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On the Adaptive Numerical Solution of Nonlinear Partial
Differential Equations in Wavelet Bases

Gregory Beylkin and James Keiser
Program in Applied Mathematics, University of Colorado, Boulder, Colorado

requires the development of new algorithms, which are
introduced in this paper.This work develops fast and adaptive algorithms for numerically

solving nonlinear partial differential equations of the form ut 5 Any wavelet-expansion approach to solving differential
Lu 1 N f (u), where L and N are linear differential operators and equations is essentially a projection method. In a projection
f (u) is a nonlinear function. These equations are adaptively solved method the goal is to use the fewest number of expansionby projecting the solution u and the operators L and N into a

coefficients to represent the solution since this leads towavelet basis. Vanishing moments of the basis functions permit a
sparse representation of the solution and operators. Using these efficient numerical computations. The number of coeffi-
sparse representations fast and adaptive algorithms that apply oper- cients required to represent a function expanded in a Fou-
ators to functions and evaluate nonlinear functions, are developed rier series (or similar expansions based on the eigenfunc-
for solving evolution equations. For a wavelet representation of the

tions of a differential operator) depends on the mostsolution u that contains Ns significant coefficients, the algorithms
singular behavior of the function. We are interested inupdate the solution using O(Ns) operations. The approach is applied

to a number of examples and numerical results are given.                solutions of partial differential equations that have regions
of smooth, nonoscillatory behavior interrupted by a num-
ber of well-defined localized shocks or shock-like struc-
tures. Therefore, expansions of these solutions, based upon

1. INTRODUCTION
the eigenfunctions of differential operators, require a large
number of terms due to the singular regions. Alternately,This paper is concerned with the fast, adaptive numerical
a localized representation of the solution, typified by front-solution of nonlinear partial differential equations having
tracking or adaptive grid methods, may be employed insolutions which exhibit both smooth and shock-like behav-
order to distinguish between smooth and shock-like be-ior. The algorithms we describe take advantage of the
havior.fact that wavelet expansions may be viewed as a localized

In this paper we use wavelet expansions in the develop-Fourier analysis with multiresolution structure that ‘‘auto-
ment of adaptive numerical algorithms. Let the waveletmatically’’ distinguishes between smooth and shock-like
transform of a function consist of Ns significant coefficientsbehavior. In smooth regions few wavelet coefficients are
(those coefficients of size greater than some thresholdneeded and, in singular regions, large variations in the
« . 0) concentrated near shock-like structures. Our goal isfunction require more wavelet coefficients. The theoretical
to design fully adaptive algorithms that perform numericalanalysis of such functions by wavelet methods is well un-
computations in O(Ns) operations, using only the signifi-derstood [17, 30, 31]. Additionally, there have been a num-
cant wavelet coefficients. In other words, we will look forber of investigations into the use of wavelet expansions for
a general ‘‘spectral’’ approach that has the desirable prop-numerically computing solutions of differential equations
erties of specialized adaptive algorithms. The resulting al-[36–38]. However, these numerical approaches are simply
gorithmic complexity of our approach is then proportionalprojection methods which do not address the important
to the number of significant coefficients in the waveletcomputational question of adaptively updating solutions
expansions of functions and operators.of differential equations. Using wavelet expansions of func-

We also note that in wavelet coordinates differentialtions and operators for fast, adaptive numerical purposes
operators may be preconditioned by a diagonal matrix,
[22]. Moreover, a large class of operators, namely
Calderón–Zygmund and pseudo-differential operators,
are sparse in wavelet bases. These observations make a
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good case for developing new numerical algorithms which ut 5 Lu 1 N f(u) (2.1)
take advantage of these properties.

We develop two new algorithms for computing solutions with the initial condition
of partial differential equations, namely the adaptive appli-
cation of operators to functions and the adaptive pointwise u(x, 0) 5 u0(x), 0 # x # 1, (2.2)
product of functions. These algorithms are necessary ingre-
dients of any fast, adaptive numerical scheme for comput- and the periodic boundary condition
ing solutions of partial differential equations. The algo-
rithm for adaptively multiplying operators and functions u(0, t) 5 u(1, t), 0 # t # T. (2.3)
is based on a vanishing-moment property associated with
the nonstandard form representation of a class of opera- We explicitly separate the evolution Eq. (2.1) into a linear
tors, which includes differential operators and Hilbert part, Lu, and a nonlinear part, N f(u), where the operators
transforms. We will use this property to develop a generic,

L and N are constant-coefficient differential operatorsefficient, adaptive algorithm for applying differential oper-
that do not depend on time t. The function f(u) is typicallyators to functions using only O(Ns) significant wavelet coef-
nonlinear, e.g., f(u) 5 up.ficients. We have also developed an adaptive algorithm for

Examples of evolution Eq. (2.1) in 1 1 1 dimensionscomputing the pointwise product of functions, again using
include reaction–diffusion equations, e.g.,only O(Ns) significant wavelet coefficients.

This paper is outlined as follows. In Section 2 we identify
ut 5 nuxx 1 up, p . 1, n . 0, (2.4)a class of partial differential equations for which we de-

velop our methods. We use the semigroup method to re-
equations describing the buildup and propagation ofplace the differential equation by a nonlinear integral
shocks, e.g., Burgers’ equationequation and introduce a procedure for approximating the

integral to any order of accuracy. In Section 3 we are
ut 1 uux 5 nuxx , n . 0 (2.5)concerned with the construction of and calculations with

the operators appearing in the quadrature formulas de-
rived in Section 2. Specifically, we describe a method for [6], and equations having special soliton solutions, e.g., the
constructing a wavelet representation of these operators, Korteweg–de Vries equation
derive the vanishing-moment property of these operators
and describe a fast, adaptive algorithm for applying these ut 1 auux 1 buxxx 5 0, (2.6)
operators to functions expanded in a wavelet basis. In
Section 3 we also provide a brief review of the notation and where a, b are constant [35, 1]. Finally, a simple example
terminology associated with the wavelet representations of of Eq. (2.1) is the classical diffusion (or heat) equation
functions and operators. In Section 4 we introduce a new
adaptive algorithm for computing the pointwise product ut 5 nuxx , n . 0. (2.7)
of functions expanded in a wavelet basis. In Section 5 we
illustrate the use of these algorithms by providing the re-

Remark. Although we do not address multidimen-sults of numerical experiments and comparing them with
sional problems in this paper, we note that the Navier–the exact solutions. Finally, in Section 6 we draw a number
Stokes equations may also be written in the form (2.1).of conclusions based on our results and indicate directions
Considerof further investigation.

ut 1 As[u ? =u 1 =(u ? u)] 5 n=2u 2 =p, (2.8)2. SEMIGROUP APPROACH AND QUADRATURES

In this section we use the semigroup approach to recast where
a partial differential equation as a nonlinear integral equa-
tion in time. We then approximate the integrals to arbitrary div u 5 0 (2.9)
orders of accuracy by quadratures with operator valued
coefficients. These operators have wavelet representations and p denotes the pressure. Applying divergence operator
with a number of desirable properties described in Sections to both sides of (2.8) and using (2.9), we obtain
3.2 and 3.3.

Dp 5 f(u), (2.10)
2.1. The Model Equation

We consider the problem of computing numerical solu- where f(u) 5 2As=[u ? =u 1 =(u ? u)] is a nonlinear function
of u. Equation (2.1) is formally obtained by settingtions of
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Lu 5 n=2u (2.11) disadvantage in that the linear and nonlinear contributions
must be added in the same domain, either the physical
space or the Fourier space. For solutions which exhibitand
shock-like solutions such transformations between the do-
mains is costly, whereas the transform into the waveletNu 5 2As[u ? =u 1 =(u ? u)] 2 =(D21f(u)). (2.12)
domain is much less expensive due to the locality of the
wavelet transform. This difficulty becomes significant whenThe term D21f(u) is an integral operator which introduces

a long-range interaction and has a sparse representation one attempts to compute solutions of differential equations
in multiple dimensions. We note that our wavelet approachin wavelet bases. A one-dimensional model that may be

thought of as a prototype for the Navier–Stokes equation is is comparable to spectral methods in their accuracy and
parallels general adaptive grid approaches in the automatic
placement of significant wavelet coefficients in regions ofut 5 H (u)u, (2.13)
large gradients.

where H (?) is the Hilbert transform (see [14]). The pres-
ence of the Hilbert transform in (2.13) introduces a long- 2.2. The Semigroup Approach
range interaction which models that found in the Navier–

The semigroup approach is a well-known analytical toolStokes equations. Even though in this paper we develop
which is used to convert partial differential equations toalgorithms for one-dimensional problems, we take special
nonlinear integral equations and to obtain estimates associ-care that they generalize properly to several dimensions
ated with the behavior of their solutions (see, e.g., [4, 13]).so that we can address these problems in the future.
The solution of the initial value problem (2.1) is given bySeveral numerical techniques have been developed to

compute approximate solutions of equations such as (2.1).
These techniques include finite-difference, pseudo-spec- u(x, t) 5 e(t2t0)Lu0(x) 1 Et

t0
e(t2t)L N f(u(x, t)) dt. (2.14)

tral, and adaptive grid methods (see, e.g., [3, 35]). An
important step in solving Eq. (2.1) by any of these methods

Expressing solutions of (2.1) in the form (2.14) is usefulis the choice of time discretization. Explicit schemes (which
for proving existence and uniqueness of solutions and com-are easiest to implement) may require prohibitively small
puting estimates of their magnitude, verifying dependencetime steps (usually because of diffusion terms in the evolu-
on initial and boundary data, as well as performing asymp-tion equation). On the other hand, implicit schemes allow
totic analysis of the solution; see, e.g., [13].for larger time steps but they require solving a system

We are interested in using Eq. (2.14) as a starting pointof equations at each time step and, for this reason, are
for an efficient numerical algorithm. As far as we know,somewhat more difficult to implement in an efficient man-
the semigroup approach has had limited use in numericalner. In our approach we have used an implicit time inte-
calculations. A significant difficulty in designing numericalgrator which is described below. We note that there are
algorithms based directly on the solution (2.14) is thatpreconditioners available for the wavelet representation of
the operators appearing in (2.14) are not sparse (i.e., thedifferential operators used in implicit numerical schemes,
matrices representing these operators are dense). We showalthough we do not discuss this subject in this paper.
in Sections 3.2 and 3.3 that in the wavelet system of coordi-The main difficulty in computing solutions of equations
nates these operators are sparse and have the desired prop-like (2.1) is the resolution of shock-like structures. Straight-
erties for fast, adaptive numerical algorithms.forward refinement of a finite-difference scheme easily be-

comes computationally excessive. The specialized front-
tracking or adaptive grid methods require some criteria to 2.3. Quadratures
perform local grid refinement. Usually in such schemes

As it follows from (2.14), we have to consider approxi-these criteria are chosen in an ad hoc fashion (especially
mating integrals of the formin multiple dimensions) and are generally based on the

amplitudes or local gradients in the solution.
The pseudo-spectral method usually splits the evolution I(x, t) 5 Et

t0
e(t2t)L N f(u(x, t)) dt. (2.15)

equation into linear and nonlinear parts and updates the
solution by adding the linear contribution, calculated in the
Fourier space, and the nonlinear contribution, calculated in As mentioned earlier, the differential operator N is as-

sumed to be independent of t and the function f(u) isthe physical space [34, 35]. Pseudo-spectral schemes have
the advantages that they are easy to understand analyti- nonlinear. For example, in the case of Burgers’ equation

N 5 /x and f(u) 5 Asu2, so that N f(u) 5 uux appearscally, spectrally accurate, and relatively straightforward
to implement. However, pseudo-spectral schemes have a as products of u and its derivative. In the case of quadratic
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nonlinearity we seek approximations to integrals of the For m 5 1, we approximate (2.19) by form

I(t) 5 AsOL ,1(u(t0)ux(t0) 1 u(t1)ux(t1)) 1 O((Dt)2), (2.20)

I(t) 5 Et

t0
e(t2t)Lu(t)v(t) dt, (2.16)

or

I(t) 5 AsOL ,1(u(t0)ux(t1) 1 u(t1)ux(t0)) 1 O((Dt)2), (2.21)
where we have suppressed the explicit x-dependence of
u(x, t). In order to derive an approximation to this integral,

wherewe partition the interval of integration [t0 , t] into m equal
subintervals with grid points at ti 5 t0 1 i Dt, for i 5 0,

OL ,m 5 (emDtL 2 I)L 21 (2.22)1, ..., m, and we denote u(ti) and v(ti) by ui and vi , respec-
tively.

and where I is the identity operator. Note that (2.20) is
Remark. We do not address adaptive time integration equivalent to the standard trapezoidal rule. For m 5 2 our

in this paper, but we note that it can be accommodated procedure yields an analogue of Simpson’s rule,
by our algorithms.

We seek an approximation to (2.16) of the form
I(t) 5 O2

i50
ci,iu(ti)ux(ti) 1 O((Dt)3), (2.23)

I(t) 5 Î(t) 1 O(Dtm11), (2.17)
where

where
c0,0 5 AhO L,2 2 AdL , (2.24)

c1,1 5 SdO L,2 , (2.25)
Î(t) 5 Om

i, j50
ci, juivj (2.18)

c2,2 5 AhO L,2 1 AdL . (2.26)

Higher order quadratures are accommodated by this pro-and where the coefficients cc, j are time-independent, opera-
cedure by considering m . 2. Detailed derivation andtor-valued functions of the operator L . Observe that we
stability analysis of these schemes is outside the scope ofhave included in (2.18) cross terms of the form uivj , i ? j;
this paper and we refer to [43] for details.typically, quadrature approximations only involve prod-

ucts uivi , e.g., the trapezoidal rule. We would like to use
3. WAVELET REPRESENTATIONS OFthe fewest number of terms of the form uivj in (2.18). We

OPERATOR FUNCTIONSreduce the number of such terms (from (m 1 1)2 to
m 1 1) by reducing the number of nonzero operator coef-

In this section we are concerned with the constructionficients ci, j . The coefficients ci, j are determined by compar-
of and calculations with the nonstandard form (NS-form)ing (2.17) and (2.18) with a scheme of known order of
of the operator functions (see, e.g., (2.16)). We begin byaccuracy. One such comparison scheme is constructed us-
setting our notation and refer to Appendix A for details.ing Lagrange polynomial approximations in t of the func-
We then show how to compute the NS-form of the operatortions u(t) and v(t). The coefficients ci, j in (2.18) are then
functions and establish the vanishing-moment property ofdetermined by straightforward expansion techniques. This
the wavelet representation of these operators. Finally, weleads to a system of equations for determining the operator
describe a fast, adaptive algorithm for applying operatorscoefficients ci, j that, in general, has more than one solution.
to functions in the wavelet system of coordinates.We then choose a solution of this system of equations that

consists of m 1 1 nonzero coefficients ci, j . Substituting
3.1. Notationthese ci, j into Eq. (2.17) yields an approximation to (2.16)

which is O((Dt)m11) accurate and involves m 1 1 terms of We begin by setting our notation associated with multi-
the form uivj . resolution analysis and expansions of functions and opera-

Applying this procedure to Burgers’ equation (2.5), we tors into a wavelet basis (see also Appendix A and [18,
are led to approximate 30, 33]). We consider a multiresolution analysis (MRA) of

L2(R) as an infinite chain of subspaces

I(t) 5 Et

t0
e(t2t)Lu(t)ux(t) dt. (2.19)

? ? ? , V2 , V1 , V0 , V21 , V22 , ? ? ? . (3.1)
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As usual, we define an associated sequence of subspaces J # n. Once again we refer the reader to Appendix A and
[18, 30, 33] for additional introductory and background ma-Wj as the orthogonal complements of Vj in Vj21 ,
terial.

Vj21 5 Vj % Wj . (3.2)
3.2. The Nonstandard Form of Operator Functions

We denote by w(?) the scaling function and c(?) the wave-
In this section we construct the NS-forms of analytic

let. The family of functions hwj,k(x) 5 22j/2w(22jx 2 k)jk[Z functions of the differential operator x . Following [25, 21]
forms an orthonormal basis of Vj and hcj,k(x) 5

we introduce two approaches for computing the NS-forms
22j/2c(22jx 2 k)jk[Z , an orthonormal basis of Wj . of operator functions: (i) compute the projection of the

We consider representations of operators in the NS-
operator function on V0 ,

form [25, 21]. The NS-form of an operator T is obtained
by expanding T in the ‘‘telescopic’’ series,

P0 f(x)P0 , (3.7)

T 5 O
j[Z

(QjTQj 1 QjTPj 1 PjTQj), (3.3)
or, (ii) compute the function of the projection of the
operator,

where Pj and Qj are projection operators on subspaces Vj

and Wj , respectively. The NS-form of T is, thus, repre-
f(P0xP0). (3.8)sented by the set of operators

T 5 hAj , Bj , Gjjj[Z , (3.4) The difference between these two approaches depends on
how well uŵ(j)u2 acts as a cutoff function, where w(x) is the

where the operators Aj , Bj , and Gj act on subspaces Vj and scaling function associated with a wavelet basis. It might
Wj as be convenient to use either (3.7) or (3.8) in applications.

The operator functions we are interested in are those
Aj 5 QjTQj : Wj R Wj , appearing in solutions of the partial differential Eq. (2.1).

For example, using (2.14) with (2.21), solutions of Burgers’Bj 5 QjTPj : Vj R Wj , (3.5)
equation can be approximated to order (Dt)2 by

Gj 5 PjTQj : Wj R Vj .

u(x, t 1 Dt)
For numerical purposes we define a ‘‘finest’’ scale,

5 eDtLu(x, t) (3.9)j 5 0, and a ‘‘coarsest’’ scale, j 5 J, such that the infinite
chain (3.1) is restricted to 2AsOL ,1[u(x, t)xu(x, t 1 Dt) 1 u(x, t 1 Dt)xu(x, t)],

VJ , VJ21 , ? ? ? , V0 . (3.6)
where L 5 n2

x and OL ,1 is given by (2.22). Therefore, we
are interested in constructing the NS-forms of the opera-We also consider a periodized version of the multiresolu-
tor functions,tion analysis that is obtained if we consider periodic func-

tions. This periodization is the simplest (but not the most
eDtL (3.10)efficient or elegant) way to consider the multiresolution

analysis of a function on an interval. The problem with
periodization is that we might introduce an artificial singu- and
larity at the boundary. A more elegant approach would
use wavelets on the interval, [17], or multiwavelets, [19].

OL ,1 5 (eDtL 2 I)L 21, (3.11)We choose to consider the periodization described here
since it is the easiest way to describe our adaptive algo-
rithms and our approach does not change substantially if for example. In computing solutions of (2.1) (via, e.g.,

(3.9)), we precompute the NS-forms of the operator func-we use other bases. We will therefore consider functions
having projections on V0 which are periodic of period tions and apply them as necessary.

We note that if the operator function is homogeneousN 5 2n, where N is the dimension of V0 . With a slight abuse
of notation we will denote these periodized subspaces also of degree m (e.g., m 5 1 and 2 for the first and second

derivative operators), then the coefficients appearing inby Vj and Wj . We can then view the space V0 as consisting
of 2n ‘‘samples’’ or lattice points and each space Vj and the NS-form at different scales are simply related (see

(A.14) and (A. 19)),Wj as consisting of 2n2j lattice points, for j 5 1, 2, ...,
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a j
l 5 22mja0

l , uŵ(j)u2 , « for uju . h for some h . 0. Therefore, Eq.
(3.17) is approximated to within « by

b j
l 5 22mjb0

l ,
(3.12)

c j
l 5 22mjc0

l ,
g̃(j) 5 OK

k52K
f(2i22j(j 1 2fk))uŵ(j 1 2fk)u2 (3.20)

s j
l 5 22mjs0

l ,

for some K. Using (3.20) in place of g(j) in (3.18), weOn the other hand, if the operator function is not homoge-
obtain an approximation to the coefficients s j

l ,neous then we compute s0
k,k9 via (A.14) and compute the

coefficients a j
k,k9 , b j

k,k9 , and c j
k,k9 via equations (A.20) for

each scale, j 5 1, 2, ..., J # n. We note that if the operator s̃ j
l 5

1
N ON21

n50
g̃(jn)eijnl . (3.21)

function is a convolution then the formulas for s0
k2k9 are

considerably simplified (see [21]).
We first describe computing the NS-form of an operator The coefficients s̃ j

l are computed by applying the FFT to
function f(x) by projecting the operator function into the the sequence hg̃(jn)j, computed via (3.20).
wavelet basis via (3.7). To compute the coefficients In order to compute the NS-form of an operator function

via (3.8), we use the DFT to diagonalize the differential
operator x and apply the spectral theorem to computes j

k,k9 5 22j E1y

2y
w(22jx 2 k) f(x)w(22jx 2 k9) dx, (3.13)

the operator functions. Starting with the wavelet represen-
tation of x on V0 (see Section A.2 or [21]) of the discretiza-

let us consider tion of x , we write the eigenvalues explicitly as

f(x)w(22jx 2 k9)

(3.14) lk 5 s0 1 OL
l51

(sle2fi(kl/N) 1 s2le22fi(kl/N)), (3.22)
5

1

Ï2f
Ey

2y
f(2ij22j)ŵ(j)eijk9ei22jxj dj,

where the wavelet coefficients of the derivative, sl 5 s0
l ,

where ŵ(j) is the Fourier transform of w(x), are defined by (A.14). Since

f(A ) 5 F f(L)F 21, (3.23)ŵ(j) 5
1

Ï2f
Ey

2y
w(x)eixj dx. (3.15)

where L is a diagonal matrix and F is the Fourier transformSubstituting (3.14) into (3.13) and noting that s j
k,k9 5 s j

k2k9 , we compute f(lk) and apply the inverse Fourier transformwe arrive at
to the sequence f(lk),

s j
l 5 E1y

2y
f(2ij22j)uŵ(j)u2eijl dj, (3.16)

s0
l 5 ON

k51
f(lk)e2fi((k21)(l21)/N), (3.24)

We evaluate (3.16) by setting

to arrive at the wavelet coefficients s0
l . The remaining ele-

ments of the NS-form are then recursively computed usings j
l 5 E2f

0
O
k[Z

f(2i22j(j 1 2fk))uŵ(j 1 2fk)u2eijl dj, (3.17)
Eqs. (A.19).

or 3.3. Vanishing Moments of the B-Blocks

We now establish the vanishing-moment property of the
s j

l 5 E2f

0
g(j)eijl dj, (3.18) B-blocks of the NS-form representation of functions of a

differential operator and the Hilbert transform. We note
that a similar result also holds for the B-blocks of somewhere
classes of pseudo-differential operators; see, e.g., [32]. Ad-
ditionally, we note that the results of this section do notg(j) 5 O

k[Z

f(2i22j(j 1 2fk))uŵ(j 1 2fk)u2. (3.19)
require compactly supported wavelets. These results are
used to design an adaptive algorithm for multiplying the
NS-form of an operator and the wavelet expansion of aWe now observe that for a given accuracy « the function

uŵ(j)u2 acts as a cutoff function in the Fourier domain, i.e., function.
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LEMMA 1. If the wavelet basis has M vanishing mo-
ments, then the B-blocks of the NS-form of the analytic
operator function f(x), described in Section 3.2, satisfy

O1y

l52y

lmb j
l 5 0 (3.25)

for m 5 0, 1, 2, ..., M 2 1 and j 5 1, 2, ..., J.

Proof. See Appendix A.3. FIG. 1. For the operators considered in Section 3.3 the vanishing-
moment property of the rows of the B-block yields a sparse result (up

LEMMA 2. Under the conditions of Lemma 1, the to a given accuracy «) when applied to a smooth and dense vector hs j j.
B-blocks of the NS-form of the Hilbert transform

(H f )(x) 5
1
f

p.v. Ey

2y

f(s)
s 2 x

ds (3.26) d̂ J
k 5 O

l
AJ

k1l d J
k1l 1 O

l
B J

k1ls
J
k1l (3.30)

ŝ J
k 5 O

l
G J

k1l d J
k1l 1 O

l
T J

k1ls
J
k1l (3.31)

(where p.v. indicates the principle value) satisfy

for k [ F2n2J . The difficulty in adaptively applying the NS-O1y

l52y

lmb j
l 5 0, (3.27)

form of an operator to such functions is the need to apply
the B-blocks of the operator to the averages hs jj in (3.28).
Since the averages are ‘‘smoothed’’ versions of the functionfor 0 # m # M 2 1 and j 5 1, 2, ..., J.
itself, these vectors are not necessarily sparse and may
consist of 2n2j significant coefficients on scale j. Our algo-Proof. See Appendix A.3.
rithm uses the fact that for the operator functions consid-
ered in Section 3.2, the rows of the B-blocks have M3.4. Adaptive Calculations with the Nonstandard Form
vanishing moments. This means that when the row of a

In [25] it was shown that Calderón–Zygmund and B-block is applied to the ‘‘smooth’’ averages hs jj the re-
pseudo-differential operators can be applied to functions sulting vector is sparse (for a given accuracy «), as is illus-
in O(2N log «) operations, where N 5 2n is the dimension trated in Fig. 1.
of the finest subspace V0 and « is the desired accuracy. In Since each row of the B-block has the same number of
this section we describe an algorithm for applying opera- vanishing moments as the filter G, we can use the hd jj
tors to functions with sublinear complexity, O(CNs), where coefficients of the wavelet expansion to predict significant
Ns is the number of significant coefficients in the wavelet contributions to (3.28). In this way we can replace the
representation of the function. calculations with a dense vector hsj in (3.28) by calculations

We are interested in applying operators to functions with a sparse vector hs̃j,
that are solutions of partial differential equations having
regions of smooth, nonoscillatory behavior interrupted by

d̃j
k 5 O

l
Aj

k1l d j
k1l 1 O

l
B j

k1ls̃
j
k1l , (3.32)a number of well-defined localized shocks or shock-like

structures. The wavelet expansion of such functions (see,
e.g., (A.10)) then consists of differences hd jj that are sparse

for j 5 1, 2, ..., J 2 1 and k [ F2n2j . In what follows weand averages hs jj that may be dense. Adaptively applying
describe a method for determining the indices of hs̃ jj usingthe NS-form representation of an operator to a function
the indices of the significant wavelet coefficients hd jj.expanded in a wavelet basis requires rapid evaluation of

The formal description of the procedure is as follows.
For the functions under consideration the magnitude of

d̂ j
k 5 O

l
Aj

k1l d j
k1l 1 O

l
B j

k1ls
j
k1l (3.28) many wavelet coefficients hd jj are below a given threshold

of accuracy «. The representation of f on V0 , (A.10), using
ŝ j

k 5 O
l

Gj
k1l d j

k1l (3.29) only coefficients above the threshold « is

(P0 f )«(x) 5 OJ

j51
O

hk: udj
k u.«j

d j
kcj,k(x) 1 O

k[F2n2J

s J
kwJ,k(x), (3.33)for j 5 1, 2, ..., J 2 1 and k [ F2n2j 5 h0, 1, 2, ..., 2n2J 2 1j

and on the final, coarse scale

7



whereas for the error we have If u(x) is expanded in a basis,

i(P0 f )«(x) 2 (P0 f )(x)i2

(3.34) u(x) 5 ON
i51

uibi(x), (4.1)

5 SOJ

j51
O

hk: udj
k u#«j

ud j
ku2D1/2

, «N1/2
r ,

where ui are the coefficients and bi(x) are the basis func-
tions, then in general

where Nr is the number of coefficients below the threshold.
The number of significant wavelet coefficients is defined
as Ns 5 N 2 Nr , where N is the dimension of the space V0 . f(u(x)) ? ON

i51
f(ui)bi(x). (4.2)

We define the «-accurate subspace for f, denoted D«
f ,

V0 , as the subspace spanned by only those basis functions
present in (3.33), Clearly, this is the case for Fourier expansions.

Let us now assume that u and f(u) are both elements
of V0 . ThenD«

f 5 VJ < hspan hcj,k(x)j : ud j
ku . «j (3.35)

u(x) 5 O
k

s0
kw(x 2 k), (4.3)for 1 # j # J and k [ F2n2j . Associated with D«

f are sub-
spaces S«

f, j determined using the two-scale difference rela-
tion, e.g., Eq. (A.2). Namely, for each j 5 0, 1, ..., J 2 1,

where sk
0 are defined by s0

k 5 ey

2y u(x)w(x 2 k) dx. In addi-
tion, let us assume that the scaling function is interpolating,S«

f, j 5 hspan hwj,2k11(x)j : cj11,k(x) [ D«
fj. (3.36)

so that s0
k 5 u(k). Thus, we obtain

For j 5 J we define the space S«
f, j as

f(u) 5 O
k

f(s0
k)w(x 2 k); (4.4)

S«
f,J 5 VJ . (3.37)

i.e., f(u) is evaluated by computing the function of theIn terms of the coefficients d j11
k the space S«

f, j may be de-
expansion coefficients f(s0

k). Below we will describe howfined by
to relax the requirement that the scaling function be inter-
polating and still have property (4.4) as a quantifiable ap-

S«
f, j 5 hspan hwj,2k11(x)j : ud j11

k u . «j. (3.38)
proximation.

We point out that typically f(u) is not in the same sub-
In this way we can use D«

f to ‘‘mask’’ V0 forming S«
f, j; in space as u. In what follows we describe an adaptive algo-

practice all we do is manipulate indices. The subset of rithm for computing the pointwise square of a function,
coefficients hs̃jj that contribute to the sum (3.32) may now f(u) 5 u2, where we split f(u) into projections on different
be identified by indices of the coefficients corresponding subspaces. Working with ‘‘pieces’’ of the wavelet expan-
to basis functions in S«

f, j . In appendix A.4 we show that we sion of u we calculate contributions to f(u) using an approx-
may indeed use the coefficients of the hd jj to determine imation to (4.4). This is in direct contrast with calculating
the hs̃ jj that contribute to (3.32). f(u) in a basis where the entire expansion must first be

projected into a ‘‘physical’’ space, e.g., pseudo-spectral
4. EVALUATING FUNCTIONS IN WAVELET BASES methods. In Section 4.2 we briefly discuss an algorithm for

adaptively evaluating an arbitrary function f(u).
In this section we describe our adaptive algorithm for

evaluating the pointwise product of functions represented
4.1. Adaptive Calculation of u2

in wavelet bases. More generally, our results may be ap-
plied to computing functions f(u), where f is an analytic Since the product of two functions can be expressed as

a difference of squares, it is sufficient to explain an algo-function and u is expanded in a wavelet basis. We start by
noting that since pointwise multiplication is a diagonal rithm for evaluating u2. The algorithm we describe is an

improvement over that found in [40, 23].operator in the ‘‘physical’’ domain, computing the point-
wise product in any other domain appears to be less effi- In order to compute u2 in a wavelet basis, we first recall

that the projections of u on subspaces Vj and Wj are givencient. In other words, a successful and efficient algorithm
should at some point compute f(u) in the physical domain by Pj u [ Vj and Qju [ Wj for j 5 0, 1, 2, ..., J # n,

respectively (see the discussion in Appendix A). Let jf ,using values of u and not the expansion coefficients of u.
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u2 5 O
j[Z

2(Pju)(Qju) 1 (Qju)2, (4.8)

which is essentially the paraproduct; see [27].

Evaluating (4.7) requires computing (Qju)2 and
(Pju)(Qju), where Qju and Pju are elements of subspaces
on the same scale and, thus, have basis functions with the
same size support. In addition, we need to compute (PJu)2

which involves only the coarsest scale and is not computa-
tionally expensive. The difficulty in evaluating (4.7) is that
the terms (Qju)2 and (Pju) do not necessarily belong to
the same subspace as the multiplicands. However, since

Vj % Wj 5 Vj21 , Vj22 , ? ? ? , Vj2j0
, , ? ? ? , (4.9)

we may think of both Pju [ Vj and Qju [ Wj as elements
of a finer subspace, that we denote Vj2j0

, for some j0 $ 1.
We compute the coefficients of Pju and Qju in Vj2j0

using
the reconstruction algorithm, e.g., (A.10), and on Vj2j0

we
can calculate contributions to (4.7) using (4.4). The key
observation is that, in order to apply (4.4), we may always
choose j0 in such a way that, to within a given accuracy «,

FIG. 2. The adaptive pseudo-wavelet algorithm. Averages on Vj are
(Qju)2 and (Pju)(Qju) belong to Vj2j0

. It is sufficient to‘‘masked’’ by corresponding differences on Wj . These coefficients are
demonstrate this fact for j 5 0, which we do in Appen-then projected onto a finer subspace Vj2j0

, Eq. (4.10) is evaluated, and
the result is projected into the wavelet basis. dix A.5.

Remark. In practice j0 must be small, and in our numer-
ical experiments j0 5 3. We note that for the case of multi-

1 # jf # J (see, e.g., Fig. 2, where jf 5 5 and J 5 8) be wavelets [20, 24] the proof using the Fourier domain does
the finest scale having significant wavelet coefficients that not work since basis functions may be discontinuous. How-
contribute to the «-accurate approximation of u; i.e., the ever, one can directly use the piecewise polynomial repre-
projection of u can be expressed as sentation of the basis functions instead. For spline wavelets

both approaches are available.

(P0u)«(x) 5 OJ

j5jf

O
hk: udj

k u.«j

d j
kcj,k(x) 1 O

k[F2n2J

s J
kwJ,k(x). (4.5) To describe the algorithm for computing the pointwise

product, let us denote by R j
j0
(?) the operator to reconstruct

(represent) a vector on subspace Vj or Wj in the subspace
Let us first consider the case where u and u2 [ V0 , so that Vj2j0

. On Vj2j0
we can then use the coefficients R j

j0
(Pju)

we can expand (P0u)2 in a ‘‘telescopic’’ series, and R j
j0
(Qju) to calculate contributions to the product

(4.7) using ordinary multiplication as in (4.4). To this end,
the contributions to (4.7) for j 5 jf , jf 1 1, ..., J 2 1 are(P0u)2 2 (PJu)2 5 OJ

j5jf

(Pj21u)2 2 (Pju)2. (4.6)
computed as

P j2j0
(u2) 5 2(R j

j0
(Pju))(R j

j0
(Qju))

(4.10)
Decoupling scale interactions in (4.6) using Pj21 5 Qj 1
Pj , we arrive at

1 (R j
j0
(Qju))2,

(P0u)2 5 (PJu)2 1 OJ

j5jf

2(Pju)(Qju) 1 (Qju)2. (4.7)
where P j f(u) is the contribution to f(u) on subspace Vj

(see (4.7). On the final coarse scale J, we compute

Later we will remove the condition that u and u2 [ V0 .
P J2j0

(u2) 5 (R j
j0
(PJu))2 1 2(R j

j0
(PJu))(R j

j0
(QJu))

(4.11)
Remark. Equation (4.7) is written in terms of a finite

number of scales. If j ranges over Z, then (4.7) can be
1 (R j

j0
(QJu))2.written as
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We then project the representation on subspaces Vj2j0
, for rapidly converging Taylor series expansions, e.g., f(u) 5

sin(u) for uuu sufficiently small. In this case, for a givenj 5 jf , ..., J into the wavelet basis. This procedure is com-
pletely equivalent to the decomposition one has to perform accuracy « we fix an N so that uEj,N( f, u)u , «. We note

that the partial differential Eq. (2.1) typically involves func-after applying the NS-form. The algorithm for computing
the projection of u2 in a wavelet basis is illustrated in Fig. tions f(?) that are not only analytic but in many cases are

p-degree polynomials in u. If this is the case then for each2. In analogy with ‘‘pseudo-spectral’’ schemes, as in, e.g.,
[34, 35], we refer to this as an adaptive pseudo-wavelet fixed j the series in (4.13) is of degree p and Ej,N( f, u) 5

0 for N . p. In any event we are led to evaluate thealgorithm.
To demonstrate that the algorithm is adaptive, we recall double sum in (4.14), which can be done using the adaptive

pseudo-wavelet algorithm described in Section 4.1.that u has a sparse representation in the wavelet basis.
Thus, evaluating (Qju)2 for j 5 1, 2, ..., J requires manipu- If the function f is not analytic, e.g., f(u) 5 uuu, then the

primary concern is how to quantify an appropriate valuelating only sparse vectors. Evaluating the square of the final
coarse scale averages (PJu)2 is inexpensive. The difficulty of j0 , i.e., how fine a reconstruction (or how much

‘‘oversampling’’) is needed to take advantage of the inter-in evaluating (4.10) lies in evaluating the products
R j

j0
(Pju)(R j

j0
Qju) since the vectors Pju are typically dense. polating property sk

0 5 u(k). On the other hand, determin-
ing j0 may become a significant problem even if f is analytic.The adaptivity of the algorithm comes from an observation

that, in the products appearing in (4.10), we may use the For example if the Taylor series expansion of f(u) does
not converge rapidly, as in the case of f(u) 5 eu for largecoefficients Qju as a ‘‘mask’’ of the Pju (this is similar to

the algorithm for adaptively applying operators to func- u, we have to consider alternate approaches.
For example, expanding eu in the ‘‘telescopic’’ seriestions). In this way contributions to (4.10) are calculated,

based on the presence of significant wavelet coefficients
Qju and, therefore, significant products R j

j0
(Pju)(R j

j0
Qju).

The complexity of our algorithm is automatically adaptable eP0u 2 ePJu 5 OJ

j51
ePj21u 2 ePju, (4.15)

to the complexity of the wavelet representation of u.

4.2. Remarks on the Adaptive Calculation of
and using Pj21 5 Qj 1 Pj to decouple scale interactions,General f(u)
we arrive at

This section consists of a number of observations regard-
ing the evaluation of functions other than f(u) 5 u2 in
wavelet bases. For analytic f(u) we can apply the same eP0u 5 ePJu 1 OJ

j51
ePju(eQju 2 1). (4.16)

approach as in Section 4.1, wherein we assume f(P0u) [ V0

and expand the projection f(P0u) in the ‘‘telescopic’’ series

Since the wavelet coefficients Qj u are sparse, the multipli-
f(P0u) 2 f(PJu) 5 OJ

j51
f(Pj21u) 2 f(Pju). (4.12) cand eQju 2 1 is significant only where Qj u is significant.

Therefore, we can evaluate (4.16) using the adaptive
pseudo-wavelet algorithm described in Section 4.1, where

Using Pj21 5 Qj 1 Pj to decouple scale interactions in in this case the mask is determined by significant values
(4.12) and assuming f(?) to be analytic, we substitute the of eQju 2 1. The applicability of such an approach depends
Taylor series on the relative size (or dynamic range) of the variable u.

For example, if u(x) 5 a sin(2fx) on 0 # x # 1 then e2a #
f(u) # ea. It is clear that even for relatively moderatef(Qju 1 Pju) 5 ON

n50

f (n)(Pju)
n!

(Qju)n 1 Ej,N( f, u) (4.13)
values of a the function eu may range over several orders
of magnitude.

In order to take the dynamic range into account, weto arrive at
apply a scaling and squaring method. Instead of computing
eu directly, one calculates eu22k

and repeatedly squares the
f(P0u) 5 f(PJu) 1 OJ

j51
ON
n51

f (n)(Pju)
n!

(Qju)n 1 Ej,N( f, u) result k times. The constant k depends on the magnitude
of u and is chosen so that the variable u is scaled as 21 #

(4.14) 22ku # 1, for example. In this interval, calculating eu22k
can

be accomplished as described by Eq. (4.16) and the adap-
tive pseudo-wavelet algorithm of Section 4.1. One thenFor f(u) 5 u2, jf 5 1, and N 5 2 we note that (4.14) and

(4.7) are identical. repeatedly applies the algorithm for squaring eu22k
to arrive

at the wavelet expansion of eu.This approach can be used for functions f(u) that have
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5. RESULTS OF NUMERICAL EXPERIMENTS x dependence. In (5.4) E(?) is the explicit part of the ap-
proximation to (2.14) and I(?) is the implicit part.

In this section we present the results of numerical experi- One can use specialized techniques for solving (5.4),
ments in which we compute approximations to the solu- e.g., accelerating the convergence of the iteration by using
tions of the heat equation, Burgers’ equation, and two preconditioners (which may be readily reconstructed in a
generalized Burgers’ equations. In each of the examples wavelet basis; see, e.g., [22]). However, in our experiments
we replace the initial value problem (2.1) with (2.2) and we use a straightforward fixed-point method to compute
(2.3) by a suitable approximation, e.g., (2.17). The wavelet U(tj11). We begin by setting
representation of the operators appearing in this approxi-
mation are computed via (3.8). In order to illustrate the use U0(tj11) 5 E(U(tj)) 1 I(U(tj), U(tj)), (5.5)
of our adaptive algorithm for computing f(u) developed in
Section 4, we choose the basis having a scaling function and repeatedly evaluate
with M shifted vanishing moments (see (A.4)) the so-called
‘‘coiflets.’’ This allows us to use the approximate interpolat- Uk11(tj11) 5 E(U(tj)) 1 I(U(tj), Uk(tj11)) (5.6)
ing property; see, e.g., (5.2), below.

In each experiment we use a cutoff of « 5 1026, roughly for k 5 0, 1, 2, .... We terminate the iteration when
corresponding to single precision accuracy. The number
of vanishing moments is then chosen to be M 5 6 and the iUk11(tj11) 2 Uk(tj11)i , «, (5.7)
corresponding length of the quadrature mirror filters H 5
hhkjLf

k51 and G 5 hgkjLf
k51 for ‘‘coiflets’’ satisfies Lf 5 3M where

(see, e.g., [18]). The number of scales n in the numerical
realization of the multiresolution analysis depends on the
most singular behaviour of the solution u(x, t). The specific

iUk11(tj11) 2 Uk(tj11)i

5 S22n O2n

i51
(Uk11(xi , tj11) 2 Uk(xi , tj11))2D1/2

.
(5.8)value of n used in our experiments is given with each

example. We fix J, the depth of the wavelet decomposition,
satisfying 2n2J . Lf , so that there is no ‘‘wrap-around’’ of
the filters H and G on the coarsest scale.

Once (5.7) is satisfied, we update the solution and set
Each of our experiments begins by projecting the initial

condition (2.2) on V0 , which amounts to evaluating
U(tj11) 5 Uk11(tj11). (5.9)

s0
l 5 Ey

y
u0(x)w(x 2 l) dx. (5.1) Again we note that one can use a more sophisticated itera-

tive scheme and different stopping criteria for evaluating
(5.4) (e.g., simply compute (5.6) for a fixed number of itera-For smooth initial conditions we approximate the integral
tions).(5.1) (using the shifted vanishing moments of the scaling

function w(?)) to within « via
5.1. The Heat Equation

s0
l P u(l 2 a) (5.2) We begin with this simple linear example in order to

illustrate several points and provide a bridge to the non-
linear problems discussed below. In particular we show(see the discussion in Section 4.1). We note that in this
that, in the wavelet system of coordinates, higher ordercase the discretization of the initial condition is similar to
schemes do not necessarily require more operations thantraditional discretizations, where one sets
lower order schemes. We consider the heat equation on
the unit interval,U(xi , t0) 5 u0(i Dx) (5.3)

ut 5 nuxx , 0 # x # 1, 0 # t # 1, (5.10)for i 5 0, 1, 2, ..., 2n 2 1, where Dx 5 22n, and where
U(xi , t) is the numerical approximation of the solution at
grid point xi 5 i Dx and time t. for n . 0, with the initial condition

Since approximations to the integral in (2.14) are implicit
in time, we solve an equation of the form u(x, 0) 5 u0(x), 0 # x # 1, (5.11)

U(tj11) 5 E(U(tj)) 1 I(U(tj), U(tj11)) (5.4) and the periodic boundary condition u(0, t) 5 u(1, t). There
are several well-known approaches for solving (5.10) and
more general equations of this type having variable coeffi-for U(tj11) by iteration, where we have dropped the explicit
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cients. Equation (5.10) can be viewed as a simple represen-
tative of this class of equations and we emphasize that the
following remarks are applicable to the variable coefficient
case, n 5 n(x) (see also [41]).

For diffusion-type equations, explicit finite difference
schemes are conditionally stable with the stability condi-
tion n Dt/(Dx)2 , 1 (see, e.g., [2, 3]), where Dt 5 1/Nt ,
Dx 5 1/N, and Nt is the number of time steps. This con-
dition tends to require prohibitively small time steps. An
alternate, implicit approach is the Crank–Nicholson
scheme [2, 3], which is unconditionally stable and accurate
to O((Dt)2 1 (Dx)2). At each time step, the Crank–
Nicholson scheme requires solving a system of equations,

FIG. 3. Solution of the heat equation using the Crank–NicholsonAU(tj11) 5 BU(tj) (5.12)
method (5.12) with Dt 5 Dx 5 229 and n 5 1.0. Note the slowly decaying
peak in the solution that is due to the eigenvalue lN 5 5 2 0.99902344.

for j 5 0, 1, 2, ..., Nt 2 1, where we have suppressed the
dependence of U(x, t) on x. The matrices A and B are
given by A 5 diag(2a/2, 1 1 a, 2a/2) and B 5

u0(x) 5 Hx, 0 # x # As,

1 2 x, As # x # 1,
(5.15)diag(a/2, 1 2 a, a/2), where a 5 n(Dt/(Dx)2).

Alternatively, we can write the solution of (5.10) as

that has a discontinuous derivative at x 5 As. Figure 3 illus-
u(x, t) 5 etLu0(x), (5.13) trates the evolution of (5.15) via (5.12) with Dt 5 Dx and

n 5 1 and the slow decay of high frequency components
of the initial condition. We have implemented Eq. (5.14)where L 5 nxx , compute (5.13) by discretizing the time
and display the result in Fig. 4 for the case where n 5 1,interval [0, 1] into Nt subintervals of length Dt 5 1/Nt , and
Dt 5 Dx 5 22n 5 1/N, and n 5 9. We note that there is aby repeatedly applying the NS-form of the operator eDtL via
proper decay of the sharp peak in the initial condition.

In order to illustrate the difference between the results
U(tj11) 5 eDtLU(tj) (5.14) of our wavelet based approach and those of the Crank–

Nicholson scheme, we construct the NS-form of the opera-
tor A21B and compare it with that of eDtL. The NS-form offor j 5 0, 1, 2, ..., Nt 2 1, where U(t0) 5 U(0). The numerical
an operator explicitly separates blocks of the operator thatmethod described by (5.14) is explicit and unconditionally
act on the high frequency components of u. These finerstable since the eigenvalues of eDt2

x are less than one.
The fact that the Crank–Nicholson scheme is uncondi-

tionally stable allows one to choose Dt independently of
Dx; in particular one can choose Dt to be proportional to
Dx. In order to emphasize our point we set Dx 5 Dt and
n 5 1. Although the Crank–Nicholson scheme is second-
order accurate and such choices of the parameters Dx, Dt,
and n appear to be reasonable, by analyzing the scheme
in the Fourier domain, we find that high frequency compo-
nents in an initial condition decay very slowly. By diagonal-
izing matrices A and B in (5.12), it is easy to find the largest
eigenvalue of A21B, lN 5 (1 2 2a)/(1 1 2a). For the
choice of parameters n 5 1 and Dt 5 Dx, we see that as a
becomes large, the eigenvalue lN tends to 21. We note
that there are various ad hoc remedies (e.g., smoothing)
used in conjunction with the Crank–Nicholson scheme to
remove these slowly decaying high frequency components.

For example, let us consider the following initial con- FIG. 4. Solution of the heat equation using the NS-form of the expo-
nential with Dt 5 Dx 5 229 and n 5 1.0, i.e., Eq. (5.14).dition
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Let us conclude by reiterating that the wavelet based
scheme via (5.13) is explicit and unconditionally stable. The
accuracy in the spatial variable of our scheme is O((Dx)2M),
where M is the number of vanishing moments, Dx 5 22n,
and n is the number of scales in the multiresolution analy-
sis. Additionally, our scheme is spectrally accurate in time.
Also it is adaptive simply by virtue of using a sparse data
structure to represent the operator enDtxx, the adaptive algo-
rithm developed in Section 3.4 and the sparsity of the
solution in the wavelet basis. Finally, we note that if we
were to consider (5.10) with variable coefficients, e.g.,

ut 5 n(x)uxx , (5.16)

the exponential operator eDtn(x)L can be computed in O(N)
operations using the scaling and squaring method outlined

FIG. 5. NS-form representation of the operator A21B used in the in, e.g., [26] (see also [43]).
Crank–Nicolson scheme (5.12). Entries of absolute value greater than
1028 are shown in black. The wavelet basis is Daubechies with M 5 6 5.2. Burgers’ Equation
vanishing moments (Lf 5 18), the number of scales is n 5 9 and J 5 7.
We have set n 5 1.0 and Dt 5 Dx 5 229. Note that the top left portion Our next example is the numerical calculation of solu-
of the figure contains nonzero entries which indicate high frequency tions of Burgers’ equation
components present in the operator A21B.

ut 1 uux 5 nuxx , 0 # x # 1, t $ 0, (5.17)

scale or high frequency blocks are located in the upper for n . 0, together with an initial condition,
left corner of the NS-form. Therefore, the blocks of the
NS-form of the operator A21B that are responsible for the u(x, 0) 5 u0(x), 0 # x # 1, (5.18)
high frequency components in the solution are located in
the upper left portion of Fig. 5. One can compare Fig. 5 and periodic boundary conditions u(0, t) 5 u(1, t). Burgers’
with Fig. 6, illustrating the NS-form of the exponential equation is the simplest example of a nonlinear partial
operator used in (5.14). Although the Crank–Nicholson differential equation incorporating both linear diffusion
scheme is not typically used for this regime of parameters and nonlinear advection. Solutions of Burgers’ equation
(i.e., n 5 1 and Dt 5 Dx), a similar phenomena will be consist of stationary or moving shocks and capturing such
observed for any low-order method. Namely, for a given behavior is an important simple test of a new numerical
cutoff, the NS-form representation of the matrix for the method (see, e.g., [36, 37, 42]).
low-order scheme will have more entries than that of the Burgers’ equation may be solved analytically by the
corresponding exponential operator in the wavelet basis. Cole–Hopf transformation [7, 8], wherein it is observed

Referring to Fig. 5 and 6 it is clear that the NS-form of that a solution of (5.17) may be expressed as
the operator eDtL in our high order scheme is sparser than
the NS-form for the operator A21B in the second-order
Crank–Nicholson scheme. The matrix in Fig. 5 has approxi- u(x, t) 5 22n

fx

f
, (5.19)

mately 3.5 times as many entries as the matrix in Fig. 6.

where f 5 f(x, t) is a solution of the heat equation with
initial condition

f(x, 0) 5 e2(1/4nf) e u(x,0)) dx. (5.20)

Remark. We note that if n is small, e.g., n 5 1023; then
using (5.19) as the starting point for a numerical method

FIG. 6. NS-form representation of the operator enDtL used in (5.14). turns out to be a poor approach. This is due to the large
Entries of absolute value greater than 1028 are shown in black. The

dynamic range of the transformed initial condition (5.20)wavelet basis is Daubechies with M 5 6 vanishing moments (Lf 5 18),
(approximately 70 orders of magnitude for the initial con-the number of scales is n 5 9 and J 5 7. We have set n 5 1.0 and Dt 5

Dx 5 229. dition u(x, 0) 5 sin(2fx)). Consequently, the finite arithme-
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tic involved in a numerical scheme leads to a loss of accu- increases during the formation of the shock, yet it never
exceeded 10 over the entire simulation. The compressionracy in directly calculating u(x, t) via (5.19), most notably

within the vicinity of the shock. ratios of the NS-form representation of the first derivative,
exponential, and nonlinear operator OL ,m are 442.2, 3708.5,Our numerical scheme for computing approximations

to the solution of (5.17) consists of evaluating and 1364.9, respectively, where the compression ratio is
defined as N2/Ns , where N is the dimension of the finest
subspace V0 and Ns is the number of significant entries.U(ti11) 5 eDtLU(ti)

(5.21) EXAMPLE 2. In this example we illustrate the wavelet2 AsOL ,1[U(ti)xU(ti11) 1 U(ti11)xU(ti)],
analogue of the Gibbs phenomena encountered when one
does not use a sufficiently resolved basis expansion of the

subject to the stopping criterion (5.7). Since the solution solution. In this example n 5 10, J 5 4, Dt 5 0.001, n 5
is expressed as the sum (5.21) and the linear part is equiva- 0.001, and « 5 1026, and we refer to Figs. 9 and 10. Using
lent to the operator used in the solution of the heat equa- n 5 10 scales to represent the solution in the wavelet basis
tion, the linear diffusion in (5.17) is accounted for in an is insufficient to represent the high frequency components
essentially exact way. Thus, we may attribute all numerical present in the solution. Figure 9 illustrates the projection
artifacts in the solution to the nonlinear advection term of the solution on V0 beyond the point in time where the
in (5.17). solution is well represented by n 5 10 scales. We see that

For each of the following examples, we illustrate the high frequency oscillations have appeared in the projection
accuracy of our approach by comparing the approximate which may be viewed as a local analogue of the Gibbs
solution Uw with the exact solution Ue using phenomenon. Figure 10 illustrates the number of signifi-

cant coefficients and the number of iterations per time
step required to satisfy the stopping criterion (5.7). The

iUw 2 Uei 5 S22n O2n
21

i50
(Uw(xi , t) 2 Ue(xi , t))2D1/2

. (5.22) compression ratios of the NS-form representation of the
first derivative, exponential, and nonlinear operator OL ,m

are 14.2, 15.4, and 21.3, respectively.
For comparison purposes, we compute the exact solution

EXAMPLE 3. In this example we compute the solutionUe via
to Burgers’ equation using the initial condition

u(x, t) 5 sin(2fx) 1 As sin(4fx), (5.25)
Ue(x, t) 5

Ey

2y
((x 2 h)/t)eG(h;x,t)/2n dh

Ey

2y
eG(h;x,t)/2n dh

, (5.23)

which leads to the formation of left and right moving
shocks. In this example n 5 15, J 5 9, b 5 0.001, Dt 5
0.001, and « 5 1026. We refer to Figs. 11 and 12. Figurewhere
11 illustrates the projection of the solution on V0 . Figure
12 illustrates the error (5.22) and the number of significant
coefficients needed to represent the solution in the waveletG(h; x, t) 5 Eh

0
F(h9) dh9 1

(x 2 h)2

2t
(5.24)

basis per time step. The number of operations per time
step used to update the solution is proportional to the
number of significant coefficients in the wavelet represen-and F(h) 5 u0(h) is the initial condition (5.18) (see, e.g.,

[5]). The initial conditions have been chosen so that (5.24) tation of the solution.
may be evaluated analytically and we compute the integrals

5.3. Generalized Burgers’ Equationin (5.23) using a high order quadrature approximation.

In this section we consider the numerical solution of theEXAMPLE 1. In this example we set n 5 15, J 5 9,
generalized Burgers’ equationDt 5 0.001, n 5 0.001, and « 5 1026. The subspace V0 may

be viewed as a discretization of the unit interval into 215

ut 1 ubux 1 lua 5 nuxx , 0 # x # 1, t $ 0, (5.26)grid points with the step size Dx 5 2215. We refer to Figs.
7 and 8. Figure 7 illustrates the projection of the solution
on V0 , and Fig. 8 illustrates the error (5.22) and the number for constants a, b, n . 0 and real l, together with an initial

condition u(x, 0), and periodic boundary conditionsof significant coefficients per time step. The number of
operations needed to update the solution is proportional u(0, t) 5 u(1, t). This equation is thoroughly studied in

[39] and we illustrate the results of a number of experi-to the number of significant coefficients. The number of
iterations required to satisfy the stopping criterion (5.7) ments which may be compared with [39].
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FIG. 7. The projection on V0 of the solution of Burgers’ equation at various time steps computed via the iteration (5.21). In this experiment
n 5 15, J 5 9, Dt 5 0.001, n 5 0.001, and « 5 1026. This figure corresponds to Example 1 of the text.

EXAMPLE 4. In this example we set b 5 a 5 1 and is computed via
l 5 21, and consider the evolution of a gaussian initial
condition centered on the interval 0 # x # 1, e.g.,

U(ti11) 5 eDt/(n
2
x1I)U(ti)

(5.28)
u(x, 0) 5 u0e2(s(x21/2))2

. On the interval, the decay of
u(x, 0) is suffciently fast that we can consider the initial

2 AsÕ 2
x,1[U(ti)xU(ti11) 1 U(ti11)xU(ti)],condition to be periodic. We set n 5 15, J 5 4, Dt 5 0.001,

and « 5 1026. For easy comparison with the results of
[39], we choose n 5 0.0005. The approximation to the

wheresolution of

ut 1 uux 2 u 5 nuxx , 0 # x # 1, t $ 0, (5.27)
Õ 2

x,1 5
eDt(n

2
x1I) 2 I

n2
x 1 I

, (5.29)

and I is the identity operator. We have chosen to use the
operator L in the form L 5 n2

x 1 I (see the development
in, e.g., Section 2). We note that the NS-forms of the
operators eDt(n

2
x1I) and (5.29) are computed as described in

Section 3.
Due to the negative damping in (5.27), the operator

n2
x 1 I is no longer negative definite. Therefore, if the

nonlinear term were not present, the solution would grow
without bound as t increased. The solution of the nonlinear
Eq. (5.27) evolves to form a single shock which grows as
it moves to the right. Figure 13 illustrates the evolution of
the projection of the solution and Fig. 14 illustrates the
number of significant wavelet coefficients needed to repre-
sent the solution over the course of the experiment. On
the other hand, the presence of the nonlinearity may affect
the growth of the solution, depending on the size of the
coefficient n. We have increased the diffusion coefficient
to n 5 0.005; Fig. 15 illustrates the evolution of the projec-
tion of the solution and Fig. 16 illustrates the number
of significant wavelet coefficients. We point out that the
number of operations required to update the solution isFIG. 8. The error (5.22) per sample (Fig. 7) and the number of

significant wavelet coefficients per time step in the approximation (5.21). proportional to the number of significant coefficients.
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FIG. 9. The projection on V0 of the solution of Burgers’ equation at various time steps computed via the iteration (5.21). In this experiment
n 5 10, J 5 4, Dt 5 0.001, n 5 0.001, and « 5 1026. An analogue of the Gibbs phenomenon begins because the shock cannot be accurately represented
by n 5 10 scales. Observe that the scheme remains stable in spite of the oscillations. This figure corresponds to Example 2 of the text.

EXAMPLE 5. As a final example, we compute approxi- where O 2
x,1 is given by (2.22). The only difference in (5.31),

as compared with the approximation to Burgers’ equations,mations to the solution of the so-called cubic Burgers’
equation (5.21), is the presence of the cubic nonlinearity. We have

computed approximations to the solution using our algo-
rithms with n 5 13, J 5 6, Dt 5 0.001, n 5 0.001, and « 5ut 1 u2ux 5 nuxx , 0 # x # 1, t $ 0, (5.30)
1026. Figures 17 and 18 illustrate the evolution of the solu-
tion for a gaussian initial condition, and Figs. 19 and 20via
illustrate the evolution of the solution for a sinusoidal
initial condition. The gaussian initial condition evolves toU(ti11) 5 eDtn

2
xU(ti)

(5.31) a moving shock, and the sinusoidal initial condition evolves
2 AsO 2

x,1[U2(ti)xU(ti11) 1 U2(ti11)xU(ti)], into two right-moving shocks. We note that, although the
number of grid points in a uniform discretization of such
an initial value problem is, in this case, N 5 213, we are
using only a few hundred significant wavelet coefficients
to update the solution.

6. CONCLUSIONS

In this paper we have synthesized the elements of numer-
ical wavelet analysis into an overall approach for solving
nonlinear partial differential equations. We have demon-
strated an approach which combines the desirable features
of finite difference approaches, spectral methods, and
front-tracking or adaptive grid approaches usually applied
to such problems. Specifically, we have considered the con-
struction of and adaptive calculations with operator func-
tions in wavelet bases, and we have developed an algorithm
for the adaptive calculation of nonlinear functions, e.g.,
f(u) 5 u2.

We used the semigroup method to replace the nonlinear
partial differential equation (2.1) by a nonlinear integral
equation (2.14), and outlined our approach for approxi-
mating such integrals. These approximations are expressed
in terms of functions of differential operators, and we haveFIG. 10. The total number of significant wavelet coefficients and the

number of iterations needed to satisfy the stopping criterion (5.7) per shown how to expand these operator functions into a wave-
time step. let basis, namely how to construct the nonstandard form
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FIG. 11. The projection on V0 of the solution of Burgers’ equation at various time steps computed via the iteration (5.21). In this experiment
n 5 15, J 5 9, n 5 0.001, Dt 5 0.001, « 5 1026, and the initial condition is given by (5.25). This figure corresponds to Example 3 of the text.

(NS-form) representation. We then presented a fast, adap- In order to verify our approach, we have included the
results of a number of numerical experiments, includingtive algorithm for multiplying operators in the NS-form

and functions expanded in wavelet bases. Additionally, the approximation to the solutions of the heat equation,
Burgers’ equation, and the generalized Burgers’ equation.we have introduced an adaptive algorithm for computing

functions f(u), in particular the pointwise product, where The heat equation was included to illustrate a number
of simple observations made available by our approach.u is expanded in a wavelet basis. Both of these algorithms

have an operation count which is proportional to the num- Burgers’ equation and its generalization were included to
illustrate the adaptivity inherent in wavelet-based ap-ber of significant wavelet coefficients in the expansion of

u, and we note that both of these algorithms are necessary proaches, namely the ‘‘automatic’’ identification of sharp
gradients inherent in the solutions of such equations. Sinceingredients in any basis-expansion approach to numerically

solving PDEs. Burgers’ equation is the simplest nonlinear example incor-
porating both diffusion and advection, it is typically a first
example researchers investigate when introducing a new
numerical method.

There are several directions for this course of work which
we have left for the future. One may consider nonperiodic
boundary conditions instead of the periodic boundary con-
dition (2.3). This may be accomplished by simply using a
wavelet (or multiwavelet) basis on an interval rather than
a periodized wavelet basis. Also, we note that variable
coefficients in the linear terms of the evolution equation
(2.1) (see, e.g., (5.16)) may be accommodated by comput-
ing the NS-form of the corresponding operators as outlined
in, e.g., [26]. Another direction has to do with the choice
of the wavelet basis. One of the conclusions which we have
drawn from this study is that there seem to be a number
of advantages to using basis functions which are piecewise
polynomial. In particular the spline family of bases appears
to be attractive as well as multiwavelets (see, e.g., [19]).
In both cases there are also disadvantages and an addi-
tional study would help to understand such a trade-off.
Yet another extension, which of course is the ultimate
goal, is to consider multidimensional problems, e.g., the
Navier–Stokes equations.FIG. 12. The error (5.22) per sample (Fig. 11) and the number of

significant wavelet coefficients per time step in the approximation (5.21). Finally, although we did not address in this paper the
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FIG. 13. The projection on V0 of the solution of (5.27) at various time steps. In this experiment n 5 15, J 5 4, Dt 5 0.001, « 5 1026, and n 5

0.005. This figure corresponds to Example 4 of the text.

problem of computing solutions of nonlinear partial differ- Dt. Therefore, the adaptivity and efficiency of our algo-
rithm for applying the NS-form of an operator to a functionential equations having wave-like solutions, let us indicate

the difficulties in using a straightforward approach for such expanded in a wavelet basis are lost, due to the large
number of significant coefficients present in the NS-form.equations. A simple example is the Korteweg–de Vries

equation Further work is required to find ways of constructing fast,
adaptive algorithms for such problems.

ut 1 auux 1 buxxx 5 0, (6.1)
APPENDIX A: MULTIRESOLUTION ANALYSIS AND

where a, b are constant. Although our algorithm for com- WAVELET BASES
puting the nonlinear contribution to the solution can be
directly applied to this problem, the NS-form representa- In this appendix we provide a brief review of notions

associated with multiresolution analysis (MRA); see, e.g.,tion of the operator functions associated with this problem,
e.g., ebDt3

x, may be dense, even for rather small values of [18, 30, 33] for more details. Introducing the MRA as in

FIG. 14. The total number of significant wavelet coefficients per time step. This figure corresponds to Example 4 of the text.
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FIG. 15. The projection on V0 of the solution of (5.27) at various time steps. In this experiment n 5 15, J 5 4, Dt 5 0.001, « 5 1026, and n 5

0.005. This figure corresponds to Example 4 of the text.

(3.1) and (3.2), we note that the scaling function and wave- The function c(?) has M vanishing moments, i.e.,
let are related by the two-scale difference equations

Ey

2y
c(x)xm dx 5 0, 0 # m # M 2 1, (A.3)

w(x) 5 Ï2 OL21

k50
hkw(2x 2 k) (A.1)

and we consider a scaling function w(?) which has M shifted
vanishing moments (see [25, 18]),

and

Ey

2y
w(x)(x2 a)m dx 5 0, 1 # m # M, (A.4)

c(x) 5 Ï2 OL21

k50
gkw(2x 2 k), (A.2)

where

where H 5 hhkjlf
k51 and G 5 hgkjLf

k51 are the quadrature
a 5 Ey

2y
w(x) dx. (A.5)mirror filters (QMFs) of length Lf (see, e.g., [18]).

FIG. 16. The total number of significant wavelet coefficients per time step. This figure corresponds to Example 4 of the text.
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FIG. 17. The projection on V0 of the solution of cubic Burgers’ equation (5.30) at various time steps, computed using a gaussian initial condition.
In this experiment n 5 13, J 5 6, Dt 5 0.001, n 5 0.001, and « 5 1026. This figure corresponds to Example 5 of the text.

Let Pj denote the projection operator onto subspace Vj The set of coefficients hs j
kjk[Z , which we refer to as ‘‘aver-

ages,’’ is computed via the inner productand let Qj 5 Pj21 2 Pj be the projection operator onto
subspace Wj . The projection of a function f(x) onto sub-
space Vj is given by s j

k 5 E1y

2y
f(x)wj,k(x) dx, (A.8)

(Pj f )(x) 5 O
k[Z

s j
kwj,k(x). (A.6)

and the set of coefficients hd j
kjk[Z , which we refer to as

‘‘differences,’’ is computed via the inner product
Alternatively, it follows from (3.2) and (A.6) that we can
also write (Pj f )(x) as a sum of projections of f(x) onto

d j
k 5 E1y

2y
f(x)cj,k(x) dx. (A.9)subspaces Wj9 , j9 . j,

(Pj f )(x) 5 O
j9.j

O
k[Z

d j9
kcj9,k(x). (A.7) The expansion into the wavelet basis of the projection

FIG. 18. The total number of significant wavelet coefficients per time step. This figure corresponds to Example 5 of the text.
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FIG. 19. The projection on V0 of the solution of cubic Burgers’ equation (5.30) at various time steps, computed using a sinusoidal initial condition.
In this experiment n 5 13, J 5 6, Dt 5 0.001, n 5 0.001, and « 5 1026. This figure corresponds to Example 5 of the text.

of a function f(x) on V0 is given by a sum of successive
s j

k 5 OL21

l51
hls j21

l12k11 (A.11)projections on subspaces Wj , j 5 1, 2, ..., J, and a final
‘‘coarse’’ scale projection on VJ ,

d j
k 5 OL21

l51
gls j21

l12k11 , (A.12)

(P0 f )(x) 5 OJ

j51
O

k[F2n2j

d j
kcj,k(x) 1 O

k[F2n2J

s j
kwJ,k(x). (A.10)

where j 5 1, 2, ..., J and k [ F2n2j .

Given the set of coefficients hs0
kjk[F2

n , i.e., the coefficients
A.1. The Nonstandard Form of Operators

of the projection of f(x) on V0 , we use (A.1) and (A.2) to
replace (A.8) and (A.9) by the recursive definitions of s j

k We will consider representations of operators in the
nonstandard form (NS-form) [25, 21]. Recall that the wave-and d j

k ,

FIG. 20. The total number of significant wavelet coefficients per time step. This figure corresponds to Example 5 of the text.
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let representation of an operator in the NS-form is found
by using bases formed by combinations of wavelet and
scaling functions, for example, in L2(R2),

cj,k(x) cj,k9(y),

cj,k(x) wj,k9(y), (A.13)

wj,k(x) cj,k9(y),

where j, k, k9 [ Z. The NS-form of an operator T is defined
as in (3.3), (3.4), and (3.5).

The operators Aj , Bj , Gj , and TJ appearing in the NS-
form are represented by matrices a j, bj, c j, and s j with
entries defined by

a j
k,k9 5 E E K(x, y)cj,k(x)cj,k9(y) dx dy,

FIG. 22. Illustration of the application of the nonstandard form to
a vector.b j

k,k9 5 E E K(x, y)cj,k(x)wj,k9(y) dx dy,

(A.14)
c j

k,k9 5 E E K(x, y)cj,k(x)wj,k9(y) dx dy,
22 we see that the NS-form is applied to both averages
and differences of the wavelet expansion of a function. Ins j

k,k9 5 E E K(x, y)wj,k(x)wj,k9(y) dx dy.
this case we can view the multiplication of the NS-form
and a vector as an embedding of matrix–vector multiplica-

The operators in (3.5) are organized as blocks of a matrix tion into a space of dimension
as shown in Fig. 21.

The price of uncoupling the scale interactions in (3.3) M 5 2n2J(2J11 2 1), (A.15)
is the need for an additional projection into the wavelet
basis of the product of the NS-form and a vector. The term where n is the number of scales in the wavelet expansion
nonstandard form comes from the fact that the vector to and J # n is the depth of the expansion. This result must
which the NS-form is applied is not a representation of then be projected back into the original space of dimension
the original vector in the wavelet basis. Referring to Fig. N 5 2n. We note that in general M . N, and for J 5 n

we have M 5 2N 2 1.
It follows from (3.3) that after applying the NS-form to

a vector we arrive at the representation

(T0 f0)(x) 5 OJ

j51
O

k[F2n2j

d̂ j
kcj,k(x) 1 OJ

j51
O

k[F2n2j

ŝ j
kwj,k(x). (A.16)

The representation (A.16) consists of both averages and
differences on all scales which can either be projected into
the wavelet basis or reconstructed to space V0 . In order
to project (A.16) into the wavelet basis we form the repre-
sentation

(T0 f0)(x) 5 OJ

j51
O

k[F2n2j

d j
kcj,k(x) 1 O

k[F2n2J

s J
kwJ,k(x). (A.17)

using the decomposition algorithm described by (A.11)
and (A.12) as follows. Given the coefficients hŝ jjJ

j51 and
hd̂ jjJ

j51 , we decompose hŝ1j into hs̃2j and hd̃ 2j and form theFIG. 21. Organization of the nonstandard form of a matrix, Aj , Bj ,
and Gj , j 5 1, 2, 3, and T3 are the only nonzero blocks. sums hs2j 5 hŝ2 1 s̃2j and hd2j 5 hd̂2 1 d̃2j. Then on each
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a j
l 5 22pja0

l ,

b j
l 5 22pjb0

l ,
(A.19)

c j
l 5 22pjc 0

l ,FIG. 23. Reprojection of the product of the NS-form and a function
into a wavelet basis.

s j
l 5 22pjs0

l ,

We note that if we were to use any other finite-difference
representation as coefficients on V0 , the coefficients on Vjscale j 5 2, 3, ..., J 2 1, we decompose hs jj 5 hŝ j 1 s̃jj into
would not be related by scaling and would require individ-hs̃ j11j and hd̃ j11j and form the sums hs j11j 5 hŝ j11 1 s̃ j11j
ual calculations for each j.and hd j11j 5 hd̂ j11 1 d̃ j11j. The sets hs Jj and hd jjJ

j51 are the
Using the two-scale difference equations (A.1) andcoefficients of the wavelet expansion of (T0 f0)(x), i.e., the

(A.2), we are led tocoefficients appearing in (A.17). This procedure is illus-
trated in Fig. 23.

a j
l 5 2 OL21

k50
OL21

k950

gkgk9s j21
2i1k2k9 ,Remark. An alternative to projecting the representa-

tion (A.16) into the wavelet basis is to reconstruct (A.16)
to space V0 , i.e., form the representation (A.6)

b j
l 5 2 OL21

k50
OL21

k950

gkhk9s j21
2i1k2k9 , (A.20)

(P0 f )(x) 5 O
k[Z

s0
kw0,k(x), (A.18)

c j
l 5 2 OL21

k50
OL21

k950

hkgk9s j21
2i1k2k9 .

using the reconstruction algorithm described in Section A
Therefore, the representation of p

x is completely deter-as follows. Given the coefficients hŝ jjJ
j51 and hd̂ jjJ

j51 , we
mined by s0

l in (A.14), or in other words, by the representa-reconstruct hd̂ Jj and hŝ Jj into hs̃ J21j and form the sum
tion of p

x projected on the subspace V0 .hs J21j 5 hŝ J21 1 s̃ J21j. Then on each scale j 5 J 2 1, J 2
To compute the coefficients s0

l corresponding to the pro-2, ..., 1 we reconstruct hŝ jj and hd̂ jj into hs̃ j21j and form the
jection of p

x on V0 , it is sufficient to solve the system ofsum hs j21j 5 hŝ j21 1 s̃ j21j. The final reconstruction (of hd1j
linear algebraic equationsand hs1j) forms the coefficients hs0j appearing in (A.18).

This procedure is illustrated in Fig. 24.

s0
l 5 2p Fs0

2l 1
1
2 O

L/2

k51
a2k21(s0

2l22k11 1 s0
2l12k21)G (A.21)

A.2. The Nonstandard Form of Differential Operators

In this appendix we recall the wavelet representation of
anddifferential operators p

x in the NS-form. The rows of the
NS-form of differential operators may be viewed as finite- O

l
lps0

l 5 (21)pp!, (A.22)difference approximations on subspace V0 of order
2M 2 1, where M is the number of vanishing moments of
the wavelet c(x). This material is a review of material where a2k21 are the autocorrelation coefficients of H de-
found in [21]. fined by

The NS-form of the operator p
x consists of matrices Aj,

Bj, G j for j 5 0, 1, ..., J and a ‘‘coarse scale’’ approximation
TJ. We denote the elements of these matrices by a j

i,l , an 5 2 OL212n

i50
hihi1n , n 5 1, ..., L 2 1. (A.23)

bj
i,l , and c j

i,l for j 5 0, 1, ..., J, and s J
i,l . Since the operator

p
x is homogeneous of degree p, it is sufficient to compute

We note that the autocorrelation coefficients an with eventhe coefficients on scale j 5 0 and use
indices are zero,

a2k 5 0, k 5 1, ..., L/2 2 1. (A.24)

The resulting coefficients s0
l corresponding to the projec-

tion of the operator p
x on V0 may be viewed as a finite-

difference approximation of order 2M 2 1. Further detailsFIG. 24. Reconstruction of the product of the NS-form and a function
to space V0 . are found in [25].
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A.3. Proofs of Vanishing Moments Property (Hĝ)(j) 5 2i sign(j)ĝ(j), (A.31)

Proof of Lemma 1. Using the definition (A.14), we
may be viewed as a generalized function, derivatives ofobtain
which act on test functions f [ Cy

0 (R) as

O1y

l52y

lmbl 5 E1y

2y
c(x 2 k) f(x)Pm(x) dx. (A.25) K dm

dj m (2i sign(j)ĝ(j)), fL
We have used the fact that if the wavelet basis has M

5 2i Om
j51
Sm

l
D f ( j21)(0)ĝ(m2j)(0) (A.32)vanishing moments, then

1 i Ey

2y
sign(j)ĝ(m)(j)f(j) dj.O1y

l52y

lmw(x 2 l) 5 Pm(x), (A.26)

In order to show that (Hc)(x) has M vanishing moments,
where Pm(x) is a polynomial of degree m for 0 # m # we recall that in the Fourier domain vanishing moments
M 2 1; see [31]. are characterized by

Since the function f(?) is an analytic function of x , we
can expand f in terms of its Taylor series. The series for d m

dj m ĉ (j)uj50 5 0 for m 5 0, 1, ..., M 2 1, (A.33)f(x)Pm(x) is finite and yields a polynomial of degree less
than or equal to m,

where ĉ(j) is the Fourier transform of c(x). Setting ĝ(j) 5
f(x)Pm(x) 5 P̃m9(x), (A.27) ĉ(j) in (A.32), the sum on the right-hand side of (A.32)

is zero. We also observe that the integrand on the right-
hand side of (A.32), i.e., sign(j)ĉ(m)(j) f̂(j), is continuouswhere m9 # m. Due to the M . m vanishing moments of
at j 5 0, once again because c(x) has M vanishing mo-c(x), the integrals (A.25) are zero and (3.25) is verified.
ments. We can then define functions Ŵ (m)(j) for m 5 0,

Proof of Lemma 2. The bl elements of the NS-form of 1, ..., M 2 1 as
the Hilbert transform are given by

bl 5 E1y

2y
c(x 2 l)(Hw)(x) dx, (A.28)

Ŵ (m)(j) 5 5
2iĉ(m)(j), j . 0,

0, j 5 0,

iĉ(m)(j), j , 0,

(A.34)

and, proceeding as in Lemma 1, we find

such that Ŵ (m)(j) coincides with the mth derivative of the
generalized function (A.31) on the test functions f [
Cy

0 (R). Since Ŵ (m)(j) are continuous functions for m 5
0, 1, ..., M 2 1, we obtain, instead of (A.30),

O1y

l52y

l mbl 5 O1y

l52y

l m E1y

2y
c(x 2 l)(Hw)(x) dx

5 2 O1y

l52y

l m E1y

2y
(Hc)(x)w(x 1 l) dx

5 2E1y

2y
(Hc)(x)Pm(x) dx,

(A.29)

Ey

2y
(Hc)(x)xmeijx dx 5 Ŵ (m)(j). (A.35)

Since Ŵ (m)(j)uj50 5 0 the integrals (A.29) are zero and
where, once again, we have used (A.26). (3.27) is established.

To show that the integrals in (A.29) are zero, we estab-
A.4. Masking hs jj Coefficients Using hd jj Coefficientslish that (Hc)(x) has at least M vanishing moments. Let

us consider the generalized function Let us now show that we may indeed use significant
wavelet coefficients hd j11j to find coefficients hs̃ jj that con-
tribute to (3.28). Expanding f(x 1 2 jl) into the TaylorEy

2y
(Hc)(x)xmeijx dj 5 i2mm

j (H ĉ)(j). (A.30) series,

In the Fourier domain the Hilbert transform of the function f(x 1 2 jl) 5 OM21

m50

f (m)(x)
m!

2 jmlm 1
f (M)(z)

M!
(z 2 x)M, (A.36)

g defined by
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where z 5 z(x, j, l) lies between x and x 1 2 jl, we compute which again is of the same order as d j11
k9 . Therefore, if

ud j11
k9 u , « for k9 [ F2J2( j11) , then for some constant C,d j

k 5 ol b j
k1ls

j
k1l using (A.36) and obtain

ud j
ku , C« for k [ F2J2j .

dj
k 5 22j/2 Ey

2y
w(22jx 2 k) OM21

m50

f (m)(x)
m!

(2 jm) SOL
l52L

b j
k1ll

mD dx A.5. Estimating the Amount of Oversampling

In this appendix we demonstrate that we may always
1

22j/2

M! OL
l52L

b j
k1l Ey

2y
w(22jx 2 k)f (M)(z)(z 2 x)M dx. choose j0 in such a way that, to within a given accuracy «,

(Qju)2 and (Pju)(Qju) belong to Vj2j0
. It is sufficient to

demonstrate this fact for j 5 0. In order to show that such(A.37)
j0 $ 1 exists, we begin by assuming u [ V0 , V2j0

. This
assumption implies that, in the Fourier domain, the supportDue to the vanishing-moment property of the B-block
of ŵ(22j0j) ‘‘overlaps’’ the support of û(j). Then, for scaling(Lemmas 1 and 2), the first term in (A.37) is zero and
functions with a sufficient number of vanishing moments,
the coefficients s2j0l and the values u(xl) for some xl may

d j
k 5

22j/2

M! OL
l52L

b
j

k1l Ey

2y
w(x)f (M)(z)(z 2 2 j(x 1 k))M dx be made to be within « of each other. In this way we may

then apply (4.4).
The coefficients s2j0l of the projection of u on V2j0

are(A.38)
given by

for k [ F2J2j .
To compute the differences d j11

k9 5 ol gls
j
2k91l , we use s2j0l 5 2 j0/2 Ey

2y
u(x)w(2 j0x 2 l) dx, (A.42)

the averages

which can be written in terms of û(j) assj
2k91l 5 22j/2 Ey

2y
w(22jx 2 2k9)f(x 1 2 jl) dx. (A.39)

s2j0l 5 2 j0/2 Ey

2y
û(2 j0j)ŵ(j)e2ijl dj. (A.43)Substituting (A.36) into (A.39), we obtain

Replacing the integral in (A.43) by that over [2f, f], wedj11
k9 5 22j/2 Ey
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and, using the vanishing moments of the filter G 5 hglj, (A.44)

Since u [ V0 for any « . 0, there is a j0 such that thed j11
k9 5

22j/2
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gl Ey

2y
w(x)f (M)(z)(z 2 2 j(x 1 2k9))M dx

infinite sum in (A.44) may be approximated to within «
by the first term,(A.40)

for k9 [ F2J2( j11) . s2j0l 5 2 j0/2 Ef

2f
û(2 j0j)ŵ(j)e2ijl dj. (A.45)

To show that ud j11
k9 u , « implies ud j

ku , C«, we consider
two cases. First, if ud j11

k9 u , « and k is even, i.e., k 5 2n for
In order to evaluate (A.45), we consider scaling functionsn [ F2J2( j11) , then we see that d j

2n and d j11
k9 given by (A.40)

w(x) having M-shifted vanishing moments, i.e., ey

2y (x 2only differ in the coefficients gl and bj
2n1l . Since gl and

a)mw(x) dx 5 0, where a 5 ey

2y xw(x) dx (see, e.g., [25,b j
2n1l are of the same order, the differences satisfy

18]). We then writeud j
2nu , C« for some constant C. On the other hand, if k 5

2n 1 1 for n 5[ F2J2( j11) , we find
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28. R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différ-4. A. Pazy, Semigroups of Linear Operators and Applications to Partial
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