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Abstract—This paper reviews the stator flux estimation algo-
rithms applied to the alternating current motor drives. The so-
called voltage model estimation, which consists of integrating the
back-electromotive force signal, is addressed. However, in prac-
tice, the pure integration is prone to drift problems due to noises,
measurement error, stator resistance uncertainty and unknown
initial conditions. This limitation becomes more restrictive at low
speed operation. Several solutions, reported in the literature, are
reviewed and compared. Emphasis is placed on the low-pass filter
based algorithms that show good performance in steady-state as
well as in transient operating conditions.

I. INTRODUCTION

High-performance motor drives, such as field-oriented con-
trolled and direct-torque controlled alternating current (AC)
drives, require an accurate stator flux estimation. For AC
machines, there exist two models for flux estimation, namely
the voltage model and the current model.

The current model estimation is known to be efficient
in low and medium speed range, especially when combined
with high-frequency injection-based estimation techniques [1].
Nevertheless, the accuracy of the current model is highly
dependent on the knowledge of the machine inductances. On
the other hand, the voltage model, which consists of integrating
the stator back-electromotive force (EMF) signal, is known
for its good performance at medium and high speeds. The
main advantage of the voltage model is its robustness against
the machine parameters; it only requires the stator resistance,
which can be quite accurately known in various applications.

Both voltage and current models can be combined in one
state-observer estimation algorithm [2], [3], [4], [5]. Note that
the voltage model implementation is the same for all AC
drives, whereas the current model depends on the machine
structure. In this paper, the voltage model is addressed.

The implementation of a pure integrator is prone to drift
problems due to the following practical issues [6]: a) Inverter
Nonlinearity: the stator voltages are not directly measured,
they are constructed using the reference voltage of the pulse-
width modulator (PWM). This provides a ‘clean’ voltage
signal, but it does not exactly represent the stator voltages
as the PWM inverter introduces distortions. b) Current Mea-
surement: the current measurement channels exhibits errors
due to unbalanced gains and DC drift. c) Stator Resistance:
the accurate knowledge of the stator resistance, which may
vary, is important for accurate estimation. d) Integrator initial
conditions: unknown initial conditions, at the starting of the
drive or when severe back-EMF changes occur, result in a
DC-offset in the integrator output.

Various algorithms have been reported in the literature
to solve the drift problems. One simple solution consists of
using a slight amount of low-pass filtering in the integration
of the back-EMF [7]. However, this introduces errors in the
estimated flux signal especially when the motor frequency is
lower than the cutoff frequency of the low-pass filter (LPF)
[8]. In view of emulating the frequency response of a pure
integrator, the authors of [9] propose a programmable cascaded
LPF method of flux estimation: three cascaded programmable
LPFs with magnitude compensation are designed and shown
to be efficient when applied for sensorless stator-flux-oriented
control of induction machines. In the same context, several
compensated LPF algorithms have been proposed for direct-
torque controlled [10] and field-oriented controlled [8], [11],
[12] AC machines. Other algorithms, concentrated on the DC-
offset rejection, consist of limiting the amplitude of the output
flux signal using an adequate saturation function [13], [14],
[15].

This paper is focused on the estimation of the stator flux
of AC machines using the voltage model. It reviews the esti-
mation algorithms reported in the literature, and summarizes
them in one generalized estimation algorithm, as detailed in
Section II. From the generalized algorithm, three categories of
modified integrators can be derived: 1) low-pass filter (LPF)
based algorithms, which are seen as open-loop estimators, 2)
amplitude saturation integrators and 3) adaptive flux observers.
The last two categories are considered to be closed-loop
estimators since the estimated flux is compared to a certain
correction signal in a feedback structure. Section III is dedi-
cated for the study of LPF-based algorithms with a detailed
comparative study using digital simulation. Section IV reviews
the correction-based estimation algorithms. Conclusions are
drawn in Section V.

II. STATOR FLUX ESTIMATION PROBLEM

A stator winding of an electric motor can be seen as a
connection of a resistance Rs in series with a coil having
time-varying inductance. Throughout this paper, the complex
space-vector notation is used to represent the electromagnetic
quantities (the currents is, voltages vs and fluxes ψ

s
). The

voltage model equation can be written as:

vs = Rsis +
dψ

s

dt
(1)

Therefore, the stator flux vector can be estimated by integrat-
ing the back-EMF (es):

ψ
s

=

∫
(vs −Rsis) =

∫
es (2)



The frequency response of the integrator in the Laplace
domain is:

Ψs(s)

es(s)
=

1

s
(3)

The magnitude and the phase lag of the integrator are:

G =
1

|ωs|
(4)

ϕ = −π
2

(5)

where ωs is the angular frequency of the stator flux Ψs(s).
To ensure an accurate estimation, several algorithms have

been reported in the literature. They can be summarized using
the following general formulation:

˙̂
ψ
s

= es + ωc(t)
(
ψcor
s
− ψ̂

s

)
(6)

This equation is illustrated graphically on Fig. 1. It is written
similarly to the traditional state-observer equation:

˙̂x = f(x, u) + ωc(t)(y − ŷ)

where x is the state, u is the input, y is the output, f is the
dynamical model of the system and ωc(t) is the observer gain
to be tuned. However, the equation (6) is not an exact state-
observer since y is not a measured signal; a correction flux,
ψcor
s

, is used for comparison with the estimated flux.
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Fig. 1: Generalized modified integrator structure

In the frequency domain, the equation (6) becomes1:

Ψ̂s =
es + ωcΨ

cor
s

s+ ωc
(7)

The generality of this structure lies in the choice of ψcor
s

;
depending on this choice different estimation algorithms can
be derived. At a first glance, two particular algorithms prevail.
Choosing

ψcor
s

= ψ̂
s

yields the pure integrator equation, and choosing

ψcor
s

= 0

results in a low-pass filter equation, with a corner frequency
ωc. The LPF algorithm is studied in details in the following
section. Other possible choices of the term ψcor

s
are discussed

in section IV.

1ωc(t) is considered to be constant.

III. LOW-PASS FILTER

One intuitive solution for DC-offset is to implement a high-
pass filter, with a corner frequency ωc, in series to the pure
integrator. This results in the low-pass filter approximation of
the integrator:

Ψ̂s

es
=

1

s
.

s

s+ ωc
=

1

s+ ωc
(8)

A LPF can be seen as an integrator with a negative
feedback, as shows the signal flow diagram of Fig. 2.
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Fig. 2: Low-pass filter approximated integrator
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Under sinusoidal steady-state condition, the voltage model
reduces to:

Ψs =
1

jωs
(Vs −RsIs) (9)

whereas the LPF approximated integrator gives:

Ψ̂s =
1

jωs + ωc
(Vs −RsIs) (10)

The vector diagram of Fig. 3 illustrates the relation be-
tween the real flux Ψs and the estimated flux Ψ̂s. If the corner
frequency ωc is very low, the LPF is brought closer to the pure
integrator.

In contrast to the pure integrator, the LPF is able to
eliminate the DC-offset in the estimated flux. Fig. 4 shows
the time-domain response of both the pure integrator and the
LPF (with ωc = 2 rd/s) in presence of an initial estimation
error of 0.01 Wb.



The magnitude and the phase of the LPF frequency-domain
response are, respectively:

G =
1√

ω2
s + ω2

c

(11)

ϕ = − arctan

(
ωs
ωc

)
(12)

Hence, higher corner frequency ωc ensures faster DC-offset
rejection, however, it introduces higher distortions to the
output signal due to increasing attenuation and phase lag. The
most critical situation prevails when the stator frequency ωs
is lower than the corner frequency ωc. On the other hand, if
ωc is chosen to be very low, which corresponds to a large
time-constant of the LPF, the drift problem persists.

To overcome such situations, a compensation of the LPF
gain and phase can be considered in order to guaranty a pure-
integrator-like overall frequency response. Furthermore, the
LPF pole (situated at −ωc) should be placed far enough from
the origin to solve the drift problem [8], [11].
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Fig. 4: Real flux (in black), integrator output (dashed blue)
and low-pass filter output (dashed red) with ωc = 2 rd/s.

A. Compensation of the LPF

Several solutions are proposed in the literature for LPF
compensation [8], [10], [11], most of them are based on the
multiplication of the LPF block by the following inverse of
the HPF frequency response [11]:

s+ ωc
s

= 1 +
ωc
s

(13)

Then, the compensation gain and phase lag are respectively:

G =

√
ω2
s + ω2

c

|ωs|
(14)

ϕ = arctan

(
ωs
ωc

)
− π

2
= − arctan

(
ωc
ωs

)
(15)

Fig. 5 shows the frequency response of the pure integrator and
two LPFs with cut-off frequencies of 1 rd/s and 10 rd/s, as
well as the frequency response of the corresponding compen-
sation transfer function. The sum of an LPF response with its
compensation response results in a pure integrator response.

This compensation can be applied to the output (flux) of
the LPF [8], [10] as shown in Fig. 6a, or it can be applied
to the back-emf signal, at the input of the LPF [11] as
shown in Fig. 6b. Note that both compensation levels are
not the same regarding the overall response, since it is not
a simple multiplication of two linear time-invariant systems.
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Fig. 5: Bode diagram of the pure integrator (black line) and
the LPF for two cut-off frequencies 1 rd/s (blue line) and
10 rd/s (orange line), and the corresponding compensation
transfer function (dashed lines).

Furthermore, for the same reason, the overall response depends
on the corner frequency of the LPF/Compensation.
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Fig. 6: Low-pass filter compensation

B. Corner frequency tuning

The choice of the the corner frequency is crucial for good
flux estimation, especially in low-speed operating conditions: a
filter that can rapidly attenuate the DC-offset in medium/high
speed operation might fail at low-speed and vice-versa (see
Fig. 7). This is due to the placement of the LPF pole with



respect to the stator frequency. Hence, an adaptive corner fre-
quency tuning can be adopted by choosing ωc to be dependent
on the stator angular frequency ωs as follows:

ωc = λ|ωs| (16)

where λ is positive real number smaller than one. At low
speed, λ can be tuned to a low value, e.g. 0.1, whereas for
higher speeds, it can take higher values. In this case, the time-
constant of the LPF, 1/(λ|ωs|), is decreased with the increase
of the stator frequency.
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(a) Initial conditions error
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(b) Speed reversal

Fig. 7: Time response of the LPF for tow corner frequencies
ωc = 1 rd/s (dashed blue) and ωc = 10 rd/s (dashed red).

There exist two ways to implement a compensated LPF
with ωs−dependent corner frequency. The first one consists
of multiplying the LPF output by the following gain G and
the phase lag ϕ of the compensation function (Fig. 8a):

G =
√

1 + λ2 (17)
ϕ = −sign(ωs) arctan (λ) (18)

The other way is to apply the compensation to the back-EMF
at the input of the LPF (Fig. 8b), which yields the following
modified integrator equation [11]:

ψ̂
s

=

∫
(−λ|ωs|+ [1− jλsign(ωs)] es) dt (19)

The comparison of the input-compensated and output-
compensated LPFs is shown in Fig. 9 for λ = 0.2: the
input compensated LPF shows better behavior in the speed
reversal operation, whereas the transient behavior in response
to an initial estimation error seems to be the same for both
estimators. Furthermore, the transient behavior is better if λ is
smaller, whereas a higher value of λ allows faster rejection of
the DC-offset (Fig. 10). Note that for λ = 0 the pure integrator
is achieved [11].
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Fig. 8: Compensated low-pass filter with speed-dependent
corner frequency ωc = λ|ωs|.
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Fig. 9: Input compensated LPF (dashed blue) vs. output
compensated LPF (dashed red) for λ = 0.2.

C. Stator frequency estimation

In addition to the choice of λ, the performance of the
compensated LPF depends heavily on the accuracy of the
stator flux angular frequency (ωs) estimate [16], which is often
evaluated using the following equation:

ωs =
|es × ψs|
|ψ
s
|2 =

ψsα(vsβ −Rsisβ)− ψsβ(vsα −Rsisα)

ψ2
sα + ψ2

sβ

However, this estimation is sensitive to the stator resistance
uncertainty, to the offsets and distortions in the flux and back-
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Fig. 10: Input compensated LPF with λ = 0.1 (dashed blue)
and λ = 0.9 (dashed red).

EMF signals. In addition, the decreasing magnitude of the
numerator at low speeds deteriorates the estimation. To remedy
to this problem, the authors of [16] propose the PLL-based
estimation scheme illustrated on Fig. 11. The stator voltage is
used as a reference vector for the PLL, the voltage angle θv
is synthesized and used as the angle of a rotational reference
frame where the q−axis component of the voltage vector (vsq)
should be null. Therefore, vsq is used as the error signal
of a Proportional-Integral (PI) controller that outputs the ωs
estimate.

vss
ejθ

vsq

ωs

θv

PLL

1

Fig. 11: PLL-based angular frequency estimation [16]

The choice of the voltage vector for the PLL is motivated
by the fact that this vector has several advantages over the
fluxes and current vectors: it is the very clean vector available,
especially when constructed from the DC-link voltage and the
switching states of the inverter, it has a considerable magnitude
and generates a consistent large-enough error signal at the
input of the PI [16].

IV. CORRECTION-BASED INTEGRATOR

Although the LPF-based modified integrator provides a
certain amount of output feedback, it is seen as an open-loop
estimator since it corresponds to ψcor

s
= 0 in the generalized

modified integrator (6). This section presents another class
of correction-based modified integrators, based on different
choices of the correction flux ψcor

s
. Two broad categories are

presented: amplitude saturation integrator and adaptive flux
observer.

A. Amplitude saturation integrator

The amplitude saturation integration algorithms consist of
choosing a correction flux having the same phase of the
integration output, but whose magnitude is seen as a saturation
that limits the amplitude of the integrator output. A first,
primitive, algorithm was proposed by [13] (Fig. 12a): the
correction flux ψcor

s
is equal to the integrator output flux ψ̂

s
(which yields a pure integrator) until the limiting level L is
exceeded. When L is reached, the integrator output becomes:

Ψ̂s =
es

s+ ωc
+

ωc
s+ ωc

Z(L)

where Z(L) is the output of the saturation block whose
amplitude is limited to L [13]. One main limitation of the
use of this algorithm is the tuning of L. Ideally, the limiting
level L should be equal to the actual flux amplitude in order
to eliminate the DC-offset at the output. If L is greater than
the flux amplitude, the output waveform will have a DC
component, in addition to the AC component, in response to
an input offset. On the other hand, if L is lower than the flux
amplitude, the estimated flux waveform will be distorted.
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Fig. 12: Modified integration algorithms proposed by [13]

Another algorithm, shown on the Fig. 12b was proposed
in [13] to avoid possible waveform distortion when L is
lower than the actual flux amplitude: only the estimated flux
amplitude is saturated to a limiting level L. Based on this
algorithm, the authors of [13] design a third algorithm in which
the value of L is determined using an adaptive controller.
The error signal fed to this controller is the dot product of
the integrator’s input (back-EMF) and output (estimated flux).



This error is zero when the input and the output vectors are
orthogonal (Fig. 3). Other papers, such as [14], [15] propose to
take the amplitude of the stator flux reference (set-point) as a
limiting level for the integrator, as shown on Fig. 13. Note that
in [15] the corner frequency ωc contains an integration term
(ωc is time-variant) in order to have a PI controller fed with
the difference between the estimated flux and the reference
flux. However, the effectiveness of the integration action is
not proved.
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Fig. 13: Amplitude limitation modified integrator [14]

B. Adaptive flux observers

The adaptive flux observers are more complex estimation
algorithms where the correction flux is the estimation of the
stator flux using the current model [2], [3]. The general struc-
ture of the adaptive-observer-based flux estimator is shown
on Fig. 14, where Leq = Lq for synchronous machines and
Leq = Ls −M2/Lr for induction machines [17].

In low-speed operating condition the performance of both
voltage and current models is deteriorated. A high-frequency
injection-based flux estimation can be applied to provide a
more accurate current-model-based correction flux [1], [4],
[18], [19].
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Fig. 14: Observer-based integrator

V. CONCLUDING REMARKS

A review of the stator flux estimation algorithms has been
presented in this paper. As a conclusion, an input-compensated
LPF with varying corner frequency can be a simple and
efficient flux estimator. Further improvement of the reviewed
algorithms may be realized by adapting (identifying) the stator
resistance. This challenging topic has been addressed in the
literature [14], [15], and still needs further investigations.
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