
HAL Id: hal-01323171
https://hal.science/hal-01323171

Submitted on 30 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AnyWave: A cross-platform and modular software for
visualizing and processing electrophysiological signals

B Colombet, M Woodman, C G Bénar, J M Badier

To cite this version:
B Colombet, M Woodman, C G Bénar, J M Badier. AnyWave: A cross-platform and modular software
for visualizing and processing electrophysiological signals. Journal of Neuroscience Methods, 2015, 242,
pp.118-126. �10.1016/j.jneumeth.2015.01.017�. �hal-01323171�

https://hal.science/hal-01323171
https://hal.archives-ouvertes.fr

1

AnyWave: a cross-platform and modular software for visualizing and

processing electrophysiological signals

B Colombet1,2, M Woodman1,2, CG Bénar1,2, JM Badier1,2

1INSERM, UMR1106, Marseille, France

2Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France

Abstract

BACKGROUND

The importance of digital signal processing in clinical neurophysiology is growing steadily, involving

clinical researchers and methodologists. There is a need for crossing the gap between these

communities by providing efficient delivery of newly designed algorithms to end users.

We have developed such a tool which both visualizes and processes data and, additionally, acts as a

software development platform.

NEW METHOD

AnyWave was designed to run on all common operating systems. It provides access to a variety of

data formats and it employs high fidelity visualization techniques. It also allows using external tools

as plug-ins, which can be developed in languages including C++, MATLAB and Python.

RESULTS

In the current version, plug-ins allow computation of connectivity graphs (non-linear correlation h2)

and time-frequency representation (Morlet wavelets). The software is freely available under the

LGPL3 license.

COMPARISON WITH EXISTING METHODS

AnyWave is designed as an open, highly extensible solution, with an architecture that permits rapid

delivery of new techniques to end users.

2

CONCLUSIONS

We have developed AnyWave software as an efficient neurophysiological data visualizer able to

integrate state of the art techniques. AnyWave offers an interface well suited to the needs of clinical

research and an architecture designed for integrating new tools.

We expect this software to strengthen the collaboration between clinical neurophysiologists and

researchers in biomedical engineering and signal processing.

KEYWORDS

multi-platform software, signal processing, electrophysiology, MATLAB, Python, EEG, MEG.

1. Introduction: the need for a platform linking clinicians and

methodologists

Signal processing techniques play an increasingly important role in clinical neurophysiology. Two

communities are involved in the use of these techniques. On the one hand, researchers in clinical

neurophysiology have adopted new techniques for working with EEG since the development of

personal computer and signal digitization, allowing filtering, re-montaging without change of the

original signal, mapping and source localization (Rosenblatt and Gotman, 1999; Wendling and Badier,

1998). On the other hand, researchers in signal processing have been very active to solve the

challenging mathematical problems posed by extracting information from brain signals (Baillet et al.,

2001). However, there are currently several practical barriers prevent efficient exchange between

the two communities. First, clinical research software is typically closed source and cannot be

extended by third parties. Second, researchers deal with different data formats and often redefine

basic preprocessing and visualization functions. Finally, new signal processing tools are difficult to

distribute to clinical users as they often are not easy to use. Several available software packages have

been developed by methodologists as MATLAB (Mathworks, Natick, MA) toolboxes (Delorme and

Makeig, 2004; Litvak et al., 2011; Oostenveld et al., 2011) or stand-alone software (Aguera et al.,

2011; Brunet et al., 2011). They are usually open source, and the code can be adapted to the users'

needs. However, none of them offers an efficient, easy to use interface that is appropriate for clinical

work, where visualization of signals and marking events is important. Therefore, there is a strong

need for a common platform which would allow rapid interaction between clinical researchers in the

two communities. Our goal was to develop a tool at the interface between methodologists and

researchers in clinical neurophysiology. Our first objective was to design a cross-platform software

which provides basic visualizations, marking tools and data export functionality. Our second objective

3

was to enable rapid incorporation of signal processing modules in order to facilitate the use of newly

developed algorithms by methodologists. We present here the architecture of the AnyWave

software, with an emphasis on the signal processing plug-ins, which can be developed in C++,

MATLAB or Python. Our software is available for free under the LGPL3 license, along with full

documentation and examples at http://meg.univ-amu.fr/wiki/AnyWave . The source code can be

obtained at https://github.com/anywave/anywave

2. Architecture and general principles

In order to combine performance and portability we have chosen the Qt framework which is

available under LGPL licensing and uses C++ as a programming language. The VTK library, also in C++

and under the LGPL license, was also used for 3D and 2D data representation, such as mappings of

sensors activities for EEG or MEG recordings. A software development kit is also provided for

developing plugins from MATLAB and Python scripts and incorporating them into AnyWave. This

process will be described in section 4.

The VTK library was chosen because it provides algorithms (Delaunay2D, Delaunay3D, etc.) which are

ready to use as well as features implementing 3D renderings. The library is only used to render 2D or

3D mapping of activities. There is no requirement to use the VTK library for developers who would

like to implement their own plug-ins.

In order to save time between different reviewing sessions, filtering options, montage and

visualization settings are automatically saved along with the data file. Hence, when the user opens

the data file again; all previous settings are automatically applied.

2.1 Software components
AnyWave is composed of a set of components; some of them are running in different threads of

execution (see Figure 1). This allows for a responsive graphic user interface during heavy calculation

or when loading a large amount of data. For example, the Data Server component can be launched

several times, each time creating a new thread. In AnyWave, data is processed using a client-server

mechanism. The Data Server component is the server. Others components or modules can become

clients: to do so a connection must be established with the server. Opening a connection creates a

new Data Server component in a new thread, providing the client with a dedicated resource from

which to request data. The data flow is presented in Figure 2. The data server thread is in charge of

loading the requested part of data into memory, applying montage (through the Montage Manager

Component), filtering data if necessary and then sending data.

The main part of AnyWave is the Visualization component which is the graphic user interface. This

component is a client of Data Server component; therefore the main interface will request data to a

http://meg.univ-amu.fr/wiki/AnyWave

4

server running in the background. When data is loaded from a file, each channel is handled based on

its name. Then, the Montage Manager can apply user defined montages, e.g., bipolar montages or

re-referenced data, and change the order of channels. User-defined montages can be saved to a file

in order to apply that montage to another file subsequently. A data file may also contain events.

Events are called markers in AnyWave and are managed by the Markers Manager component, using

a dedicated user interface.

The Process Manager component handles optional signal processing algorithm modules (see next

section). It is able to launch, pause or cancel signal processing modules as well as handle their input

and output data.

Loading and managing optional plug-ins is the role of the Plug-ins Manager component. Signal

processing plug-ins also become clients of Data Server component and then request data without

being interrupted by other modules that may request data at the same time.

2.2 Plug-ins
One goal in the design of AnyWave was modularity. To achieve that, AnyWave was built with the

concept of plug-in that will add features to the software. A plug-in is a C++ module built using the

provided software development kit (SDK). There are several types of plug-ins that could be built using

the SDK: “reader”, “writer”, “display” or “signal processing algorithms”. Signal processing algorithms

can be written in MATLAB or Python, and MATLAB plugins can be compiled to avoid requiring target

computers to have MATLAB installed. We are not providing a complete and monolithic solution but

rather a modular way of handling input/output and signal processing. With this design, it is possible

to support new file formats without requiring a new version of AnyWave, thanks to a new reader or

writer plug-in. It is also possible to adapt and include an existing signal processing algorithm by

implementing it in a signal processing plug-in. This is particularly easy if the original algorithm is

written in MATLAB or Python language.

2.2.1 Reader and writer plug-ins

A reader plug-in is a module that opens a data file and sends data (signals and markers) to AnyWave.

Currently, there are several plug-ins provided that can read several EEG or MEG file formats from

different manufacturers: MicroMed (.trc), Neuroscan (.cnt), Brain Products (.vhdr), CTF (.meg4), 4D

NeuroImaging, as well as EDF/BDF format (.bdf, .eeg). Adding new formats only requires writing a

new reader plug-in (in C++/Qt). Writer modules are used to export data for further use in other

software, and currently exported formats include Brain Vision Analyser (Brain Products GmbH)

(.vhdr) and AnyWave binary format (.ades). Note that the ADES format is not the official file format

associated with AnyWave. It is simply a convenient binary format with a text header, allowing

exchanging data between software and platforms. The documentation is available at

5

http://meg.univ-amu.fr/wiki/AnyWave:ADES As in the case of reader plug-ins, the list of supported

file formats available to export can be extended by adding new writer modules that are independent

of the main program.

2.2.2 Signal processing and Display plug-ins

Signal processing plug-ins get data from AnyWave and can return computed data directly to

AnyWave (see section 4). Each plug-in corresponds to a process.

There are two main kinds of signal processing plug-ins:

(i) Those which will run in the background, independently of the visualization components.

(ii) Those which will be coordinated with the visualization component.

These processes request data, run an algorithm on the data they receive, and then terminate. They

can optionally return some data to the visualization component.

The difference between the two types of signal processing plug-ins (or processes) is that Background

launched processes will run once when requested by the user and then terminate. Display processes

are linked to what the visualization component is currently displaying. Whenever the displayed

content changes, those processes are executed. For example, the time-frequency signal processing

plug-in computes the time-frequency representation for one or more channels displayed by the

visualization component and sends back their respective time/frequency representations. As it is

designed as a signal processing linked to the display, each time the content of the channels is

updated (while the user is browsing the data file) the process is run and the time/frequency

representations are updated. A Signal processing plug-in (or process) may require data from the Data

Server component. This is the case for processes that are designed to run in the background.

Processes designed to be linked to the current display, will not need to request for data as the data is

automatically provided by the visualization component. A process can access any piece of data if

needed (based on time or markers for example). The data received by the client have been processed

through the montage manager and some filtering may occur also, depending on the settings the user

set. However, the process can request the Data Server component to provide unfiltered data or ask

for a specific filtering to be applied on a particular channel type. Some algorithms can produce data

which are not vectors of values, which is the default data type that the visualization component can

display. This is the case for example, for time-frequency analyses. This is where Display plug-ins are

used to extend the capabilities of the visualization component and allow displaying other data types,

like 2D matrices.

http://meg.univ-amu.fr/wiki/AnyWave:ADES

6

3. Visualization

3.1 Signal visualization
AnyWave displays signals in views. By default one main view is used to display the most common

channel types (EEG, MEG, SEEG). The user can choose to add other views and can define options to

handle the desired type of channels to display and how they are displayed. This permits the

visualization of different type of data or different time scales in separate views (see Figure 3).

Special care has been dedicated to mapping the signal, which can be acquired at high sampling rate,

to pixels on the screen. When a large amount of data is displayed on the screen, the horizontal

resolution of a computer screen effectively bins together adjacent time points, and simply

downsampling the data for sake of efficiency could lead to aliasing. Instead, for each horizontal bin,

we have taken into account the minimum and maximum signal within this bin in order to correctly

rasterize the signal. This approach retains high frequency information such as high frequency

oscillations. Figure 7 illustrates the rendering of an oscillation at two different time scales.

When the horizontal scaling is changed, signals are displayed again using this technique.

The visualization component is connected to a Data Server thread, as explained in section 2.1.

In this scheme, handling large amount of data is done by only requesting the data part that needs to

be displayed. We found that on a computer equipped with an Intel Core I7 at 2.8 GHz, the rendering

of 60 channels of data on a 20 s page, sampled at 2034Hz, takes less than 250ms.

3.2 Filtering and scaling options
AnyWave can filter data differently depending on the channel type: EEG channels may have different

filtering settings than MEG channels. The same principle applies to gain settings, although a global

gain factor can be applied to all channels at once. The horizontal scale can be modified by setting the

number of centimeters by seconds.

The filtering procedure for each channels, is dispatched on all the available CPU cores. This is

accomplished using the QtConcurrent API from the Qt framework. Therefore, CPUs with 4 cores

available will filter data from 4 channels at the same time.

7

3.3 Maps of sensors activities
AnyWave can generate 3D or 2D representations of the sensors and compute the mapping of their

activities at a given time. Sensors coordinates must be provided in order to compute the mesh

representation or the 2D projection (Figure 3). Coordinates can be read from the data file or

extracted from an EEG template which is embedded in AnyWave. It is also possible to import

coordinates of the sensors from a text file.

3.4 Markers
AnyWave uses markers to note particular events in signals (see Figure 4). Markers can also be read

from the data file or imported afterwards. The user can also add her/his own markers manually or by

using a signal processing algorithm that generates markers. Markers can consist of either selected

time points or sections of data, with the option of specifying a subset of channels. AnyWave offers a

dedicated user interface for managing markers, which allows the user to edit existing markers,

launch signal processing on selected markers and navigate in signals through markers. When dealing

with many markers, it is possible to define filtering rules that allow the user to quickly switch

between different sets of markers based on their labels, integer values, and other metadata.

The software can handle a large amount of markers. The user can add markers in a convenient way,

using keyboard shortcuts to navigate through existing markers for example. It is also possible to

prepare a list of possible markers to add depending on the preceding event or marker. Then, when

adding a marker, the user can quickly choose the type of marker he/she wants to add.

Displaying markers using filtering rules offers an ergonomic way to present only relevant markers on

signal views. Markers can also be saved to a text file for processing in another software tool (MATLAB

for example).

3.5 Montages
Montages are well known by clinicians who are used to review EEG or SEEG data on a daily basis.

They describe which sensors or signals will be used from the data file and how they will be presented

to the user. SEEG data are often visualized using bipolar montages, which can be implemented within

AnyWave using the dedicated Montage user interface. A montage is involved in both the

visualization component and the data server component: the visualization component applies the

defined montage to inform the signal views on what sensors should be displayed on the screen. The

data server component makes use of the montage while getting data from the file, before sending

them to clients. When opening a data file for the first time, a default montage is automatically

defined. This montage contains all the sensors/channels as found originally in the data file. However,

if the data has already been open, the last montage used with the file is automatically loaded and

set.

8

4. Developing signal processing plug-ins
The most basic way of adding a plug-in is to implement the necessary C++ classes (see 2.2.2).

However, MATLAB and Python are common tools for implementing signal processing algorithms;

AnyWave offers a way to run processes written in these languages. To do so, a dedicated software

development kit is provided with tutorials (available at http://meg.univ-amu.fr/wiki/AnyWave).

4.1 MATLAB and Python scripts
If a full copy of MATLAB is available on the system, AnyWave can run arbitrary MATLAB scripts (using

the MATLAB Engine API) as plug-ins with full access to the same data as a C++ plug-in. For Python,

AnyWave comes with many scientific libraries that user scripts can use, or if desired, the user can

install a distribution that includes the suitable scientific libraries. Both MATLAB and Python scripts

can request and process data, and optionally return data or results. On startup, AnyWave will look

for plug-ins in the default directory or in the user’s home folders and automatically add them to the

Processes menu. The only requirement to create a Python or a MATLAB plug-in is to create a folder

and place in it at least two required files: the MATLAB main function (main.m) or the Python

(__main.py__) main script. The second file is a descriptive text file that will inform AnyWave about

the plug-in’s properties (name, description, etc.). The format of the descriptive text file is exactly the

same for MATLAB and Python plug-ins. Once the two files are completed, the folder containing it

must be placed in a location where AnyWave will notice it after a restart.

The scripting method of developing and providing plug-ins is useful because it does not require

compiling code and the script that defines the plug-in can be changed on the fly to provide

immediate updates to the algorithm, allowing the developer to iterate quickly. MATLAB and Python

are multiplatform languages, so developers can easily add and share their own code without

targeting a particular platform. Python plug-ins offer the possibility to make a bridge between

existing Python solutions as Openelectrophy (Garcia and Fourcaud-Trocmé, 2009) or MNE-Python

(Gramfort et al., 2013) on the one hand and AnyWave on the other hand. An illustration is shown in

the code 2 example below.

http://meg.univ-amu.fr/wiki/AnyWave

9

code 1 example:

 1 % get the first 30 seconds of data

 2 filters = AwFilteringOptions;

 3 filters.eeg_hp = 2.0;

 4 channels = AwGetData(0, 30, 'User Filtering Options', filters);

 5

 6 for i=1:length(channels)

 7 ch = channels(i);

 8

 9 % extract data & time

10 y = ch.data;

11 t = [1:length(y)]/ch.samplingRate;

12

13 % threshold on 99% percentile

14 lim = quantile(y, 0.99);

15 hit = t(y>lim);

16

17 % keep first hit within 10 ms window

18 hit = hit(diff(hit) > 0.01);

19

20 % create markers

21 for j=1:length(hit)

22 AwAddMarker('hit', double(hit(j)), 42, 0.0, {ch.name});

23 end

24

25 end

Code 1: Example of MATLAB Plug-in. This script demonstrates the use of MATLAB code as a plug-in.

The script first obtains 30 seconds of data from AnyWave, with the current filter setting, detects for

each channel where the signal exceeds its 99th percentile, and creates markers based on this

detection. The results of the execution of this script can be seen on figure 5.

10

code 2 example:

import numpy

import mne

from mne.io.array import create_info, RawArray

get all data & create MNE data structure

using anywave.getData() method:

first parameter is the starting position in seconds.

second parameter is the duration of data in seconds.

Specifying -1 as duration indicates ALL the data available.

anywave.getData(0, -1)

getData() will fill an attribute if anywave module called input_channels

input_channels is an array of AwChannel objects.

create numpy array from input_channels

data = numpy.array([ch.data for ch in anywave.input_channels])

Get the sampling rate for data by reading sampling_rate attribute

of the fist AwChannel object in input_channels.

freq = anywave.input_channels[0].sampling_rate

Get the electrode labels

labels = [ch.label for ch in anywave.input_channels]

create the MNE data structure

types = ['meg'] * len(labels)

info = create_info(labels, freq, types)

raw = RawArray(data, info)

run ICA & save results

ica = mne.preprocessing.ICA(n_components = 50)

ica.fit(raw, decim=3)

Saving ica result along with data file using the data file name

ica.save(anywave.data_path + '-ica.fif')

Code 2: This script illustrates how to use MNE-Python to compute ICA on data coming from

AnyWave. AnyWave specific methods or attributes are available through an automatically imported

module named anywave. Note that depending on MNE-Python version, the line importing

create_info can fail. Try importing from mne.io.meas_info instead.

4.2 MATLAB Compiled plug-ins
Python is available freely (on most common platforms), which is not the case for MATLAB.

To run plug-ins without the MATLAB license, AnyWave supports plug-ins which embeds MATLAB

compiled code. To build this type of plug-in, both the MATLAB Compiler and a C++ compiler are

required. Fortunately, the MATLAB code can be easily ported from a MATLAB script as the MATLAB

functions used to communicate with AnyWave have the same names and parameters. The final user

will need only the MATLAB Compiler Runtime in order to run the plug-in (freely available at

http://www.mathworks.fr/products/compiler/mcr/). Developers have the choice of providing

compiled plug-ins or Matlab scripted plug-ins. We encourage this second option. Our github

(https://github.com/anywave) can host dedicated branches for new MATLAB scripted plug-ins.

http://www.mathworks.fr/products/compiler/mcr/
https://github.com/anywave

11

To distribute MATLAB scripted plug-ins to end users who are not using the MATLAB software, we

propose to build a compiled version for them, using the AnyWave compatible MCR version.

4.3. C++ plug-ins
C++ is the language used to build AnyWave and all its components. Therefore, it is possible to

develop all types of plug-ins using C++ where MATLAB and Python can only be used to build Signal

Processing Algorithms (or processes). C++ plug-ins required to be compiled for specific hardware

architectures, so a Mac OS X plug-in will not run on a Linux platform, for example. However, the C++

API offers, for the moment, more features while developing plug-ins. The detailed documentation on

this purpose can be found at http://meg.univ-amu.fr/wiki/AnyWave

A possible link between C++ sofwares, such as OpenVibe (Renard et al., 2010), and AnyWave can be

established. For example, developers could use OpenVibe C++ API in their implementation of a C++

signal processing plug-in.

As an example of a C++ signal processing plug-in, Figure 6 shows a time-frequency representation,

which uses two plug-ins of different types. The first plug-in is a signal processing algorithm that takes

as input one or more signals and computes their time-frequency representation, based on Morlet

wavelets (Bénar et al., 2009). For each input signal, a new signal is created as output and configured

as “custom” type. As this signal does not contain a vector of value but a two dimensions matrix, the

visualization component will not be able to natively display it. This is where the second plug-in, a

Display plug-in, is used to render the 2D matrix in the visualization component. Note that the signal

processing module is linked to display: when the user moves to another part of the file, the

corresponding time-frequency representation is automatically re-computed and display is updated.

This is the default behavior for signal processing plug-in of type Display.

5. Concluding remarks and future directions
AnyWave responds to a consistent need to deliver state of the art signal processing and visualization

techniques in the context of the clinic and wherever an efficient, user friendly interface is required.

As a software toolbox and platform, it is not alone. In this context, academic free software have been

rapidly developing. A few of those are provided as stand-alone programs, for example MNE

(http://martinos.org/mne/), Brainstorm (http://neuroimage.usc.edu/brainstorm/), openMEEG

(Gramfort et al., 2010), Cartool (Brunet et al., 2011) or Python programs (Garcia and Fourcaud-

Trocmé, 2009) but the most popular ones are MATLAB toolboxes (Delorme and Makeig, 2004;

Oostenveld et al., 2011). In each case, the scopes of these toolboxes are oriented by original

objectives of the developers. Brainstorm is oriented to source localization and presents a user-

friendly windows interface although it can be batch scripted (Tadel et al., 2011). Fieldtrip is a

http://meg.univ-amu.fr/wiki/AnyWave
http://neuroimage.usc.edu/brainstorm/

12

collection of scriptable functions from preprocessing to statistics but requires a certain level of

programming to use effectively (Oostenveld et al., 2011). EEGLAB is well designed for processing of

continuous signals and evoked activities (Delorme and Makeig, 2004) but its capacities in signal

representation and handling markers are limited. Additionally, it can be easily adapted to new

requirements. In particular, while algorithms can be written in C++ for full speed, we can also take

advantage of the plethora of tools already available in MATLAB and Python toolboxes. Furthermore,

the MATLAB and Python frameworks allow a plug-in to save data in other file formats for further

processing with other tools if necessary.

We do not want to propose a replacement for existing software but rather a complementary solution

with good visualization of signals and a user friendly interface. With AnyWave, it is now possible for

neurophysiologists to visualize and process data through a user-friendly interface and for researchers

in biomedical engineering and signal processing can easily test and put into practice new algorithms,

making the collaboration between both worlds more efficient. To our knowledge, only one

development (Wendling and Badier, 1998) has had a similar goal. It was, however, developed on

NextStep/OpenStep operating system, a platform that no longer exists and didn't allow for the use of

multiple programming languages.

In summary, AnyWave is designed as a dynamic solution: plug-ins will add new features, new signal

processing algorithms, new supported file format and so on. The software currently supports working

with continuous data set. Support for epoched data and a dedicated user interface to manage

averaged files and evoked potentials is currently under development. The architecture allows future

extensions to support additional types of information, such as MRIs and models for source

localization.

FIGURE LEGENDS

Figure 1: Software components, organized in layers from the operating system to the dynamically

loaded plug-ins.

Figure 2: Data flow across software components (rectangles) and plug-ins (diamond shapes).

Figure 3: Overview of the main window (the visualization component), presenting different type of

traces of the same recording and a 3D mapping of sensors activities. Different filters have been

applied for the different types of data.

Figure 4: Overview of the main window (the visualization component), showing markers. To the left,

the markers’ user interface is docked and allows quick navigation through markers. Markers are

visible on the top view, with their labels and associated values.

13

Figure 5: Signals with markers, added by a scripted plug-in.

Figure 6: An example of Time-Frequency representation of a signal.

Figure 7: Illustration of the visual rendering of a high frequency oscillation (red arrow) at two

different time scales.

REFERENCES

Aguera PE, Jerbi K, Caclin A, Bertrand O. ELAN: a software package for analysis and visualization of
MEG, EEG, and LFP signals. Comput Intell Neurosci, 2011; 2011: 158970.

Baillet S, Mosher JC, Leahy RM. Electromagnetic brain mapping. IEEE Signal Processing Magazine,
2001; 18: 14-30.

Brunet D, Murray MM, Michel CM. Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput
Intell Neurosci, 2011; 2011: 813870.

Bénar CG, Papadopoulo T, Torrésani B, Clerc M. Consensus Matching Pursuit for multi-trial EEG
signals. Journal of neuroscience methods, 2009; 180: 161-70.

Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics
including independent component analysis. J Neurosc Meth, 2004; 134: 9-21.

Garcia S, Fourcaud-Trocmé N. OpenElectrophy: An Electrophysiological Data- and Analysis-Sharing
Framework. Front Neuroinform, 2009; 3: 14.

Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T,
Parkkonen L, Hämäläinen M. MEG and EEG data analysis with MNE-Python. Front Neurosci, 2013; 7:
267.

Gramfort A, Papadopoulo T, Olivi E, Clerc M. OpenMEEG: opensource software for quasistatic
bioelectromagnetics. Biomedical Engineering Online, 2010; 9.

Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J, Barnes G, Oostenveld R, Daunizeau J,
Flandin G, Penny W, Friston K. EEG and MEG data analysis in SPM8. Comput Intell Neurosci, 2011;
2011: 852961.

Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis
of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci, 2011; 2011: 156869.

Renard Y, Lotte F, G G, Congedo M, Maby E, Delannoy V, Bertrand O, Lécuyer A. OpenViBE: An Open-
Source Software Platform to Design, Test and Use Brain-Computer Interfaces in Real and Virtual
Environments. Presence : teleoperators and virtual environments, 2010; 19.

Rosenblatt B, Gotman J. Computerized EEG monitoring. Semin Pediatr Neurol, 1999; 6: 120-7.

Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for
MEG/EEG analysis. Comput Intell Neurosci, 2011; 2011: 879716.

Wendling F, Badier J-M. Clinical engineering in neurophysiology: an object-oriented platform for
signal visualization and processing. J Clin Eng, 1998; 23: 189-95.

14

Figure 1. Software components, organized in layers from the operating system to the dynamically

loaded plug-ins.

Figure 2. Data flow across software components (rectangles) and plug-ins (diamond shapes).

15

Figure 3. Overview of the main window (the visualization component), presenting different types of

traces of the same recording and a 3D mapping of sensors activities. Different filters have been

applied for the different types of data.

Figure 4. Illustration of the visual rendering of a high frequency oscillation (red arrow) at two

different time scales.

16

Figure 5. Overview of the main window (the visualization component), showing markers. To the left,

the markers’ user interface is docked and allows quick navigation through markers. Markers are

visible on the top view, with their labels and associated values.

Figure 6. Signals with markers, added by a scripted plug-in.

17

Figure 7. An example of time-frequency representation of a signal.

