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INNER PRODUCT COMPUTATIONS USING
PERIODIZED DAUBECHIES WAVELETS

JUAN MARIO RESTREPO1∗ AND GARY K. LEAF2

1Mathematics Department, University of California – Los Angeles, Los Angeles, CA 90095, U.S.A.
2Mathematics and Computer Science Division, Argonne, National Laboratory, Argonne, IL 60439, U.S.A.

Inner products of wavelets and their derivatives are presently known as connection coe�cients. The numerical
calculation of inner products of periodized Daubechies wavelets and their derivatives is reviewed, with the aim
at providing potential users of the publicly-available numerical scheme, details of its operation. The numerical
scheme for the calculation of connection coe�cients is evaluated in the context of approximating di�erential
operators, information which is useful in the solution of partial di�erential equations using wavelet-Galerkin
techniques. Speci�c details of the periodization of inner products in the solution di�erential equations are
included in this presentation. [wavelets; Galerkin; differential operators; connection coefficients]

1. INTRODUCTION

Wavelets have found a well-deserved niche in such areas of applied mathematics and engineering
as approximation theory, signal analysis, and projection techniques for the solution of di�erential
equations. While wavelets are not conceptually new,1–3 the past �fteen years have produced much
of the theoretical underpinnings for the concept, as well as the generation of new wavelet families
and the exploration of their potential in various areas of applied science (see References 4 and 5
for wavelets in signal processing, References 6 and 7 for wavelet applications in approximation
theory, References 8 and 9 for wavelet applications in the solution of di�erential equations, and
Reference 10 for other types of applications).
Wavelets have several advantages: (1) they have compact support or exponentially decaying

support; (2) their continuity properties may easily be increased, albeit at the expense of a larger
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domain of support; (3) for a given spline order, an complete basis may easily be generated
by simple recurrence relations; (4) in the context of projection techniques, their convergence
properties are as good as or better than Fourier methods, and they permit the analysis of extremely
local functional behaviour without the need for windowing and with little or no bias from global
behaviour; and (5) the manner in which the space is broken down into a family of multiply-
enclosed subspaces enables spatial or temporal function multiresolution analysis.
A multiresolution analysis is a nested sequence

V0⊂V1⊂ · · · ⊂L2(R)

satisfying the following properties: ⋂
j∈Z

Vj =0 (1)

closL2

( ⋃
j∈Z

Vj

)
= L2(R) (2)

f(x)∈Vj ⇔ f(2x)∈Vj+1 (3)

and there is a function ’∈V0 such that{’0; k(x)=’(x − k)}k∈Z forms a Riesz basis for V0 (4)

The term ’ is called the mother scaling function since, from (3), there exist {hk}∈ l2 such that

’(x)=
√
2
∑
k∈Z

hk’(2x − k)

This relation, called the scaling relation, will also hold for ’(2x) and, by induction, for ’(2 jx):
In accordance with the notation in (4), we denote the translates and dilations of ’ by

’j; k(x)= 2j=2’(2 jx − k)

The set {’j; k} forms a Riesz basis for Vj. We de�ne Wj to be the orthogonal complement of
Vj with respect to Vj+1: Just as Vj is spanned by dilations and translations of the mother scaling
function, so are the Wj’s spanned by translations and dilations of the mother wavelet. The mother
wavelet is de�ned by

 (x)=
√
2
∑
k
(−1)k−1h−k+1+2M’1; k(x)

with M a particular integer. Daubechies2 constructed compactly supported wavelets and scaling
functions using a �nite set of non-zero {hk}N−1

k=0 scaling parameters with N=2M and
∑N−1

k=0 hk

=
√
2. M is the order of the wavelet function. With these scaling parameters, the recursion for-

mulas generate the desired orthogonal wavelets and scaling functions with supp(’)= [0; N − 1].
Henceforth, these will be the wavelets we shall use, which we refer to as Daubechies wavelets of
genus N .
Values for ’ are calculated using the scaling relation as indicated in the following procedure.

First, the values it takes are determined at integer points. Then at the dyadic rationals at level 1
(the dyadic rationals at level j are Dj = {k=2 j}k ∈Z); using that information, we calculate the values
at Dj+1 and so on, until ’ is de�ned at the dyadic rationals at all levels. Since the dyadics are
dense in the reals, we simply extend ’ continuously to R. This procedure creates a function that is
continuous but not di�erentiable for N =4, di�erentiable but not twice di�erentiable for N =6, and
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with increasing regularity for increasing N .2 The nature of the scaling relation guarantees that ’
will be discontinuous in some derivative.11 This procedure is easily accomplished computationally.
Another pleasing feature of these wavelets is their compact support. Whereas Fourier methods

return global results, with compactly supported wavelets one can easily analyse short-lived events
or pulses. Wavelet projection methods avoid distortion that might result from a local analysis with
a windowed Fourier transform. As will be shown in the next section, compact support also makes
the periodization of these wavelets an elegant process.
In addition to items (1)–(4) mentioned above, wavelets have a number of other interesting

properties. These will be given without proof. For further details, see Daubechies2 or Chui:1

{’j; k}j¿0; k∈Z is an orthonormal basis for L2(R) (5)

Vj+1 =Vj ⊕Wj (6)

L2(R)= closL2

(
V0

∞⊕
j=0

Wj

)
(7)

{’0; k ;  j; k}j¿0; k ∈Z is an orthonormal basis for L2(R) (8)

∫ ∞

−∞
’(x) dx=1 (9)

∑
k∈Z

’0; k =1 (10)

∫ ∞

−∞
 (x)xk dx=0 : k =0; : : : ; M − 1 (11)

{xk}M−1
k=0 ∈ VN (12)

Item (6) is really at the heart of multiresolution analysis and provides wavelet-based analysis with
a distinctly di�erent resolving quality in contrast to spectral methods: to go to a higher resolution
of spatial scale, one simply adds on the next wavelet level (the next Wj) as implied by item (6).
At some given level (say, with a representation in Vj), the multiresolution property guarantees all
spatial scale information at all coarser levels. In contrast, with Fourier methods, information about
one frequency gives no information about other frequencies.
This study is devoted to the numerical calculation of connection coe�cients involving periodized

Daubechies wavelets. Connection coe�cients are matrix structures that result from the evaluation
of inner products


j; k ≡
∫

’(d0)j; k0 ’
(d1)
j; k1 · · · ’(dn)

j; kn dx

where di is the number of di�erentiations with respect to x of the scaling function ’=’(x). Inner
products arise naturally in the context of the Galerkin solution of di�erential equations.9; 12 The
name for these inner products was coined by Latto et al.,13 who developed the computational
method presented herein. It replaces a quadrature problem by a linear algebra problem. Since
the method is simple, fast, and general, it was considered worthy of implementing numerically.
The technique developed by Latto et al. is by no means the only alternative available for the
calculation of inner products involving wavelets. Of note is Dahmen and Micchelli’s14 algorithm
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which is similar to the approach favoured in this study in that the quadrature problem is recast as
a linear algebra problem. The algorithm is more simply explained in Reference 4 (p. 396–401).
This latter algorithm was numerically implemented very recently by Kunoth and is also publicly-
available software.15 The code is capable of performing the inner products of up to four wavelets
and their derivatives.
Sections 2 and 3 of this study describe how periodized Daubechies wavelets on the unit interval

are assembled and present estimates of their approximating characteristics. Furthermore, they will
be shown to inherit most of the properties of their more standard Daubechies wavelets cousins, and
capable of serving as basis set for L2 functions on the unit interval which are periodic. Readers
interested in the construction of a basis sets de�ned over the semi-in�nite interval, or with di�erent
edge conditions over a �nite interval, may �nd Cohen et al.16 a useful point of reference. Section 4
describes the connection coe�cient algorithm. This section also covers several useful strategies for
the periodization of general inner product matrices which arise in Galerkin solutions of di�erential
equations, as well as some properties of the connection coe�cients, which are useful in testing
numerical codes and results, and in the manipulation of these coe�cients.
In Section 5 the connection coe�cient algorithm is evaluated by examining how wavelet-

Galerkin methods approximate several commonly used di�erential operators. Finally, several
appedices are provided with information on how to obtain the connection coe�cients numerical
code as well as further details on the properties and approximating characteristics of the periodized
Daubechies wavelets.

2. PERIODIZED WAVELETS

Daubechies wavelets are de�ned on the whole real line. For many applications, however, wavelets
de�ned on a periodic domain are needed. Interestingly, the wavelets de�ned above can be peri-
odized with a Poisson summation technique to give periodic wavelets2 that possess many of the
same properties of their non-periodic kin. Moreover, the periodized ’j; k and  j; k are identical to
their non-periodic forms except for wrapping around the edges of the domain; for large enough j,
this too can be reduced to the non-periodic case for most calculations. Hence, many of the above-
mentioned properties are preserved in the periodic case as a result of the construction by the
“scaling” property of the non-periodic functions and their compact support.
The wavelets are periodized as follows:

�’j; k(x)≡
∑
l∈Z

’j; k(x − l) and � j; k(x)=
∑
l∈Z

 j; k(x − l)

By construction �’ and � are periodic and are well de�ned on [0; 1], since ’ and  have compact
support. Note that ’j; k =’j; k′ if k ≡ k ′mod(2 j). Thus we shall restrict our attention to 06k¡2 j.
The same holds for the  ’s. In what follows, the properties of the periodic wavelets will be
investigated in some detail.
Periodized wavelet bases are not generated in quite the same way as the non-periodic versions.

In the non-periodic case, bases are generated by repeated translation and dilation of the mother
functions; but this approach is not possible in the periodic case because periodization does not
commute with dilation. Therefore, the wavelet must be �rst dilated, then periodized. Although
proof can be shown for the general case, Appendix II includes a proof that shows instead that the
elements in Vj for j60 are all constant functions. If dilation commuted with periodization, this
would not be true.
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Periodized Daubechies wavelets form an orthonormal basis that still has a scaling relation, as
shown in Appendix II. This means that in comparison with the non-periodic case, we have a chain
of spaces �V0⊂ �V1⊂ · · · ⊂L2[0; 1] with the following properties:⋃

j¿0

�Vj = L2[0; 1] with �Vj =span{ �’j; k}2
j−1

k=0 (13)

⋂
j∈Z

�Vj = {constant functions} (14)

f(x)∈ �Vj ⇔ f(2x)∈ �Vj+1 (15)

By de�ning �Wj =span{ � j; k}2
j−1

k=0 we see that �Wj is the orthogonal

complement of �Vj in �Vj+1. So then clos

(
�V0

∞⊕
j=0

�Wj

)
= L2[0; 1]

(16)

Clearly, di�erences exist between the properties of the periodic case and the non-periodic case.
While they are both multiresolution spaces, the basis functions in the non-periodic case are all
formed by translations and dilations of the mother scaling function, ’, while in the periodic case
it is often impossible to derive �’j+1 from �’j (for example, consider �’1 and �’0; the latter is a
constant function and thus unable to represent the former). It turns out, however, that there is no
relation between �’j+1 and �’j for very small j only. For j suitably large, the periodic case actually
looks exactly the same as the non-periodic case. Thus, for large enough j, the periodization will
a�ect the functions only by ‘wrapping them around’ the edges of the domain. This is also a
strong argument for using the scaling functions as trial-and-test functions when using periodized
wavelets. By choosing j well, calculations can be performed as in the non-periodic case; if desired,
a multiresolution can then be performed easily. Calculations will not be so simple if �V0

⊕ j
k=1

�Wk

is used as a test space, because, for low k, the basis for �Wk is not equivalent to the basis for Wk .

3. APPROXIMATION RESULTS

A function f∈L2[0; 1] may be projected into the wavelet basis and expressed as f=
∑

k akj �’j; k ,
where akj = 〈f; �’j; k〉: The calculation of ajk is usually performed numerically. In Reference 7, a
method was developed which employs Taylor series expansions to approximate f. The method
requires use of the moment equations to make O(hn) approximations for f∈Cn: Unfortunately,
in applications such as signal processing or any area where only a �nite number of samples of f
are provided, this method may produce unacceptable results. As an alternative, a function f given
as samples on Dj ∩ [0; 1] may be approximated by a function �f∈ �Vj.
De�ne the samples of f as→f ∈R, with the kth component of→f =f((k − 1)=2 j): Construct→�’j; k

from �’j; k as shown previously. This yields, for j¿ log2(N − 2), a linearly independent spanning
set for R2

j
. Further, since supp( �’j;0)= [0; 2

−j(N −1), →�’j; k takes only N −2 values on Dj, and →�’j; k

is just the kth forward cyclic permutation of the elements of →�’j;0 . The problem is thus reduced to

�nding the unique representation of →f in terms of {→�’j; k }06 k ¡2 j , which is simply the solution of

A→v =→f
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where A is the very sparse transformation matrix from the standard basis to the →�’ basis. De�ne
�f(x)=

∑
k →v (k) �’j; k(x): By construction, �f|Dj =f.

In summary, this method involves solving the inverse problem with a sparse matrix, and results
in a function �f with �f|Dj =f: In essence, �f will be equal to f at all the sampled values.
We next show the manner in which the periodized wavelets may be used in the context of

functional approximation. Since the wavelets form an orthonormal basis, the orthogonal projection
operators onto Vj and Wj are de�ned respectively as

Pj(f)=
2 j−1∑
k=0

〈f; �’j; k〉 �’j; k ; Qj(f)=
2 j−1∑
k=0

〈f; � j; k〉 � j; k
As we have already seen, periodized wavelets provide a basis for L2[0; 1] so we have ‖f −
Pjf‖2→ 0, as j→∞. This is a property of any orthonormal basis of L2, but this particular
periodized basis has some additional properties. If f is a continuous function on the torus, then
‖f − Pjf‖∞ → 0 as j → ∞. If f∈L1[0; 1], then ‖f − Pjf‖1 → 0 as j → ∞.2 The proofs for
these two results appear in Appendix III of this study. These two last statements are strong, in
contrast to the convergence properties of Fourier functional approximations. In fact it has been
shown that the continuous functions whose Fourier series do not uniformly converge are dense in
C(T).17 In this sense, wavelets provide a much more general basis than Fourier bases and hence
have potentially broader applications. These results suggest that wavelets should do a better job at
pointwise approximation, especially for continuous functions.
To measure the error to which a truncated projection will approximate a desired function, we

shall estimate its convergence. The natural choice of norms with which to measure convergence
is the Sobolev norms. The sth Sobolev norm of a function f is de�ned as

‖f‖Hs =
(∫

(1 + �2)sf̂2(�) d�
)1=2

where Hs consists of those functions whose s Sobolev norm exists and is �nite. Daubechies2 states
that the norm for Hs is equivalent to

‖f‖Hs[0;1] =


 ∑

j¿0
06 k ¡2 j

(1 + 22js)〈f;  ̂j; k〉2


1=2

Using this result, we easily �nd a bound for ‖f − Ppf‖2. For f∈Hs[0; 1],

‖f − Ppf‖2=
∥∥∥∥∥ ∑

j¿p06 k ¡2 j

〈f;  ̂j; k〉
∥∥∥∥∥
2

=

[∑
j; k

〈f;  ̂j; k〉2
]1=2

=

[∑
j; k

22js

22js
〈f;  ̂j; k〉2

]1=2

6

[∑
j; k

22js

22ps 〈f;  ̂j; k〉2
]1=2

=2−ps

[∑
j; k
22js〈f;  ̂j; k〉2

]1=2
62−ps‖f‖Hs[0;1]
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The same technique may be used to find error bounds in the H l norm for l6p:

‖f − Ppf‖Hl[0;1] =


 ∑

j¿p
06 k ¡2 j

(1 + 22jl)〈f;  ̂j; k〉2


1=2

=

(∑
j; k
(1 + 22jl)

(1 + 22j(s−l))
(1 + 22j(s−l))

〈f;  ̂j; k〉2
)1=2

6(1 + 22p(s−l))−1=2
(∑

j; k
(1 + 22sj)〈f;  ̂j; k〉2

)1=2

62−p(s−l)‖f‖Hs[0;1]

These bounds are similar to those on Fourier series.18

4. METHOD FOR COMPUTING CONNECTION COEFFICIENTS

In wavelet applications, one often must represent operators in terms of wavelets.19 An example of
such an application is the Galerkin solution of di�erential equations. The formulation of solutions
will require integrations of the form


d1 ; d2 ; : : : ; dn
k1 ; k2 ; : : : ; kn =

〈
�’(d0)j; k0 �’

(d1)
j; k1 : : : �’(dn)

j; kn

〉
=
∫ 1

0
�’(d0)j; k0 �’

(d1)
j; k1 : : : �’(dn)

j; kn dx

where �’(d) = dd �’=dxd. This expression is an n-term connection coe�cient. Since �’ cannot be rep-
resented in closed form for N ¿2 and, by construction, has limited regularity, analytic calculation
of the integral is impossible, and numerical quadrature is often inaccurate as a result of the wildly
oscillating nature of the resulting kernels. An alternative approach developed by Latto et al.13

circumvents some of the di�culty by exploiting the scaling relation and the moment condition
to reduce the calculation to an eigenvector problem. Their method is designed for non-periodic
compactly supported wavelets. However, by invoking an extension of the earlier result regarding
the equivalence of periodized and non-periodized wavelets in Section 2, one may infer that for
j¿ log2((N − 1)n), the periodized case yields the same result as the non-periodized case. For
illustration and for completeness in what follows we adopt closely the general procedure given in
detail in Reference 13 to the 2-tuple case. Several tabulated connection coe�cients using periodized
wavelets are included in an appendix of this study.
First, integration by parts is performed repeatedly on the above integral to obtain


d1 ; d2
k1 ; k2 = (−1)d1
0; d2+d1

k1 ; k2

where the periodicity of the wavelets has been invoked. By changing variables, we further reduce
the equation to


0; dk1 ; k2 =

0; d
0; k2−k1 ≡�d

k2−k1 where d=d1 + d2

From these relations it is clear that any 2-tuple can be represented by a �d
k .
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To construct the eigenvector problem, �x d, then solve for {�d
k}06 k ¡2 j , creating a system of

2 j homogeneous relations in �d
k and enough inhomogeneous equations to reduce the dimension

of the associated eigenspace to 1. Although we are using the connection-coe�cient method for
the non-periodized case, we are computing them for the periodic case (by equivalence), which is
where the bounds on k come into play.

4.1. Connection coe�cients algorithm

To generate the homogeneous equations �x d; j∈N, such that �’(d)j is well de�ned. To simplify

notation, denote �’(d)j; k ≡�d
k . In Reference 13 it is suggested, without proof, that this method also

holds for the �rst d for which �d is discontinuous. For low-order di�erential equations, however,
N =6 or N =8 wavelets should provide su�cient regularity. Since for every 06k¡2 j,

�d
k =

∫
�0(x)�d

k (x) dx =
∫ (

N−1∑
m=0

hm�m(2x)
)(

N−1∑
l=0

hl�d
l+2k(2x)

)
2dd(2x)

= 2d
∑
m

∑
l
hmhl

∫
�m(2x)�d

l+2k(2x) d(2x)

= 2d
∑
m

∑
l
hmhl

∫
�0(�)�d

l+2k−m(�) d�;

�d
k = 2d

N−1∑
m=0

N−1∑
l=0

hmhl�d
l+2k−m

In the above discussion, the integration is over the real line.
This linear homogeneous system can be represented as

A→�
d =2−d

→�
d

where →�
d = {�d

k}06 k ¡2 j : It is worth noting here that if one needs to compute an n-tuple connec-
tion coe�cient for j¡ log2((N − 1)n), then the periodic scaling relation can be used to resolve
each ’j; k into the sum of ’j′ ; k ’s with j′¿ log2((N − 1)n): Thus, the reduction to the non-periodic
case is a universally applicable method.
To generate the inhomogeneous equations, we must �rst assume d6M − 1. The moment con-

dition then guarantees that

xd=
∑
l∈Z

�M
d
l

where �M
d
l = 〈xd; ’0;l〉: Setting x=2 j� and de�ning Md

l = 〈xd;�l〉, we have
�M
d
l =2

dj2 j=2〈�d;�l〉=2dj2 j=2Mk
l

This gives the relation

�d=
∑
l∈Z

Md
l �l(�)

which, when di�erentiated d times, yields

d! =
∑
l∈Z

Md
l �

d
l (�)
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Multiplying by �00 and integrating, we obtain∑
l∈Z

Md
l

∫
�00(�)�

d
l (�) d�=d!

∫
’j;0(�) d�=d!2−j=2

Thus
∑

l M
d
l �

d
l =d!2−j=2: The sum over l is actually over |l|6N −2 since the ’’s are compactly

supported. Thus, by changing the indices of summation by m= l+1+(N −2); the inhomogeneous
equations are

2N−3∑
m=1

�d
mM

d
m−1−(N−2)

with

Md
l =2

−j(2d+1)=2 �M
d
l

The linear system formed by the 2 j homogeneous equations and the above inhomogeneous equa-
tions has eigenspace dimension equal to 1. Thus, all that remains to complete the system is to
calculate �M

d
l :

�M
k
l =

∫
xd’(x − l) dx=

∫
(y + n)k’(y) dy

=
∫

k∑
j=0

(
k

j

)
y jnk−j’(y) dy

=
k∑

j=0

(
k

j

)
nk−j �M

j
0

Since �M
0
l =1 is a property of the ’, the above relation can be used to evaluate recursively �M

d
l

for all l.
The linear system is now complete and �xes the values of �d

k . Note that while the scaling
relation, which is used to generate the homogeneous relations, exists for periodized wavelets,
currently nothing is analogous to the moment condition that may be used to generate the necessary
inhomogeneous equations. One possible approach is to use the scaling equation linked with the fact
that �Vj = {constant functions} for j60 to �nd additional inhomogeneous relations. Problems arise
with relating

∫
�’j+1;0 dx to

∫
�’j;0 dx; however, since dilation does not commute with periodization.

While this method could probably be worked out, the periodic case can always be reduced to an
equivalent non-periodic case for which the method is already well de�ned. Thus, to compute an
n-term connection coe�cient for periodized wavelets, one need only resolve the terms into �Vj,
for some j¿ log2 (N − 1)n and apply the above method. This approach takes full advantage of
the equivalence of periodic and non-periodic scaling functions and circumvents the need for a
connection coe�cient method particular to periodized wavelets.

4.2. Periodization of inner product matrices

The two most common situations that arise in the wavelet Galerkin solution of di�erential
equations involve 2-tuples and 3-tuples. Periodic conditions require wraparound of the � entries
in 
 in the upper right-hand corner and the lower left-hand corner, assuming that the matrix row
index increases from top to bottom corresponding to the dyadic points in [0; 1). The wraparound

9



Figure 1. Structure of �j′′ ; k′′ index pad for 3-tuples in the ( j; l) plane: (a) the index pad corresponds to N =4 in the
region where no wraparound arises; (b) corresponding to N =4 for k = k′ + 2; (c) corresponding to N =4 for k =N − 3,

�=2

will produce at most N (N +1) additional entries in the matrix, where [0; N ] is the support of the
scaling functions. In this section we present explicit schemes that enable the construction of these
matrices. The 2-tuple case is easily generated, since 
 is a circulant matrix of the form


=circ(�0;�1 : : : �N ; : : : ; 0; 0; : : : �−N ;�−N+1; : : : �−1)

and 
=±
T, depending on whether the operator is symmetric or skew-symmetric (see
Section 4.3).
The 3-tuple is somewhat more involved. The �j ′′ ; k ′′ have the structure illustrated schematically

in Figure 1(a). We call this structure the ‘index pad’. Let K =2p − 1, where the superscript p
corresponds to the resolution of the scaling functions. A typical situation in a Galerkin discretization
when 3-tuples are involved would be the calculation of

sk =
K∑

l=0
al!k; l

10



where

!k; l=
K∑

j=0
hj
k; j; l

where al and hj are the wavelet coe�cients of the projection of real quantities A(x; ·) and H (x; ·)
into Vp, and 
 is the inner product 〈 ��d1

k
��
d2
j
��
d3
l 〉. For a given k there is an index pad in (j; l)

over which these indices range when forming !k; l and sk . Moreover, associated with each index
(j; l) in the pad there is a �j ′′ ; k ′′ , where j ′′= j−k and l′′= l−k, which gives the value of 
k; j; l.
It is easier to think of the index pad as having a rectangular structure in which the entries lying
outside of the hexagon of the true index pad are zero.
First consider the case in which there is no wraparound, that is, for N6k¡k ′, where k ′=K −

(N − 1), the largest index k for which the support of the scaling function lies entirely in [0; 1].
Associated with each (j ′′; l′′) in the index pad, there is a connection coe�cient �j ′′ ; l′′ . As k is
varied, the pad centred at k, moves along the line l= j in the (j; l) plane. This is the ‘regular
case’ and is shown in Figure 1(a).
Next, consider the case k¿k ′. Let k = k ′ + �, 06�6N − 1. The situation is illustrated in

Figure 1(b). The index pad is beyond (j; l)= (K; K). For convenience identify the following sub-
regions.

A : k − N6j6K

k − N6l6K

B : j=K + 1 + q; 06q6�

l=K − t; 06 t6N − 1
C : j=K − t; 06 t6N − 1

l=K + 1 + q; 06q6�

D : j=K + 1 + q; 06q6�

l=K + 1 + q; 06q6�

Consider a given k, the corresponding index pad is subdivided into the four subsets A; B; C; D
de�ned above. When index pairs (j; l) lie in subregions B; C or D, periodization comes into play
since the corresponding basis functions have been periodically extended. We now consider the
consequences of this periodization on the sk in detail. Note that sk will be the sum of three
partial sums, summed over subsets of the index pad. Next we observe that the range of l is
k−N6l6K+1+�. We divide this range into two parts: k−N6l6K and K+16l6K+1+�.
For the range k−N6l6K , the index l is not a�ected by the periodization since l6K . The index
j, on the other hand, produces a pair (j; l) that ranges over the set A and B. Let !k; l=!rk; l+!pk; l.
Then

!rk; l=
K∑

j=k−N
hj�j ′′ ; l′′ (the regular part)

!pk; l=
K+1+�∑
j=K+1

hj−K−1�j ′′ ; l′′ (the periodic adjustment)

11



and thus

s(1)k =
K∑

l=0
al!k; l

where, throughout this section, we set j ′′= j − k and l′′= l− k.
Next we deal with the range K + 16l6K + 1+ �. In this case the pair (j; l)∈C ∪D. When

(j; l)∈C,

!k; l=
K∑

j=k−N
hj�j ′′ ; l′′

Now the index l is a�ected by periodization, so that

s(2)k =
K+1+�∑
l=K+1

al−K−1!k; l

When (j; l)∈D, both indices are a�ected by periodization, thus

!k; l=
K+1+�∑
j=K+1

hj−K−1�j ′′ ; l′′

Then,

s(3)k =
K+1+�∑
l=K+1

al−K−1!k; l

So, for k = k ′ + �, 06�6N − 1, combining, we have
sk = s(1)k + s(2)k + s(3)k

We now consider the case when the index pad encounters the left boundary, j=0, l=0, which
occurs for 06k6N − 1. Schematically, the situation is portrayed in Figure 1(c). Denote the
following subregions:

A : 06j; l6k + N

B : 06l6N − 1
−� − 16j6 − 1

C : 06j6N − 1
−� − 16l6 − 1

D : −� − 16j6 − 1
−� − 16l6 − 1

where 06�6N − 1.
Again we divide the entire l range −� − 16l6k + N into two parts: 06l6k + N and

−� − 16l6 − 1. Consider the range 06l6k + N for which the index pair (j; l) ranges over

12



B and A. When (j; l)∈B, the index j is a�ected by periodization so that !k; l has a regular part
and a periodic part. Let !k; l=!rk; l + !pk; l. Then

!rk; l=
k+N∑
j=0

hj�j ′′ ; l′′ (the regular part)

!pk; l=
−1∑

j=−�−1
hK+1+j�j ′′ ; l′′

thus

s(1)k =
k+N∑
l=0

al!k; l

Next we deal with the range −�− 16l6 − 1. In this case (j; l)∈C ∪D. For (j; l)∈C, we have

!k; l=
N−1∑
j=0

hj�j ′′ ; l′′

Then

s(2)k =
−1∑

l=−�−1
aK+1+l!k; l

When (j; l)∈D we have

!k; l=
−1∑

j=−�−1
hK+1+j�j ′′ ; l′′

and

s3k =
−1∑

l=−�−1
aK+1+l!k; l

Combining, for k =N − � − 1, 06�6N − 1, we have
sk = s(1)k + s(2)k + s(3)k

The periodization is then complete. The result is the vector {sk}. This procedure generalizes to
the n-tuple case in a straightforward manner.

4.3. Useful connection coe�cient relations

We list a number of identities and relations that are useful in the manipulation of connection
coe�cients. Many of these relations appear in References 13 and 20. Except for the operator inver-
sion relationship, most of the inner product relations can easily be derived by invoking integration
by parts, translation, and change of variables.


d1 ; d2
l;m =
d2 ; d1

m; l (17)

�d1 ; d2
l =−�d1−1; d2+1

l (18)

�1; d2 ; d3 =−�0; d2+1; d3 − �0; d2 ; d3+1 (19)

13



�d1 ; d2 ; d3
l;m =�d2 ; d1 ; d3

−l;m−l (20)

�d1 ; d2 ; d3
l;m =�d3 ; d2 ; d1

l−m;−m (21)

�d1 ; d2 ; d3
l;m =(−1)d1

d1∑
i=0

(
d1
i

)
�0; d2+i; d3+d3+d1−i

l;m (22)

Another relation that is very useful in checking the construction and accuracy of 3-tuple matrices
is the check-sum procedure: the column sum of a 3-tuple matrix must equal a corresponding 2-tuple
vector component for component. For example,

∑K
l=0 


1;0;0
l;m =
1;0m .

Lastly, we mention an e�cient procedure for the inversion of a �rst-order operator, which
exploits the symmetric or skew-symmetric nature of the matrix, 
= ±
T, so that the matrix may
be diagonalized, 
=�D
�T. A concrete example of operator inversion appears in Reference 20.

5. APPROXIMATION OF DIFFERENTIAL OPERATORS

The spectrum {�j} of the continuous di�erential operator L with periodic boundary conditions
on 0 and 1 is discrete. A discrete approximation L of the operator may be found by projecting
the operator onto the space spanned by the periodized scaling functions. The discrete and contin-
uous operators can be compared by looking at their spectra. By the Galerkin procedure outlined
in Section 4.1 one can form the matrix 
, an approximate representation of L, in the subspace
of periodized scaling functions of resolution p and of genus N . In this section we examine the
usefulness and properties of wavelet projection techniques for di�erential operators. A comparison
of the spectrum of the di�erential operator L and its approximation using the connection coe�-
cients algorithm reveals information important within the context of solving ordinary and partial
di�erential equations using wavelet-Galerkin techniques.
The projection of the di�erential operator with periodic boundary conditions leads to a 2-tuple 
.

Eigenvalues of this matrix may be found by noting21 that the circulant matrix 
, has eigenvalues
�j given by the expression

�j =
K∑

k=0
akei2�kj=K

where ak is an entry in the �rst row in the circulant matrix, namely, an element of the set
�0;�1: : : �N ; 0; : : : ; 0;�−N ;�−N+1; : : :�−1 and j=1; 2; : : : ; K + 1.
The �’s were obtained by the procedure outlined in the preceding section. The overdetermined

system was solved using a QR algorithm from LAPACK22 called dgess. For 
0;1, the residual and
the condition number as a function of the resolution p and the genus N appears in Table I.
Some of the eigenvalues of 
0;1 are given in Tables II and III. Regarding these tables, one can

make three general observations. First, the imaginary part of the eigenvalues grows only as O(2p),
just as the Fourier-basis computation would, and this is in contrast to spectral approximations
based on Chebychev or Legendre bases. Second, we observe that the real parts of the eigenvalues
are comparable to the size of machine precision zero, since the real part of each eigenvalue is
proportional to the �0, again in sharp contrast to Chebychev and Legendre bases investigated by
Trefethen et al.23 Third, little evidence of contamination due to round-o� error was seen even
for high resolution (in our experiments, we tried values of p as high as 11), in sharp contrast
to the experience of Trefethen et al. with the above-mentioned bases functions. The spectrum of
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Table I. Residual and condition number for the least-
squares calculation of �’s used in 
0; 1, as a function

of p and N

Condition
N p Residual number

4 4 −2·1926904736347D− 15 137
4 5 −8·4099394115356D− 15 387
4 6 −8·3266726846887D− 15 1096
4 7 −2·6922908347160D− 14 3100
4 8 −2·1510571102112D− 16 8770
6 4 4·3905851176973D− 15 189
6 5 4·3905851176973D− 15 531
6 6 2·2332830029725D− 14 1503
6 7 3·2980562725271D− 14 4252
6 8 −1·6563139748627D− 14 12 029
8 4 −1·6766260279716D− 11 229
8 5 −3·3533817109376D− 11 642
8 6 6·7080697513231D− 11 1816
8 7 1·3417001243474D− 10 5138
8 8 2·6830899981444D− 10 14 532

Table II. Imaginary part of eigenvalues divided by 2� for increas-
ing resolution 2p calculated using N =6 periodized Daubechies

wavelets

p=4 p=6 p=8
0·0D0 0·0D0 0·0D0

0·99997222310553 0·99999999300555 0·99999999999689
1·9967784015701 1·9999991102504 1·9999999997795
2·0423307943545 2·9999849535965 2·9999999962590
2·9532542889943 3·9998888924219 3·9999999720194
3·4758292699748 4·9994799193486 4·9999998667457
3·7208826878105 5·9981781285634 5·9999995232107
4·0025895152829 6·9947814463569 6·9999985996877

the skew-symmetric operator d=dx is purely imaginary and equal to 2�k, where k ∈Z. Periodicity
will lead to the eigenvalue 0 having multiplicity 2. Table II shows the magnitude of the imaginary
part of the �rst few eigenvalues, divided by 2�, as a function of p. It is clear from the table that
approximations to the eigenvalue improve as p is increased and the number of reasonably correct
eigenvalues grows as well with p. Parenthetically, we remark that with p=6 we can go as far
k =11 for which �11

:=10·8 while retaining at least one digit of accuracy. In the case p=8 we
can go as far as k =36 for which �36

:=35·8.
We examined the dependence of the eigenvalue convergence on both the resolution p and the

genus N . We did this by examining the imaginary part of several eigenvalues. We found that the
rate of convergence was almost exactly 2−p, while the dependence of the rate of convergence on
N was essentially quadratic. Tables II and III illustrate the above-mentioned rates of convergence.
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Table III. Imaginary part of eigenvalues of d=dx as a function of
N for p=6

N =4 N =6 N =8

0·99999690699928 0·99999999300555 0·99999999998407
1·9999013641150 1·9999991102504 1·9999999916456
2·9992552692402 2·9999849535965 2·9999996834005

Table IV. Spectrum approximation of d3=dx3 with N =6. Imaginary
part of eigenvalues

p=4 p=6 p=8
0·0D0 0·0D0 0·0D0
39·411980740054 39·478149261094 39·478416554374
308·17967443293 315·7932221828 315·82720643905
956·10277711077 1065·3407907411 1065·9149806290
1670·0988161963 2522·3667673633 2526·6015527133
1877·4681030848 4914·9287548852 4934·7204114901
2625·9035313813 8457·8432634425 8 527·0455871351
2641·9768303508 13 342·439258378 13 540·237953821

Table V. Real part of eigenvalues for d2=dx2 divided by 4�2 for increas-
ing resolution p. N =6

p=4 p=6 p=8

1·1518884962509D−14 2·7645323910020D−13 0·0D0
1·0033162940157 1·0000135268157 1·0000000529814
4·1847329915128 4·0008582644240 4·0000033890207
10·666776606377 9·0096362703930 9·0000385683104
22·726823972803 16·053060704248 16·000216429062
41·582358732169 25·197220008678 25·000824274322

Qualitatively, we �nd the same type of behaviour in higher odd-ordered di�erential operators.
Table IV shows the approximation to the spectrum of the operator d3=dx3 with periodic boundary
conditions. We found the rates of convergence very similar to those of the �rst derivative, with
the proviso that the basis functions had to be chosen with su�cient smoothness.
Finally we consider approximation to even-ordered di�erential operators. For example, Table V

shows the approximation of the spectrum of d2=dx2 for periodic boundary conditions for the same
values of p. This case corresponds to the eigenvalues of 
0;2. Each eigenvalue has a complex
conjugate, for which the imaginary part is no greater than machine precision zero. Again, we found
the same rates of convergence as in the odd-ordered cases.
The condition number (cn) of the vector calculation was found to have the following corre-

spondence: for p=5 it was cn=52 778, p=6 it was cn=298 557, p=7 it was cn=1 688 892.
In general it was found that the condition number grew as the size of p, N , and on the order
of the derivatives was increased. The source of the high condition number is the ill-posed na-
ture of the over-determined matrix. The high condition number is especially troublesome in the
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calculation of the 3-tuples. There are few options available to improve the ill-conditioned nature
of the matrix. One option could have been to use Chebychev polynomials in connection with the
moment conditions. However, the ill-posedness is in the linear homogeneous equations, its exact
nature being that several of the rows will have nearly the same entries for some values of p, N ,
and the order of the derivatives. Hence, little or no improvement would result in the use of the
Chebychev polynomials as a way to mix the moment conditions.
Using the eigenvalue data corresponding to the three di�erential operators, we have also been

able to assess numerically the size of the largest eigenvalues. This is a useful estimate, for example,
in the determination of time stability in numerical schemes for the solution of di�erential equations.
The estimate is that the largest eigenvalue is comparable in size to Fourier spectral approximations;
that is, the largest eigenvalue �=(2�)n=O(2pn), for dn=dxn, where n=1; 2; 3. It was also possible
to con�rm that the eigenvalues of the discretized matrix of odd-ordered di�erential operators have
real parts of magnitude no greater than machine precision zero. The same can be said of the
imaginary part of discretizations of even-ordered operators.

6. SUMMARY

The primary aim of this study has been to complement the report of Latto et al.13 in which they
propose a simple and useful technique for the calculation of inner products involving Daubechies
wavelets. It is hoped that this study will be a helpful guide to a publicly available numerical code
which implements their scheme. Details on how to obtain the code are given in Appendix I.
The periodization of matrices involving inner products of two and three wavelets and their

derivatives was presented in detail. The three wavelet inner product matrix is not straightforward
to implement, especially in periodized problems. In this study we have provided several useful
algorithms to construct such matrices and have listed several properties of the inner products that
are useful in checking the actual implementation of the wavelet-Galerkin solution of di�erential
equations.
Lastly, we have shown numerically that common di�erential operators may be well approximated

using wavelets. In light of other studies that compare several spectral approximations to the above
operators,23 the wavelet approximations compare favourably. Information on the approximation of
di�erential operators is also useful in the solution of partial di�erential equations using wavelet-
Galerkin techniques, for example, in making choices of time integrators in the solution of evolution
equations, and in estimating the size of the time stepping in order to achieve time-stability in the
calculation. It was found that the eigenvalues, which approximate commonly used di�erential
operators, where fairly close in value and magnitude to those calculated by means of discrete
Fourier projection techniques.

APPENDIX I

Tables of connection coe�cients

Connection coe�cients: 2-tuples for p=0, N =6. Computed in double precision on a Sun
Sparc1 workstation using LAPACK solver routines.

�0;1−4 = −3·4246575342471D − 04
�0;1−3 = −1·4611872146119D − 02
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�0;1−2 = +0·14520547945205
�0;1−1 = −0·74520547945205
�0;10 = −3·2049276679778D − 15
�0;11 = +0·74520547945206
�0;12 = −0·14520547945205
�0;13 = +1·4611872146119D − 02
�0;14 = +3·4246575342476D − 04

residual = 1·9680979936043D − 16
for the least-squares solution of the overdetermined system.

�1;1−4 = +5·3571428571412D − 03
�1;1−3 = +0·11428571428572
�1;1−2 = −0·87619047619048
�1;1−1 = +3·3904761904762
�1;10 = −5·2678571428572
�1;11 = +3·3904761904762
�1;12 = −0·87619047619048
�1;13 = +0·11428571428571
�1;14 = +5·3571428571430D − 03

residual =1·1362438767648D − 16
�2;0−4 = +5·3571428571412D − 03
�2;0−3 = +0·11428571428572
�2;0−2 = −0·87619047619048
�2;0−1 = +3·3904761904762
�2;00 = −5·2678571428572
�2;01 = +3·3904761904762
�2;02 = −0·87619047619048
�2;03 = +0·11428571428571
�2;04 = +5·3571428571430D − 03

residual =1·1362438767648D − 16
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A code for the computation of connection coe�cients is available. The URL is http:
//www.math.ucla.edu/∼restrepo.

APPENDIX II

Proofs related to periodizing Daubechies wavelets are presented in this appendix.

Proposition. To prove that dilation and periodization of Daubechies wavelets do not commute
it su�ces to show that for j60; �’j; k =2

−j=2:

Proof. Since

�’j; k = 2
j=2 �’(2jx − k)

�’j; k =
∑
l∈Z
2j=2’(2j(x − l)− k)

= 2j=2
2−j−1∑
b=0

∑
l∈Z

’
(
2jx −

(
l+

b
2−j

)
− k
)

Letting y=2jx and summing over l, we obtain

�’j; k =2
j=2

2−j−1∑
b=0

1=2−j=2

Periodized Daubechies wavelets form an orthonormal basis for L2[0; 1]:

Proposition. { �’j; k : j¿0; 06k ¡ 2j} forms an orthonormal basis for L2[0; 1].

De�nition. 〈f; g〉= ∫ f(x)g(x) dx, the standard L2 inner product.

Proof. We begin by showing that 〈 �’j; k ; �’j′; k ′〉=0:

〈 �’j; k ; �’j′; k ′〉=2( j+j′)=2
∫ 1

0

∑
l; l′∈Z

’(2j(x − l)− k)’(2j
′
(x − l′)− k ′) dx

Let y= x − l′, so that

〈 �’j; k ; �’j′; k ′〉 = 2( j+j′)=2
∫ 1

0

∑
l; l′∈Z

’(2j(x − l)− k)’(2j
′
(x − l′)− k ′) dx

= 2( j+j′)=2 ∑
r∈Z

∫ ∞

−∞
’(2jy + 2jr − k)’(2j

′
y − k ′) dx

=
∑
r∈Z

〈’j; k+2jr ; ’j′ ; k′〉= �jj′�kk′
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with l − l′= r. Thus �’j; k and �’j′ ; k′ are orthonormal. Next we show that they form a basis for
L2[0; 1].
Choose an arbitrary f∈L2[0; 1]. Now consider

�f(x)=f(x)x∈ [0; 1]= 0x =∈ [0; 1]
�f∈L2(R) and {’j; k} form an orthonormal basis for L2(R); so we have

�f=
∑
06j
k∈Z

〈 �f;’j; k〉

which, when periodized, becomes

f(x)=
∑
l∈Z

�f(x − l)=
∑
l∈Z

∑
06j
k∈Z

〈 �f;’j; k〉 =
∑
06j
k∈Z

〈 �f; �’j; k〉

This �nal result is actually a �nite sum since, for k¿2j and k61−N , supp(’j; k)∩ supp( �f)= ∅.
Thus f has a representation in the periodized wavelets.

The proof that { �’j; k ; � j′ ; k : j
′¿j¿0; 06k ¡ 2j} also form an orthonormal basis is nearly iden-

tical. Since ’(x)=
∑N−1

k=0 hk’(2x − k), we can periodize both sides to get

�’(x) =
∑
l∈Z

’(x − l)=
∑
l

∑
k
hk’(2(x − l)− k)

=
∑
k

∑
l
hk’(2(x − l)− k)

=
∑
k
hk �’1; k(x)

The connection coe�cients code may be used for both periodized as well as the non-periodized
Daubechies wavelets inner products. This result is formalized as follows.

Proposition. For j¿ log2(N −1); �’j;0 =’j;0; where �’ is extended to R by setting it to 0 away
from the unit interval.

Proof. supp(’j;0)= [0; 2−j(N − 1)], so for j¿ log2(N − 1); supp(’j;0)= [0; �]; �61. Thus
�’j;0(x)=

∑
l∈Z ’j;0(x − l)=’j;0:

APPENDIX III

Several approximating characteristics in Section 3 are proved below. As we have already seen,
periodized wavelets provide a basis for L2[0; 1] so we have ‖f− Pjf‖2→ 0, as j→∞. This is a
property of any orthonormal basis of L2, but this particular periodized basis has some additional
properties.
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Theorem. If f is a continuous function on the torus; then ‖f − Pjf‖∞ → 0 as j→∞.

Proof. We begin the proof by showing that our projection operator is bounded. Pj is an integral

operator of the form Pjf(x)=
∫ 1
0

∑2j−1
k=0 �’j; k(y) �’j; k(x)f(y) dy. Thus,

‖Pj‖∞ 6supx∈[0;1]

∫ 1

0

∣∣∣∣∣
2j−1∑
k=0

�’j; k(y) �’j; k(x)

∣∣∣∣∣ dy

6supx∈[0;1] 2
j=2

∣∣∣∣∣
2j−1∑
k=0

�’(2jx − k)

∣∣∣∣∣ 2j=2‖ �’‖∞2j=2[2−j(N − 1)]

6supx∈[0;1]

∣∣∣∣∣
2j−1∑
k=0

�’(2jx − k)

∣∣∣∣∣ ‖ �’‖∞(N − 1)

Now, |∑2j−1
k=0 �’(2jx− k)|¡ (N − 1)‖ �’‖∞ since for j¿ log2(N − 1) there are at most (N − 1) k’s

such that for a given x, {x} ∩ supp( �’j; k) 6= ∅. Hence, we have
‖Pj‖∞6‖ �’‖2∞(N − 1)2

If we take f∈ ⋃j∈N Vj, then ∃J such that ∀j¿J; Qjf=0. Thus, Pjf=f for j¿J .
⋃

j∈N Vj is
dense in L2[0; 1] which is dense in C(T), continuous functions of period 1 on the unit interval.
Finally, by the boundedness of Pj, the theorem follows.

Theorem (Daubechies). If f∈L1[0; 1], then ‖f − Pjf‖1→ 0 as j→∞ [10].

Proof. Since L1[0; 1]⊂(C[0; 1])?, we have
‖Pjf‖1 = sup{|〈Pjf; g〉|; g continuous; ‖g‖∞61}

= sup{|〈f; Pjg〉|; g continuous; ‖g‖∞61}
6‖f‖1‖Pjg‖∞

‖Pj‖∞ is bounded by the previous theorem. Since
⋃

j∈N Vj is dense in L2[0; 1], which is also dense
in L1[0; 1], the uniform bound on Pj is su�cient to prove our result.
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