and versatile alignment by filtration, Nature Methods, vol.485, issue.12, pp.1185-1193
DOI : 10.1093/bioinformatics/btp352

S. Kiee-lbasa, R. Wan, K. Sato, P. Horton, and M. Frith, Adaptive seeds tame genomic sequence comparison. Genome research, pp.487-93, 2011.

D. Brandt, V. Aguiar, B. Bitarello, K. Nunes, J. Goudet et al., Genes in the 1000 Genomes Project Phase I Data, G3: Genes|Genomes|Genetics, vol.5, issue.5, pp.931-972, 2015.
DOI : 10.1534/g3.114.015784

P. Ferragina and G. Manzini, Indexing compressed text, Journal of the ACM, vol.52, issue.4, pp.552-581
DOI : 10.1145/1082036.1082039

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, issue.14, pp.1754-60, 2009.
DOI : 10.1093/bioinformatics/btp324

H. Li and R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform, Bioinformatics, vol.26, issue.5, pp.589-95, 2010.
DOI : 10.1093/bioinformatics/btp698

M. David, M. Dzamba, D. Lister, L. Ilie, and M. Brudno, SHRiMP2: Sensitive yet Practical Short Read Mapping, Bioinformatics, vol.27, issue.7, pp.1011-1013, 2011.
DOI : 10.1093/bioinformatics/btr046

Y. Chen, T. Souaiaia, and T. Chen, PerM: efficient mapping of short sequencing reads with periodic full sensitive spaced seeds, Bioinformatics, vol.25, issue.19, pp.2514-2535, 2019.
DOI : 10.1093/bioinformatics/btp486

N. Homer, B. Merriman, and S. Nelson, BFAST: an alignment tool for large scale genome resequencing. PloS one, p.7767, 20091.

G. Lunter and M. Goodson, Stampy: A statistical algorithm for sensitive and fast mapping of Illumina sequence reads, Genome Research, vol.21, issue.6, pp.936-939
DOI : 10.1101/gr.111120.110

W. Gerlach, Dynamic FM-Index for a Collection of Texts with Application to Space-efficient Construction of the Compressed Suffix Array. Bielefeld University, 2007.

M. Salson, T. Lecroq, M. Léonard, and L. Mouchard, A four-stage algorithm for updating a Burrows?Wheeler transform. Theoretical Computer Science, pp.4350-4359, 200910.
URL : https://hal.archives-ouvertes.fr/hal-00469113

M. Salson, T. Lecroq, M. Léonard, and L. Mouchard, Dynamic extended suffix arrays, Journal of Discrete Algorithms, vol.8, issue.2, pp.241-257
DOI : 10.1016/j.jda.2009.02.007

URL : https://hal.archives-ouvertes.fr/hal-00468910

N. Gupta, K. Sanjeev, T. Wall, C. Kingsford, and R. Patro, Efficient Index Maintenance Under Dynamic Genome Modification Available from, pp.1-12, 20164.

C. Iliopoulos, D. Kourie, L. Mouchard, T. Musombuka, S. Pissis et al., An algorithm for mapping short reads to a dynamically changing genomic sequence, Journal of Discrete Algorithms, vol.10, issue.1, pp.15-22
DOI : 10.1016/j.jda.2011.08.006

J. Pritt, Efficiently Improving the Reference Genome for DNA Read Alignment, 2013.

K. B?inda, V. Boeva, and G. Kucherov, RNF: a general framework to evaluate NGS read mappers, Bioinformatics, vol.32, issue.11, pp.136-145
DOI : 10.1093/bioinformatics/btv524

G. Marth, P. Kwok, I. Korf, M. Yandell, R. Yeh et al., A general approach to single-nucleotide polymorphism discovery, Nature Genetics, vol.23, issue.4, pp.452-456, 199912.
DOI : 10.1038/70570

H. Li, J. Ruan, and R. Durbin, Mapping short DNA sequencing reads and calling variants using mapping quality scores, Genome Research, vol.18, issue.11, pp.1851-1859, 2008.
DOI : 10.1101/gr.078212.108

R. Li, Y. Li, X. Fang, H. Yang, J. Wang et al., SNP detection for massively parallel whole-genome resequencing, Genome Research, vol.19, issue.6, pp.1124-1156, 2009.
DOI : 10.1101/gr.088013.108

D. Koboldt, K. Chen, T. Wylie, D. Larson, M. Mclellan et al., VarScan: variant detection in massively parallel sequencing of individual and pooled samples, Bioinformatics, vol.25, issue.17, pp.2283-2288, 20099.
DOI : 10.1093/bioinformatics/btp373

N. Malhis and S. Jones, High quality SNP calling using Illumina data at shallow coverage, Bioinformatics, vol.26, issue.8, pp.1029-1035, 2010.
DOI : 10.1093/bioinformatics/btq092

R. Nielsen, J. Paul, A. Albrechtsen, and Y. Song, Genotype and SNP calling from next-generation sequencing data, Nature Reviews Genetics, vol.25, issue.6, pp.443-451
DOI : 10.1038/nrg2986

C. Albers, G. Lunter, D. Macarthur, G. Mcvean, W. Ouwehand et al., Dindel: accurate indel calls from short-read data. Genome research, pp.961-73, 20116.

F. Xu, W. Wang, P. Wang, J. Li, M. et al., A fast and accurate SNP detection algorithm for next-generation sequencing data, Nature Communications, vol.12, p.1258
DOI : 10.1038/ncomms2256

URL : http://doi.org/10.1038/ncomms2256

E. Garrison and M. G. , Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:12073907. 2012 7;p. 9. Available from

R. Farrer, D. Henk, D. Maclean, D. Studholme, and M. Fisher, Using False Discovery Rates to Benchmark SNP-callers in next-generation sequencing projects, Scientific Reports, vol.27, pp.1-6, 2013.
DOI : 10.1038/srep01512

A. Ghanayim and D. Geiger, Iterative Referencing for Improving the Interpretation of DNA Sequence Data, Israel: Computer Science Department, 2013.

B. Dutilh, M. Huynen, and M. Strous, Increasing the coverage of a metapopulation consensus genome by iterative read mapping and assembly, Bioinformatics, vol.25, issue.21, pp.2878-2881, 2009.
DOI : 10.1093/bioinformatics/btp377

T. Otto, M. Sanders, M. Berriman, and C. Newbold, Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology, Bioinformatics, vol.26, issue.14, pp.1704-1707, 2010.
DOI : 10.1093/bioinformatics/btq269

I. Tsai, T. Otto, and M. Berriman, Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps, Genome Biology, vol.11, issue.4, p.41, 2010.
DOI : 10.1186/gb-2010-11-4-r41

B. Dutilh, M. Huynen, J. Gloerich, and M. Strous, Iterative Read Mapping and Assembly Allows the Use of a More Distant Reference in Metagenome Assembly, pp.379-385, 2011.
DOI : 10.1002/9781118010518.ch43

H. Tae, R. Settlage, S. Shallom, J. Bavarva, D. Preston et al., Improved variation calling via an iterative backbone remapping and local assembly method for bacterial genomes, Genomics, vol.100, issue.5, pp.271-276, 2012.
DOI : 10.1016/j.ygeno.2012.07.015

C. Hahn, L. Bachmann, and B. Chevreux, Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads?a baiting and iterative mapping approach. Nucleic acids research, p.129, 20137.

K. Mcelroy, T. Thomas, and F. Luciani, Deep sequencing of evolving pathogen populations: applications, errors, and bioinformatic solutions, Microbial Informatics and Experimentation, vol.4, issue.1, p.1, 2014.
DOI : 10.1186/1471-2105-12-38

T. Hackl, R. Hedrich, J. Schultz, and F. Forster, proovread: large-scale high-accuracy PacBio correction through iterative short read consensus, Bioinformatics, vol.30, issue.21, pp.3004-3011
DOI : 10.1093/bioinformatics/btu392

B. Verbist, K. Thys, J. Reumers, Y. Wetzels, K. Van-der-borght et al., VirVarSeq: a low-frequency virus variant detection pipeline for Illumina sequencing using adaptive base-calling accuracy filtering, Bioinformatics, vol.31, issue.1, pp.94-101
DOI : 10.1093/bioinformatics/btu587

H. Ode, M. Matsuda, K. Matsuoka, A. Hachiya, J. Hattori et al., Quasispecies Analyses of the HIV-1 Near-full-length Genome With Illumina MiSeq, Frontiers in Microbiology, vol.13, issue.329, pp.1-11
DOI : 10.1186/1471-2164-13-475

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2087, 2009.
DOI : 10.1093/bioinformatics/btp352

H. Li, A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data, Bioinformatics, vol.27, issue.21, pp.2987-2993, 2011.
DOI : 10.1093/bioinformatics/btr509

J. Köster and S. Rahmann, Snakemake--a scalable bioinformatics workflow engine, Bioinformatics, vol.28, issue.19, pp.2520-2522, 2012.
DOI : 10.1093/bioinformatics/bts480

O. Tange, GNU Parallel: the command-line power tool. ;login: The USENIX Magazine, pp.42-47, 2011.

H. Li, Improving SNP discovery by base alignment quality, Bioinformatics, vol.27, issue.8, pp.1157-1158, 2011.
DOI : 10.1093/bioinformatics/btr076

T. Wu and S. Nacu, Fast and SNP-tolerant detection of complex variants and splicing in short reads, Bioinformatics, vol.26, issue.7, pp.873-81, 2010.
DOI : 10.1093/bioinformatics/btq057

F. Hach, I. Sarrafi, F. Hormozdiari, C. Alkan, E. Eichler et al., mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications. Nucleic acids research, pp.1-7, 20145.

P. Cock, J. Bonfield, B. Chevreux, and L. H. Sam, 5 extensions for de novo assemblies Available from, 2015.

S. Sherry, M. Ward, M. Kholodov, J. Baker, L. Phan et al., dbSNP: the NCBI database of genetic variation. Nucleic acids research, pp.308-319, 20011.

D. Koboldt, Q. Zhang, D. Larson, D. Shen, M. Mclellan et al., VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing, Genome Research, vol.22, issue.3, pp.568-76
DOI : 10.1101/gr.129684.111

V. Boeva, T. Popova, K. Bleakley, P. Chiche, J. Cappo et al., Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data, Bioinformatics, vol.28, issue.3, pp.423-425
DOI : 10.1093/bioinformatics/btr670

C. Brown, A. Howe, Q. Zhang, A. Pyrkosz, and T. Brom, A Reference-Free Algorithm for Computational Normalization of Shotgun Sequencing Data. 2012 3 Available from, pp.1-18

A. Roberts and L. Pachter, Streaming fragment assignment for real-time analysis of sequencing experiments, Nature Methods, vol.10, issue.1, pp.71-73
DOI : 10.1093/nar/gkr1246

P. Melsted and B. Halldorsson, KmerStream: streaming algorithms for k-mer abundance estimation, Bioinformatics. 2014, vol.1230, issue.24, pp.3541-3547

M. Cao, D. Ganesamoorthy, A. Elliott, H. Zhang, M. Cooper et al., Streaming algorithms for identification of pathogens and antibiotic resistance potential from real-time MinION sequencing Available from

Q. Zhang, S. Awad, and C. Brown, Crossing the streams : a framework for streaming analysis of short DNA sequencing reads, 2015.

M. Cao, S. Nguyen, D. Ganesamoorthy, A. Elliott, M. Cooper et al., Scaffolding and Completing Genome Assemblies in Real-time with Nanopore Sequencing Available from

M. Cao, D. Ganesamoorthy, M. Cooper, and L. Coin, Realtime analysis and visualization of MinION sequencing data with npReader, Bioinformatics, vol.32, issue.5, pp.764-766
DOI : 10.1093/bioinformatics/btv658

M. Gerstung, C. Beisel, M. Rechsteiner, P. Wild, P. Schraml et al., Reliable detection of subclonal single-nucleotide variants in tumour cell populations, Nature Communications, vol.21, p.811
DOI : 10.1038/ncomms1814

R. Goya, M. Sun, R. Morin, G. Leung, G. Ha et al., SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors, Bioinformatics, vol.26, issue.6, pp.730-736, 20103.
DOI : 10.1093/bioinformatics/btq040

A. Roth, J. Ding, R. Morin, A. Crisan, G. Ha et al., JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data, Bioinformatics, vol.28, issue.7, pp.907-920
DOI : 10.1093/bioinformatics/bts053

C. Saunders, W. Wong, S. Swamy, J. Becq, L. Murray et al., Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs, Bioinformatics, vol.28, issue.14, pp.1811-1818
DOI : 10.1093/bioinformatics/bts271

D. Larson, C. Harris, K. Chen, D. Koboldt, T. Abbott et al., SomaticSniper: identification of somatic point mutations in whole genome sequencing data, Bioinformatics, vol.28, issue.3, pp.311-318
DOI : 10.1093/bioinformatics/btr665

E. Bareke, J. Spinella, R. Vidal, J. Healy, D. Sinnett et al., A novel mathematical basis for predicting somatic single nucleotide variants from next-generation sequencing, Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, BCB '12, pp.2012-533
DOI : 10.1145/2382936.2383012

J. Bian, C. Liu, H. Wang, J. Xing, P. Kachroo et al., SNVHMM: predicting single nucleotide variants from next generation sequencing, BMC Bioinformatics, vol.14, issue.1, p.225
DOI : 10.1093/nar/gkq603

J. Sathirapongsasuti, H. Lee, B. Horst, G. Brunner, A. Cochran et al., Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV, Bioinformatics, vol.27, issue.19, pp.2648-2654, 2011.
DOI : 10.1093/bioinformatics/btr462

V. Boeva, A. Zinovyev, K. Bleakley, J. Vert, I. Janoueix-lerosey et al., Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization, Bioinformatics, vol.27, issue.2, pp.268-269, 20111.
DOI : 10.1093/bioinformatics/btq635

S. Forbes, D. Beare, P. Gunasekaran, K. Leung, N. Bindal et al., COSMIC: exploring the world's knowledge of somatic mutations in human cancer, Nucleic Acids Research, vol.43, issue.D1, pp.805-816
DOI : 10.1093/nar/gku1075

D. Laehnemann, A. Borkhardt, and A. Mchardy, Denoising DNA deep sequencing data???high-throughput sequencing errors and their correction, Briefings in Bioinformatics, vol.17, issue.1, pp.154-79
DOI : 10.1093/bib/bbv029

N. Loman, J. Quick, and J. Simpson, A complete bacterial genome assembled de novo using only nanopore sequencing data, Nature Methods. 2015, vol.612, issue.8, pp.733-735

M. Pop, Genome assembly reborn: recent computational challenges, Briefings in Bioinformatics, vol.10, issue.4, pp.354-366, 2009.
DOI : 10.1093/bib/bbp026

M. Pop, A. Phillippy, A. Delcher, and S. Salzberg, Comparative genome assembly, Briefings in Bioinformatics, vol.5, issue.3, pp.237-285, 20049.
DOI : 10.1093/bib/5.3.237

T. Rausch, S. Koren, G. Denisov, D. Weese, A. Emde et al., A consistency-based consensus algorithm for de novo and reference-guided sequence assembly of short reads, Bioinformatics, vol.25, issue.9, pp.1118-1124, 20095.
DOI : 10.1093/bioinformatics/btp131

K. Schneeberger, S. Ossowski, F. Ott, J. Klein, X. Wang et al., Reference-guided assembly of four diverse Arabidopsis thaliana genomes, Proceedings of the National Academy of Sciences, pp.10249-10254, 20116.
DOI : 10.1073/pnas.1107739108

S. Gnerre, E. Lander, K. Lindblad-toh, and D. Jaffe, Assisted assembly: how to improve a de novo genome assembly by using related species, Genome Biology, vol.10, issue.8, p.88, 2009.
DOI : 10.1186/gb-2009-10-8-r88

F. Vezzi, F. Cattonaro, and A. Policriti, e-RGA: enhanced Reference Guided Assembly of Complex Genomes, EMBnet.journal, vol.17, issue.1, p.46, 2011.
DOI : 10.14806/ej.17.1.208

J. Nijkamp, W. Winterbach, M. Van-den-broek, J. Daran, M. Reinders et al., Integrating genome assemblies with MAIA, Bioinformatics, vol.26, issue.18, pp.433-439, 2011.
DOI : 10.1093/bioinformatics/btq366

G. Silva, B. Dutilh, T. Matthews, K. Elkins, R. Schmieder et al., Combining de novo and reference-guided assembly with scaffold_builder, Source Code for Biology and Medicine, vol.8, issue.1, p.23, 2013.
DOI : 10.1371/journal.pone.0011147

E. Bao, T. Jiang, and T. Girke, AlignGraph: algorithm for secondary de novo genome assembly guided by closely related references, Bioinformatics, vol.30, issue.12, pp.319-328
DOI : 10.1093/bioinformatics/btu291

F. Bertels, O. Silander, M. Pachkov, P. Rainey, and E. Van-nimwegen, Automated Reconstruction of Whole-Genome Phylogenies from Short-Sequence Reads, Molecular Biology and Evolution, vol.31, issue.5, pp.1077-1088
DOI : 10.1093/molbev/msu088

T. Marschall, M. Marz, T. Abeel, L. Dijkstra, B. Dutilh et al., Computational Pan-Genomics: Status, Promises and Challenges Available from
DOI : 10.1101/043430

K. Schneeberger, J. Hagmann, S. Ossowski, N. Warthmann, S. Gesing et al., Simultaneous alignment of short reads against multiple genomes, Genome Biology, vol.10, issue.9, p.98, 20091.
DOI : 10.1186/gb-2009-10-9-r98

L. Huang, V. Popic, and S. Batzoglou, Short read alignment with populations of genomes, Bioinformatics, vol.29, issue.13, pp.361-70
DOI : 10.1093/bioinformatics/btt215

B. Paten, A. Novak, and D. Haussler, Mapping to a Reference Genome Structure. arXiv. 2014 4;Available from

J. Sirén, N. Välimäki, and V. Mäkinen, Indexing Graphs for Path Queries with Applications in Genome Research, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.11, issue.2, pp.375-88
DOI : 10.1109/TCBB.2013.2297101

A. Novak, Y. Rosen, D. Haussler, and P. B. , Canonical , Stable , General Mapping using Context Schemes. arXiv, pp.1-10, 2015.

A. Limasset, B. Cazaux, E. Rivals, and P. Peterlongo, Read Mapping on de Bruijn graph. arXiv. 2015 5;Available from

D. Kim, B. Langmead, and S. Salzberg, HISAT: a fast spliced aligner with low memory requirements, Nature Methods, vol.12, issue.4, pp.357-360, 2015.
DOI : 10.1016/j.cell.2012.02.009

J. Sirén, Indexing Variation Graphs 2016 4;Available from

A. Dilthey, C. Cox, Z. Iqbal, M. Nelson, and G. Mcvean, Improved genome inference in the MHC using a population reference graph, Nature Genetics. 2015, vol.447, issue.6, pp.682-688
DOI : 10.1101/006973

N. Nguyen, G. Hickey, D. Zerbino, B. Raney, D. Earl et al., Building a Pan-Genome Reference for a Population, Journal of Computational Biology, vol.22, issue.5, pp.387-401
DOI : 10.1089/cmb.2014.0146