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Symmetries impact in chaotification of piecewise

smooth systems

D. Benmerzouk and J-P. Barbot∗

May 28, 2016

Abstract

This paper is devoted to a mathematical analysis of a route to chaos
for bounded piecewise smooth systems of dimension three subjected to
symmetric non-smooth bifurcations. This study is based on period dou-
bling method applied to the associated Poincaré maps. Those Poincaré
maps are characterized taking into account the symmetry of the tran-
sient manifolds. The corresponding Poincaré sections are chosen to be
transverse to these transient manifolds, this particular choice takes into
account the fact that the system dynamics crosses the intersection of both
manifolds. In this case, the dimension of the Poincaré map (defined as
discrete map of dimension two) is reduced to dimension one in this par-
ticular neighborhood of transient points. This dimension reduction allows
us to deal with the famous result ”period three implies chaos”. The ap-
proach is also highlighted by simulations results applied particularly to
Chua circuit subjected to symmetric grazing bifurcations.
Keywords: Chaotification analysis, period doubling, Non-smooth bifur-
cations, Symmetries, Chua circuit

1 Introduction

In the literature, hybrid dynamic models can represent systems for which
the behavior consists of continuous evolution interspersed by instanta-
neous jumps in the velocity. More precisely, those systems exhibit non-
smoothness or discontinuities in the dynamics and this induces new dy-
namics phenomena witch are not present in smooth dynamics. However,
the field of hybrid systems is not as mature as the smooth one. The
corresponding fundamental theoretical concepts have not been so devel-
oped. The most known general textbook on hybrid systems is [46] and
the book [40] contains qualitative analysis of some classes of hybrid sys-
tems. Recently, it was gradually recognized that a particular class of those
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systems exhibits many interesting phenomena because of the specific com-
plex structure of the state space composed of some different vector fields.
In this case, the dynamics of the system can be defined by an ordinary
differential equation in each region and the associated Poincaré map is
continuous across the border but its derivative is discontinuous. Those
systems are called piecewise smooth systems (noted p.w.s systems), they
occur naturally in the description of many physical processes as grazing,
sliding, switching, friction and so on. This type of dynamics was intro-
duced and studied in many seminal papers [2], [3], [17], [27], [18], [31],
[38], [41], [42], [50]. Many books and monographs have been published on
this topic. The analysis in [32] generalized several fundamental theories in
smooth systems theory to this relevant class of hybrid systems. [12] gave
a comprehensive treatment on the theory of p.w.s systems. The reader
can also refer to recent overviews articles [13] for numerous references
therein. Such class of p.w.s systems is common in the literature. Authors
in [15], [16], [33] dealt with p.w.s systems from mechanical problems, other
applications were performed in control in engineering [3], [48], [37] elec-
tromechanical systems [29] or in gene regulatory networks and neurons in
computational neuroscience and biology [45]. In those applications, it is
often essential to characterize its bifurcations. Those events , known as dis-
continuity induced bifurcations, occur when an invariant set of the system
(as an equilibrium point or a limit cycle) crosses or hits tangentially the
switching manifold in the phase space. A pioneering work was achieved
by Feigin in [23], [24], [25] who introduced the notion of C-bifurcations
and has recently re-evaluated it in [7]. Furthermore, symmetric bifurca-
tions are widespread phenomena, one of the oldest known example is the
Lorenz dynamics [47] for the smooth systems and the Chua circuit [21]
for the piecewise smooth ones. This kind of symmetric non-smooth tran-
sients occurs for example in a multicell chopper coupled with nonlinear
load and may generate a chaotic behavior [22] (see [1], [28] for a mathe-
matical definitions and characterizations of chaos in dynamical systems).
In fact, all those types of bifurcations can give rise to a chaotic behavior.
Most notably, p.w.s systems can exhibit robust chaotic behavior that have
been conjectured not to exist for smooth systems. This is due to the dis-
continuous dependence on initial conditions leading to chaotic behavior.
Knowing that there exist three main branches of chaotic dynamic systems
theory namely the symbolic dynamics, ergotic theory and bifurcation the-
ory, we focus on the last one in this paper. Those notions can be found in
references [28], [30], [43]. Author in [32] generalized several fundamental
theories in smooth systems theory including Lyapounov exponents and
Conley index to p.w.s systems. Some interesting results in [51] are dedi-
cated to bifurcations and chaos analysis to p.w.s systems. P. Collins gives
in [19] an overview of some chaotic hybrid systems. He proposed results
on dynamics in switched arrival systems and in systems with periodic
forcing.

Hereafter, we propose a mathematical analysis of way to chaos for
bounded p.w.s systems of dimension three subjected to symmetric non-
smooth bifurcations. We restrict our attention to bimodal p.w.s systems
depending on a parameter ε. Such class of p.w.s systems is common
in the literature due to its importance in many applications [44], [49],...
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This work is an extension to symmetric case of the results obtained in [4]
and [5] and associated to non-symmetric and non-smooth bifurcations.
The suggested procedure is based on four main features: the first one is
the Poincaré maps determination associated to p.w.s systems subjected
to symmetric non-smooth transitions. It is an extension of the Poincaré
Discontinuity Maps (noted P.D.M.) associated to p.w.s systems subjected
to classic non-smooth transitions given in [8], [9], [10]. The Poincaré maps
computed here are characterized by a composition of the previous Poincaré
maps with some particular maps that take into account the symmetries
of the dynamics. The second feature is the special choice of the Poincaré
sections relatively to the switching manifolds. Those Poincaré sections
are perpendicular to the switching manifolds, this permits to reduce the
dimension of the Poincaré maps from two to one, this reduction being
available only in a specific neighborhood of the bifurcation points. The
third feature is the application of period doubling method based on the
famous result of [35] “period three implies chaos”. It is important to men-
tion here that another choice of Poincaré sections will oblige us to be in
dimension 2 and thus to use results of Marotto published in 1978 who gen-
eralized results of Li and Yorke to discrete systems of dimension greater
than one. This result is summarized by “snap-back repealers imply chaos
” [39] and was revisited by several authors, see for example [36], [34]. Note
that a snap-back repealer is an expanding fixed point such that for a very
small variations of the bifurcation parameter, the trajectory is repelled
and for more larger deviations of this parameter, the process jumps onto
the fixed point. As the determination of the snap-back repealer is dif-
ficult in general, our purpose is to avoid the corresponding approaches
by considering specific choice of Poincaré sections. The fourth feature is
the use of a simple and simultaneously powerful mathematical tool that
is the Implicit Function theorem. It guaranties that the expected points
for chaotifying the considered system defined on the Poincaré section are
close to the bifurcation points and vary continuously with respect to the
bifurcation parameter. This is primordial because on the one hand limit-
edness condition of the trajectories is respected (knowing that if it is not
the case, study of chaos has no sense) and on the other hand, the processes
of period doubling occurs until the dimension of the considered discrete
map is reduced to one in the neighborhood of the bifurcation parameter
permitting us to use the result “period three implies chaos”.

The paper is structured as follows: in Section 2 some preliminaries and
statements on the characterization of symmetric non-smooth transitions
are provided followed by the determination of the corresponding Poincaré
maps. A route to chaos analysis is proposed in Section 3. Section 4 is
dedicated to some simulation results: the first one concerns an academic
example subjected to symmetric sliding bifurcations and the second one
concerns Chua circuit subjected to symmetric grazing bifurcations [20].
The results obtained for both examples highlight the efficiency of the
proposed approach. Finally, concluding remarks and some perspectives
end the paper.
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2 Symmetric non-smooth transitions and
Poincaré maps characterization :

We propose, in this section, a characterization of symmetric non-smooth
transitions and after the determination of the associated Poincaré maps.

2.1 Characterization of p.w.s systems subjected
to symmetric non smooth transitions

Let us consider the following piecewise smooth system:

ẋ =

{

F1(x, ε) if x ∈ D1

F2(x, ε) if x ∈ D2
(1)

where x1 : I −→ D, I ⊂ R+ and D ⊃ D1∪D2 is an open bounded domain
of R3 with:

D1 = {x ∈ D : |H(x)| < E}

D2 = {x ∈ D : |H(x)| > E}

E is a positive fixed real number and ε is a real parameter defined on a
neighborhood of 0 noted by Vε.
H : D → R is a continuous function that characterizes the phase space
boundary between two regions of smooth dynamics, H defines the two
symmetric transient sets:

Π1 := {x ∈ D : H(x) = E} andΠ2 := {x ∈ D : H(x) = −E}

Π1 and Π2 are termed the switching manifolds and divide respectively the
phase space into the following regions:

Π+
1 = {x ∈ D : H(x(t)) ≥ E} , Π−

1 = {x ∈ D : H(x) < E}

and Π+
2 = {x(t) ∈ D : H(x(t)) ≥ −E}, Π−

2 = {x(t) ∈ D : H(x(t)) < −E}.

F1, F2 : C1(I,D) × Vε −→ Cm(I,D), m ≥ 4, where Cm(I,D) is
the set of Ck functions defined on I and having values in R3, Cm(I,D) is
provided with the following norm:

‖x‖ = sup
t∈I

‖x(t)‖e+sup
t∈I

‖ẋ(t)‖e+ ...+sup
t∈I

∥

∥

∥
x(m)(t)

∥

∥

∥

e
, ∀x ∈ Cm(I,D)

2.
According to [14], (Cm(I,D), ‖.‖) is a Banach space.

The vector fields F1 and F2 are defined on both sides of Πk, k = 1, 2.

Moreover, the system (1) is assumed to depend smoothly on the pa-
rameter ε such that at ε = 0, there exists a periodic orbit x(.) that
intersects the switching manifolds Π1 and Π2 at two points x1 and x2

1For the sake of simplicity, we denote by x the function and also the value of x at time t

when the context is without ambiguity.
2x(m)(.) denotes the mth derivative of x(.) and ||.||e is a norm defined on R3.
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corresponding to t (where t is the period time associated to the system
(1)) .

The assumptions given by [11], [8], [10], [13] to characterize the slid-
ing and grazing non-smooth bifurcations are generalized to the symmetric
non-smooth cases in the following subsections3, notations will be more
complicated because all types of grazing and sliding bifurcations are con-
sidered here at the same time with the symmetry phenomena.

2.1.1 First case: symmetric sliding bifurcations:

A symmetric sliding bifurcations occur on two transient surfaces Π1and
Π2 at two sliding points xk, k = 1, 2 at time t0 (taken for simplifying to
be equal to 0) if the following general sliding conditions are satisfied for
each function H1 := H − E and H2 := H + E:

C
k,s
1 ) < ∇Hk(x(t)), F2(x(t), 0) − F1(x(t), 0) >∈ R∗

+ for all x(t) ∈ vks ,
where vks is a bifurcation neighborhood in Πk.
C

k,s
2 ) Hk(xk) = 0 and ∇Hk(xk) 6= 0.

C
k,s
3 ) for i = 1, 2 and k = 1, 2 : < ∇Hk(xk), F

0
ki >= 0.

where F 0
ki := Fi(Φi(xk, 0), 0), i = 1, 2,and Φi is the flow associated to Fi.

Moreover, each type of the four symmetric sliding bifurcations is char-
acterized by specific assumptions noted A

k,s
i ), i = 1, 2, 3, 4 and k = 1, 2:

Ak,s
1 )

〈

∇Hk(x̄k),
∂F1(x̄k,0)

∂x
F 0
k1

〉

> 0

Ak,s
2 )

〈

∇Hk(x̄k),
∂F2(x̄k,0)

∂x
F 0
k2

〉

> 0

Ak,s
3 )

〈

∇Hk(x̄k),
∂F1(x̄k,0)

∂x
F 0
k1

〉

< 0.

Ak,s
4 )

〈

∇Hk(x̄k), (
∂F1(x̄k,0)

∂x
)2F 0

k1

〉

< 0.

2.1.2 Second case: symmetric grazing bifurcations:

A symmetric grazing bifurcations occur on the two transient surfaces
Π1and Π2 at two grazing points (denoted also for simplicity) xk, k = 1, 2
at time t0 = 0 if the following general grazing conditions are satisfied on
a bifurcation neighborhood vks of Πk. for each function H1 := H −E and
H2 := H +E:

C
k,g
1 ) Hk(xk) = 0 and ∇Hk(xk) 6= 0.

C
k,g
2 ) for i = 1, 2 and k = 1, 2 : < ∇Hk(xk), F

0
ki >= 0,

C
k,g
3 ) for i = 1, 2. and k = 1, 2: ∂2Hk(x̄k,0)

∂x2 ∈ R∗

+,

C
k,g
4 ) (< Lk, F

0
k1 >< Lk, F

0
k2 >) ∈ R∗

+ for each k = 1, 2.
where Lk is the unit vector perpendicular to ∇H(xk) at point xk.

2.2 Determination of Poincaré maps associated
to symmetric non smooth transitions:

As it is assumed that at ε = 0 then there exists a periodic orbit x(.) that
intersects symmetrically at two points the two symmetric manifolds Π1

3In this paper, indexes s and g are relied respectively to sliding and grazing cases.
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and Π2.It is also requested that this orbit is hyperbolic and hence isolated.
This implies that there is no points of sliding (respectively grazing) along
the orbit other than xk, k = 1, 2. Those conditions are defined on an open
set such that there exist sufficiently small neighborhoods Vε of ε = 0 and
vxk

of xk such that assumptions Ck,s
j , j = 1, 2, 3 associated to symmetric

sliding bifurcations (respectively C
k,g
j , j = 1, 2, 3 associated to symmetric

grazing) bifurcations are satisfied.
At this step, in order to compute the corresponding Poincaré maps,

let’s begin by choosing specially two symmetric Poincaré sections noted
Λ1 and Λ2 to be perpendicular to Π1 and Π2 and consider the following
diffeomorphism defined by:

S : R2 ×S
1 → R

2×S
1 (x1, x2, t) → S(x1, x2, t) = (−x1,−x2, t+2pπ)

where S1 is the unit circle and pǫZ (the set of relative numbers).

The Poincaré maps noted P s (for non-symmetric sliding case) and P g

(for the non-symmetric grazing case) are given in details in [8] and [10].
The procedure for computing the Poincaré map being the same for

the symmetric sliding and the symmetric grazing case, we directly deal
with notation P s,g ,where following the cases, this map corresponds to
the sliding or the grazing Poincaré one.

Now, let’s consider P
s,g
1 the part of Poincaré map including sliding

(respectively grazing) bifurcation on the transient surface Π1 going from
Λ1 to Λ2 and consider P

s,g
2 the other part of Poincaré map including

sliding (respectively grazing) bifurcation on the transient surface Π2 going
from Λ2 to Λ1, then the global Poincaré map of the system subjected to
symmetric sliding (respectively symmetric grazing) are given by :

P
s,g : Λ1 → Λ2 such that P

s,g = P
s,g
2 ◦ P s,g

1

However, due to the symmetry of the trajectory, maps P s,g
1 and P

s,g
2 are

relied by the following relation:

S ◦ P s,g
2 = P

s,g
1 ◦ S

this implies that

P
s,g = S

−1 ◦ P s,g
1 ◦ S ◦ P s,g

1

Taking this fact into account, the Poincaré maps have the following
form:

P
s,g(x, ε) =

{

S−1 ◦ P s,g
1 ◦ S ◦ P s,g

1 (x, ε) if < ∇H1, x >∈ R+ or < ∇H2, x >∈ R−

S−1 ◦ P s,g
2 ◦ S ◦ P s,g

2 (x, ε) if < ∇H1, x >∈ R∗

− and < ∇H2, x >∈ R∗

+

(2)
In the next section, a rigorous approach of a route to chaos for p.w.s

systems subjected to those symmetric non-smooth bifurcations is pro-
posed.
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3 Analysis of route to Chaos for p.w.s
systems subjected to symmetric non smooth

transitions:

A mathematical analysis to generate chaos for bounded piecewise smooth
systems of dimension 3, subjected to symmetric sliding or the grazing
bifurcations is now presented. This approach is based on the period dou-
bling method applied to the corresponding Poincaré maps given by (2).
Note that those Poincaré maps are discrete maps defined in dimension
2 and thus at this step, the result of Li and Yorke “Period three implies
chaos” can’t be used because period three does not imply necessarily chaos
for continuous flows of dimension three (and so for their corresponding
Poincaré maps that are discrete maps of dimension 2). In fact, deter-
minism (non intersection of trajectories) and continuity requirement set
constraints on how points of period doubling are defined on the corre-
sponding Poincaré maps and move around the associated orbit. In other
part, many simulation results show that period doubling can imply chaos
for discrete systems of dimension greatest than one. This is possible for
specific cases as when the multidimensional map is described in one di-
rection by a particular map (as the saw-tooth one or the logistic one)
while the others directions are characterized by strong contractions or if
the processes of squeezing and stretching is chosen for particular systems
defined in dimension three. Moreover, the processes corresponding to a
pure rotation doesn’t imply a chaotic attractor but those corresponding
to braid implies chaos. In this work, a more general case of dynamic sys-
tems is considered and the trick proposed here is to reduce the dimension
of the Poincaré map to one in the neighborhood of the transient points.
This is possible by choosing a convenient Poincaré map section’s that is
transversal to the switching surface, this considered neighborhood of x is
noted vs,gx .This main idea is supported by applying the Implicit Function
theorem on vs,gx . It is a simple and a powerful mathematical tool allow-
ing us to generate a “branch” of continuous solutions x with respect to
the bifurcation parameter ε defined in some neighborhood of ε = 0 noted
v
s,g
ε=0 ⊂ Vε . In this context, the dimension of the discrete map P s,g defined
on vs,gx × v

s,g
ε=0 is reduced to 1, without confusion and only for simplifying

we note it also by P s,g. Now, the famous result of Li and Yorke can be
applied to P s,g.

To propose the main result of this paper, we set the following assump-
tions:
Bs,g

1 ) ∂P
s,g

∂x
(0, 0) − 1 6= 0.

Bs,g
2 )− ∂Ps,g

∂x
(0, 0)( ∂P

s,g

∂x
(0, 0)− 1)−1 + ( ∂P

s,g

∂x
(0, 0) − 1)−1 − 1 6= 0.

Bs,g
3 ) ∂P

s,g

∂x
( ∂P

s,g

∂x
(0, 0)−1)−1( ∂P

s,g

∂x
(0, 0)( ∂P

s,g

∂x
(0, 0)−1))−1 −( ∂P

s,g

∂x
(0, 0)−

1)−1+1)−( ∂P
s,g

∂x
(0, 0)−1)−1( ∂P

s,g

∂x
(0, 0) ( ∂P

s,g

∂x
(0, 0)−1))−1−( ∂P

s,g

∂x
(0, 0)−

1)−1 + 1)− 1 6= 0

1. Symmetric sliding case: Under conditions C
k,s
j ) j = 1, 2, 3, A

k,s
i ),

i = 1, 2, 3, 4, k = 1, 2 and B
s,g
i , i = 1, 2, 3 the bounded p.w.s system
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(1) admits a chaotic behavior associated to specific type of symmetric
sliding transitions.

2. Symmetric grazing case: Under conditions C
k,g
j ) j = 1, 2, 3, 4, k =

1, 2 and B
s,g
i , i = 1, 2, 3 the bounded p.w.s system (1) admits a

chaotic behavior associated to symmetric grazing transitions.

According to period doubling method, the problem is to determine
three distinct points noted respectively by x, y and z that satisfy: P s,g(x, ε) =
y, P s,g(y, ε) = z and P s,g(z, ε) = x.

So this procedure will be done in three steeps, each step corresponds
to the determination of one of the 3 previous searched points:

First step of the period doubling procedure: it is traduced by
the analysis of the following equation:

P
s,g(x, ε) = y (3)

y := x+ η (4)

where η is a real parameter defined in the neighborhood of x.
The equation (3) is equivalent to the following one:

Ψs,g(x, ε, η) := P
s,g(x, ε)− x− η = 0 (5)

Under assumption ∂Ψs,g

∂x
(0, 0, 0) 6= 0, (that is equivalent to assumption

Bs,g
1 )), and using the Implicit Functions Theorem, one obtains that ∃ a

neighborhood of the parameter ε noted ϑ
s,g
ε=0 ⊂ v

s,g
ε=0 in R, a neighborhood

of the parameter η noted υ
s,g
η=0 ⊂ R, a neighborhood of x noted υ

s,g
x=0 ⊂ vs,gx

⊂ R and an unique application x∗: ϑ
s,g
ε=0 × υs,g

η=0
−→ υ

s,g
x=0 solution of

Ψs,g(x∗(ε, η), ε, η) = 0 such that x∗(0, 0) = 0. Furthermore, x∗ depends
continuously on ε and η.

Second step of the period doubling procedure: it is equivalent
to the analysis of the following equation:

P
s,g(P s,g(x, ε), ε) = z (6)

where z := y + µ (7)

where µ stands for a real parameter defined in the neighborhood of x.
Taking into account results of the previous step, the equation (6) be-

comes equivalent to:

Γs,g(ε, η, µ) := P
s,g(x∗(ε, η) + η, ε)− x

∗(ε, η)− η − µ = 0 (8)

for (ε, η, µ)ǫϑs,g
ε=0 × υs,g

η=0
×R.

In order to continue the process with the same arguments (i.e. the
Implicit function theorem applied to Γs,g), the following hypothesis is
necessary:

∂Γs,g

∂η
(0, 0, 0) 6= 0 that is written in details as:

∂Ps,g

∂x∗
(0, 0) ∂x

∗

∂η
(0, 0) − ∂x∗

∂η
(0, 0) − 1 6= 0

8



knowing that ∂x∗

∂η
(0, 0) = −( ∂P

s,g

∂x∗
(0, 0) − 1)−1, this is exactly the

stated assumption Bs,g
2 ) and thus, ∃ a neighborhood υ

s,g
ε=0 ⊂ ϑ

s,g
ε=0, a neigh-

borhood νs,g
η=0

⊂ υs,g
η=0

, a neighborhood of µ noted ν
s,g
µ=0 ⊂ R and an unique

application η∗:υs,g
ε=0 ×ν

s,g
µ=0 −→ νs,g

η=0
solution of Γs,g(ε, η∗(ε, µ), µ) = 0

such that η∗(0, 0) = 0. Furthermore, η∗ depends continuously on ε and µ.
Third step of the period doubling procedure: the last step of

the period doubling is reduced to the analysis of the following equation:

P
s,g(P s,g(P s,g(x(ε, η), ε), ε), ε) = x (9)

Taking into account the results obtained from the 2 previous steps, the
analysis of this equation (9) becomes equivalent to the analysis of the
following one:
for (ε, µ)ǫυs,g

ε=0 × ν
s,g
µ=0:

Πs,g(ε, µ) := P
s,g(x∗(ε, η∗(ε, µ)) + η

∗(ε, µ) + µ, ε)− x
∗(ε, η∗(ε, µ)) = 0

(10)
In this case, the following hypothesis is required to apply the Implicit

Function Theorem to Πs,g :
∂Πs,g

∂µ
(0, 0) 6= 0 that is equivalent in details to:

∂Ps,g

∂x∗

∂x∗

∂η

∂η

∂µ
(0, 0)− ∂x∗

∂η

∂η

∂µ
(0, 0) − 1 6= 0

and as ∂η

∂µ
(0, 0) = −( ∂Γ

s,g

∂η
(0, 0, 0))−1, this is exactly the stated as-

sumption Bs,g
3 ).

This permits us to affirm that: ∃ a neighborhood ω
s,g
ε=0 ⊂ υ

s,g
ε=0, a neighbor-

hood θs,gµ=0
⊂ νs,g

µ=0
and an unique application µ∗: ωs,g

ε=0 −→ θ
s,g
µ=0 solution

of Πs,g(ε, µ∗(ε)) = 0 such that µ∗(0) = 0. Furthermore, µ∗ depends
continuously on ε .

Thus the period doubling procedure applied to the Poincaré map (2),
associated to p.w.s system (1) (reduced to a discrete map of dimension 1
on the neighborhood vs,gx × v

s,g
ε=0) is constructed step by step and this sys-

tem becomes chaotic according to the well-known result ”period 3 implies
chaos” applied to the discrete map P s,g. ✷

4 Simulations results

4.1 Symmetric sliding case:

Let’s consider an academic model subjected to symmetric sliding bifurca-
tions given by:

ẋ =

{

F1(x, ε) for x ∈ D1

F2(x, ε) for x ∈ D2
(11)

where D1 :=
{

xǫR3 : x3 −
44
3
x3
1 −

41
2
x2
1 − 5.3x1 > 0

}

and D2 :=
{

xǫR3 : x3 −
44
3
x3
1 −

41
2
x2
1 − 5.3x1 ≤ 0

}

9



F1(x, ε) =





100
−x3

−0.7x1 + x2 + 0.24x3 − (εx3)
3





F2(x, ε) =





−100
−x3

−0.7x1 + x2 + 0.24x3 − (εx3)
3





ε is the bifurcation parameter defined near 0.
Applying the procedure presented in section 2 in order to compute the
Poincaré map associated to (11) and the method of chaotification given
in section 3, we obtain the following results:
• For ε = 0.4, there is a limit cycle between the two sides Π1 and Π2, see
fig 1.
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Figure 1: Symmetric sliding case: Limit Cycle for ε = 0.4

• For ε = 0.2, a symmetric sliding period doubling appears, see fig 2.

• For ε = −0.05, a symmetric sliding multi period doubling appear, see
fig 3.

• For ε = −0.23, a chaotic behaviors appears, see fig 4.

10



−1.2
−1

−0.8
−0.6

−0.4
−0.2

0
0.2

−3

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2: Symmetric sliding case: Period doubling for ε = 0.2

4.2 Symmetric grazing case (Chua Circuit):

Let’s consider the Chua model subjected to symmetric grazing bifurca-
tions given by:











ẋ1 = −1
C1R

(x1 − x2) +
f(x1,ε)

C1

ẋ2 = 1
C2R

(x1 − x2) +
x3

C2

ẋ3 = −x2

L

(12)

with f(x1, ε) = Gbx1 + 0.5(Ga(1 + ε)−Gb)(|x1 + E| − |x1 − E|, R =
2.115KΩ, E = 5.75V , C1 = 10nF , C2 = 100nF , Ga(ε) =

1+ε
0.999R

, Gb = 1
2R

and the following initial conditions (E + 0.3V, 0,−E
R
).

The system (12) can be rewritten according to the general form of systems
considered in this paper as:

ẋ =

{

F1(x, ε) for x ∈ D1

F2(x, ε) for x ∈ D2

with D1 =
{

xǫR3 : −E ≤ x1 ≤ E
}

D2 =
{

xǫR3 : x1 > E or x1 < −E
}

F1(x, ε) =





[α1 + 1
C1

Ga(1 + ε)]x1 − α1x2

α2x1 − α2x2 +
x3

C2

α3x2




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Figure 3: Symmetric sliding case: multi period doubling for ε = −0.05

F2(x, ε) =

{

F2,E(x, ε) forif x1 > E

F2,−E(x, ε) for if x1 < −E

where:

F2,E(x, ε) =





[α1 +
1
C1

Gb]x1 − α1x2 +
1
C1

[Ga(1 + ε)Gb]E

α2x1 − α2x2 +
x3

C2

α3x2





and by symmetry:

F2,−E(x, ε) =





[α1 + 1
C1

Gb]x1 − α1x2 +
1
C1

[Ga(1 + ε)Gb](−E)

α2x1 − α2x2 +
x3

C2

α3x2





where α1 = −1
C1R

, α2 = 1
C2R

and α3 = −1
L
, ε is the parameter bifurcation.

So applying the method presented in section 2 as for the first example,
one determines the Poincaré map associated to this system when a sym-
metric grazing occurs. The procedure of chaotification given in section 3
and applied to this Poincaré map gives us the following results:

• For ε = 0.1 (this corresponds to the initial value of Ga), there is a limit
cycle between the two sides Π1 and Π2, see fig 5.
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Figure 4: Symmetric sliding case: A chaotic behavior for ε = −0.23

• For ε = 0.2, a period doubling appears, see fig 6.

• For ε = 0.3, a Rössler behavior appears, see fig 7.

• For ε = 0.4, a double scroll behavior appears, see fig 8.

5 Conclusion:

In this letter, we have proposed a mathematical approach of route to
chaos for bounded p.w.s systems of dimension three subjected to sym-
metric grazing or sliding bifurcations. This approach highlights the fact
that it is possible to extend the procedure given in [4,5] to the interesting
case of symmetric non-smooth bifurcations. Moreover, simulations results
show that it is less complicated to deal with symmetric non-smooth than
non-symmetric non-smooth transitions. Simulations results were proposed
for academic example subjected to symmetric sliding bifurcations and an
application of this approach is also done for the well-known Chua Cir-
cuit where two grazing bifurcations associated to two symmetric transient
surfaces appear simultaneously and symmetrically. Many possible per-
spectives can be investigated as to generalize those results to other forms
of non-smooth transitions as corner one or to deal with multimodal p.w.s
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Figure 5: Symmetric grazing case (Chua Circuit): limit Cycle for ε = 0.1
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