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A CLASS OF ROBUST NUMERICAL SCHEMES TO COMPUTE

FRONT PROPAGATION

NICOLAS THERME

Abstract. In this work a class of finite volume schemes is proposed to numer-
ically solve equations involving propagating fronts. They fall into the class of
Hamilton-Jacobi equations. Finite volume schemes based on staggered grids,
and initially developed to compute fluid flows, are adapted to the G-equation,
using the Hamilton-Jacobi theoretical framework. The designed scheme has
a maximum principle property and is consistent an monotonous on Cartesian

grids. A convergence property is then obtained for the scheme on Cartesian
grids and numerical experiments evidence the convergence of the scheme on
more general meshes.

1. Introduction

The work presented here falls into a larger thematic undertaken for several years,
which is the development of staggered schemes to simulate all Mach flows. Numeri-
cal schemes were proposed for the Navier-Stokes equations [10] , and Euler equations
[11, 12]. Adaptations of these schemes to more complex models, such as reactive
mixture flows, is underway. In this context, equations describing reactive front
propagation are involved and need to be discretized using natural extensions of the
staggered schemes.

We focus on a particular equation, used in the combustion science to simulate
flame front propagation, the so called G-equation, which reads :

(1) ∂t(ρG) + div(ρuG) + ρuf |∇G| = 0,

where ρ is the density of the fluid, G stands for the front indicator, u is a convective
velocity and uf is a front propagation speed. The challenging issue is to adapt
staggered discretization to the last term ρuf |∇G| as the convective part of the
equation has already been handled previously. When combined with the mass
balance equation of the system

∂tρ+ div(ρu) = 0,

the convective part of the equation is a transport operator and we get:

(2) ∂tG+ u ·∇G+ uf |∇G| = 0,

provided that the density never vanish. This is a particular Hamilton-Jacobi equa-
tion. The theory of such equations is well known and was vastly developed by J.-L.
Lions in [9, 14]. More precisely, consider the following Cauchy problem:

(3)

{

∂tG+H(∇G) = 0,
G(0,x) = G0(x),

defined on [0, T ] × Rd, with H ∈ C(Rd) and G0 ∈ BUC(Rd) (BUC(Ω) stands for
the set of bounded uniformly continuous functions on Ω ). There exists exactly one
viscosity solution G ∈ BUC([0, T ]×Rd) such that G(0,x) = G0(x) and G satisfies
a particular weak formulation based on the maximum principle (we refer to [14] for
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more details). Various numerical methods exist to approach such viscosity solutions.
A first converging finite difference scheme was developed in [8]. From this point high
order extensions to this scheme were given by S.Osher and James A. Sethian in [15],
and a simple finite volume scheme was derived in [13], inspired from a unstructured
finite difference scheme based on triangular meshes developed by R. Abgrall in [1].
The convergence theory of numerical approximations of Hamilton Jacobi equations,
was first proposed for finite difference scheme in [8] and a generalized formulation
was given in [3, 21]. Since then, various schemes were presented for Hamilton-
Jacobi equations; high-order finite difference schemes in [6, 19, 16] and schemes for
unstructured meshes [5, 20, 22, 2]. These methods are difficult to adapt to our
problem. Besides, all the existing schemes proposed in the literature are designed
to solve very generic Hamilton-Jacobi equations. In this paper, we only deal with a
very particular operator, namely, H(x) = u · x+ uf |x|. Consequently, we propose
a finite volume discretization of uf |∇G| that is compatible with the staggered
discretization of the transport operator u ·∇G.

For the sake of clarity, we focus on key elements of the discretization and we
suppose that u = 0 and uf = 1, so the problem considered here is the unsteady
eikonal equation,

∂tG+ |∇G| = 0,(4a)

G(0,x) = G0(x), ∀x ∈ R
d.(4b)

G0 ∈ BUC(Rd). The choice of such a simplified model is also convenient as its
analytical solutions can be computed easily ( see appendix A for more details).
The scheme proposed to approximate this problem can be defined on unstructured
meshes. On Cartesian grids, The scheme is consistent and monotonous and the L∞

convergence is proved thanks to the theory developed in [3]. Numerical results are
given to highlight this convergence results as well as the numerical convergence of
the scheme on unstructured discretizations.

The paper is organized as follows. We start by the description of the spatial
discretization and the corresponding notations that are used throughout the paper.
We present the scheme and its properties in the second part. We finish with some
convergence and numerical results.

2. Spatial discretization

In this section, we focus on the discretization of a multi-dimensional domain
(i.e. d = 2 or d = 3); the extension to the one-dimensional case is straightforward.

Let M be a mesh of the domain Ω (which is an open bounded connected subset
of Rd or Rd itself), supposed to be regular in the usual sense of the finite element
literature (e.g. [7]). The cells of the mesh are assumed to be:

- for a general domain Ω, either non-degenerate quadrilaterals (d = 2) or
hexahedra (d = 3) or simplices, both types of cells being possibly combined
in a same mesh,

- for a domain whose boundaries are hyperplanes normal to a coordinate axis,
rectangles (d = 2) or rectangular parallelepipeds (d = 3) (the faces of which,
of course, are then also necessarily normal to a coordinate axis).

By E and E(K) we denote the set of all (d − 1)-faces σ of the mesh and of the
element K ∈ M respectively. The set of faces included in the boundary of Ω is
denoted by Eext and the set of internal faces (i.e. E \ Eext) is denoted by Eint; a face
σ ∈ Eint separating the cells K and L is denoted by σ = K|L. The outward normal
vector to a face σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote
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by |K| the measure of K and by |σ| the (d − 1)-measure of the face σ. The mass
center of a face is denoted by xσ.

Finally we denote by dσ the measure of −−−−→xKxL.
The unknown discrete function G is piecewise constant on the cellsK. We denote

by HM the space of such piecewise constant functions.

GM ∈ HM ⇐⇒ GM =
∑

K∈M
GKXK ,

where XO stands for the characteristic function of the set O.

3. The scheme

The problem eq. (4) is posed over Rd × (0, T ), where (0, T ) is a finite time
interval. Concerning the initial data, we have G0 ∈ BUC(Rd). According to the
known results at the continuous level, the problem has a unique viscosity solution in
BUC([0, T ]×R

d), that we denote Ḡ. In order to be able to perform computations,
the domain can be reduced to an open bounded connected subset Ω of Rd with
zero-flux boundary conditions. We propose three versions of the scheme depending
on the regularity of the mesh. The finite volume scheme is written on an alternative
form of Equation eq. (4a) :

(5) ∂tG+

(

∇G

|∇G|

)

·∇G = 0,

and makes use of the classical identity:

(6) u.∇φ = div(φu)− φdiv(u).

Let us consider a partition 0 = t0 < t1 < . . . < tN = T of the time interval
(0, T ), which we suppose uniform for the sake of simplicity, and let δt = tn+1 − tn
for n = 0, 1, . . . , N − 1 be the (constant) time step. We consider an explicit-in-time
scheme, which reads, for 0 ≤ n ≤ N − 1 and K ∈ M:

(7) ðtG
n + FM(Gn) = 0,

with,

(8) ðtG
n =

∑

K∈M

Gn+1
K −Gn

K

δt
XK ,

and

(9) FM(Gn) = div

(

∇EGn

|∇EGn|G
n

)

K

−Gn
Kdiv

(

∇EGn

|∇EGn|

)

K

.

The discrete divergence operator is given by:

(10) for K ∈ M, (divu)K =
1

|K|
∑

σ=K|L∈E(K)

κMK,σ|σ| uσ.nK,σ,

where κMK,σ is a coefficient equal to 1 for unstructured meshes, and equal to κMK,σ =

2 |K|
|K|+ |L| on Cartesian grids. Likewise

(11) for K ∈ M, (divGu)K =
1

|K|
∑

σ=K|L∈E(K)

κMK,σ|σ| Gσuσ.nK,σ,

where Gσ denotes an interpolation of G on the edge σ that is:

for σ = K|L ∈ Eint, Gσ =

∣

∣

∣

∣

∣

GK if uσ.nK,σ ≥ 0,

GL otherwise.
3



For a face σ ∈ Eext one simply take Gσ = GK so that

∇G · nK,σ =
|σ|
|K| (Gσ −GK) = 0.

The expression of the discrete spatial operator eq. (9) becomes

(12) FM(Gn
M) =

∑

K∈M





∑

σ=K|L∈E(K)

κMK,σ

|σ|
|K|

(∇EGn)σ
|(∇EGn)σ|

· nK,σ(G
n
σ −Gn

K)



XK ,

where ∇E refers to a discrete gradient operator defined on every σ ∈ Eint.

3.1. Unstructured meshes. For σ = K|L ∈ Eint, we take:

(13) (∇EG)σ =
∑

σ∈∂(K∪L)

|σ|
|K ∪ L|G̃σnK∪L,σ,

with G̃σ a second order approximation of G at the barycenter of the face σ.

3.2. Cartesian meshes. When the scheme is based on Cartesian grids, we have

for σ =
−−→
K|L (which means the flow goes from K to L) :

(14) For σ ∈ Eint, (∇EG)σ =

[

GL −GK

dσ
nK,σ +∇//σG

]

,

where ∇
C
//σ is defined by:

(15) (∇G)C//σ =

d
∑

i=1,

e
(i)·nK,σ=0

(GK+
i
−GK)+

dσ+
i

−

1

2

(

1− sgn(GK+
i
−GK)+

) (GK −GK−
i
)−

dσ−
i

e
(i),

with σ =
−−→
K|L. For a cell K ∈ M, σ+

i and σ−
i stand for the two faces of K normal

to e
(i). Superscripts − and + refer to the up and down faces of K respectively. We

set σ+
i = K|K+

i and σ−
i = K|K−

i . We illustrate these notations in the following
figure. We recall that a+ = max(a, 0) and a− = max(−a, 0), for a ∈ R.

K L

σ
+
2

σ
−

2

K
−

2

K
+
2

σ
∈
E
(1
)

F

Figure 1. Notations for the alternative gradient definition on
Cartesian grids with F = (GL −GK)nK,σ.
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3.3. High order extension. It is possible to replace the upwind interpolation by
a higher order interpolation based on a MUSCL reconstruction. Adopting the same
notations as in eq. (11), its important property, based on [18] is stated below. For
any K ∈ M, and for any σ ∈ E(K) ∩ Eint, there exists αK,σ ∈ [0, 1] such that :

(16) Gσ −GK =

∣

∣

∣

∣

∣

∣

∣

βK,σ(GK −GMK
σ
) if

∇EGn
σ

|∇EGn
σ |

· nK,σ ≥ 0,

βK,σ(GMK
σ

−GK) otherwise.

The procedure is the following:

• We define a tentative value G̃σ based on a high order geometric interpola-
tion.

• The next step is to create a limitation procedure for ρσ and eσ. Let σ ∈ Eint,
σ =

−−→
K|L and VK a set of neighboring cells to K. We make the two following

assumptions :

(17)

(H1) Gσ −GK ∈ |[0, ζ+

2 (GL −GK)]|

(H2) ∃M ∈ VK , Gσ −GK ∈ |[0, ζ−

2
dσ

dK|M
(GK −GM )]|,

where, for a, b ∈ R, we denote by |[a, b]| the convex hull of a and b and
−−→
K|L means that the flow is going from K to L (

∇EGn
σ

|∇EGn
σ|
.nK,σ ≥ 0). The

parameters ζ+ and ζ− lie in [0, 2].

• We compute Gσ as the nearest point to G̃σ in the limitation interval.

Whenever it is possible (i.e. with a mesh obtained by Q1 mappings from the (0, 1)d

reference element), VK may be chosen as the opposite cells to σ in K. Otherwise
VK is defined as the set of ”upstream cells” to K. Note that, for a structured mesh,
the first choice allows to recover the usual minmod limiter.

Remark 3.1 (Cartesian grids). We impose ζ+ = ζ− = 1 for the Cartesian version

of the scheme. This particular choice of parameters is the only one possible if we

want to get consistency properties for the discrete spatial operator of the scheme.

4. Properties of the scheme

We expose in this section the properties of the scheme. Specific paragraph is
devoted to its additional properties on Cartesian grids, derived from the convergence
theory [3, 21]. This ensures that the given discretization behaves like usual finite
difference methods for Hamilton-Jacobi equations.

4.1. Stability. Thanks to the definition of the discrete convective operator, we
have the following property:

Proposition 4.1 (Maximum principle). Let Gn
M ∈ HM, n ∈ [0, N ], be the solution

of the scheme eq. (7). For all K ∈ M and n ∈ [0, N − 1], we have:

min
L∈M

Gn
L ≤ Gn+1

K ≤ max
L∈M

Gn
L,

under the CFL condition:

(18) δt ≤ min
K∈M

|K|
∑

σ∈E(K)

|σ|
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Proof. We have, for K ∈ M and n ∈ [0, N − 1]:

Gn+1
K =



1− δt
∑

σ∈E(K)

|σ|
|K|

(

∇EGn
σ

|∇EGn
σ |

· nK,σ

)−


Gn
K

+ δt
∑

σ=K|L∈E(K)

|σ|
|K|

(

∇EGn
σ

|∇EGn
σ |

· nK,σ

)−
Gn

L.

Consequently, Gn+1
K is a convex combination of its neighbors at time n if eq. (18)

is verified, which completes the proof. �

Remark 4.1 (Cartesian grids). The property remains the same with the scheme

on Cartesian grids, only the CFL is modified. One must replace |K| by |K|+|L|
2 in

eq. (18).

Remark 4.2 (MUSCL interpolation). Concerning the MUSCL interpolation, we

use the property eq. (16) and use it in the scheme to get:

Gn+1
K =



1− δt
∑

σ∈E(K)

|σ|
|K|βK,σ

∣

∣

∣

∇EGn
σ

|∇EGn
σ|

· nK,σ

∣

∣

∣



Gn
K

+ δt
∑

σ∈E(K)

|σ|
|K|βK,σ

∣

∣

∣

∇EGn
σ

|∇EGn
σ|

· nK,σ

∣

∣

∣Gn
Mσ

K
.

The maximum principle is still satisfied with the same CFL condition.

5. Invariance under translation

Proposition 5.1 (Invariance under Translation with constants).
∀λ ∈ R, and ∀φM ∈ HM,

(19) FM(φM + λ) = FM(φM).

Proof. Let λ ∈ R and φM ∈ HM. Looking at eq. (12), we need to check that
∇E (φM + λ) = ∇EφM. We remind that:

∇E (φM + λ) =
∑

σ∈∂K∪L

|σ|
|K ∪ L| (φσ + λ)nK∪L,σ

We have:

∇E (φM + λ) = ∇EφM + λ
∑

σ∈∂K∪L

|σ|
|K ∪ L|nK∪L,σ.

Using the divergence theorem, we get that:

∑

σ∈∂K∪L

|σ|
|K ∪ L|nK∪L,σ =

∫

K∪L

∇(1) = 0,

which concludes the proof. �

On Cartesian meshes, the result is immediate.

5.1. Properties of the Cartesian scheme.
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5.1.1. Consistency. We need to define interpolates of test functions on the mesh.
Let φ ∈ C∞

c (Ω). We set:

(20) φM =
∑

K∈M
φKXK , φK = φ(xK).

We now give the definition of the consistency property.

Definition 5.1 (Consistency). Let F (G) be an operator approximated by

FM(GM). Let hM = max
K∈M

diam(K). Let D(m) =
{

M(m), E(m),P(m)
}

be a se-

quence of discretizations such that the size h
(m)
M tends to zero as m → ∞. The

discrete spatial operator HM is said to be consistent with H if for every φ ∈ C∞
c (Ω):

lim
m→∞

‖FM(m)(φM(m))− F (φ)‖L∞(Ω) = 0.

The next proposition states

Proposition 5.2. The spatial operator in the Cartesian case, given by, for GM ∈
HM:

(21) FM(GM) =

∑

K∈M





∑

σ=K|L∈E(K)

1

dσ

(GL −GK)
√

(GL −GK)2 + d2σ|∇//σGM|2
(Gσ −GK)



XK ,

is consistent with |∇G|.

Proof. Let φ ∈ C∞
c (Ω) and φM ∈ HM its interpolation on the mesh. Consider

K ∈ M and v a constant vector. Let F̃K(φM,v) be:

F̃K(φM,v) =
∑

σ=K|L∈E(K)

1

dσ
(v · nK,σ)(φσ − φK).

With the upwind interpolation, we get that:

F̃K(φM,v) = −
∑

σ=K|L∈E(K)

1

dσ
(v · nK,σ)

−(φL − φK).

A simple Taylor expansion leads to:

F̃K(φM,v) = −
∑

σ=K|L∈E(K)

(v · nK,σ)
−
∇φ(xK).nK,σ +O(hM),

so

F̃K(φM,v) = ∇φ(xK) ·
∑

σ=K|L∈E(K)

(v · nL,σ)
+
nL,σ +O(hM).

Thanks to the Cartesian grid, we have:

∑

σ=K|L∈E(K)

(v · nL,σ)
+
nL,σ =

d
∑

i=1

(v · e(i))e(i) = v,

so we have:

F̃K(φM,v) = v ·∇φ(xK) +O(hM).
7



Concerning the MUSCL interpolation, we have:

F̃K(φM,v) =
1

2

∑

σ=K|L∈E(K)

1

dσ
(v · nK,σ)

+ min

(

φK − φMσ
K

dσ
dK|Mσ

K

, φL − φK

)

−
∑

σ=K|L∈E(K)

(v · nK,σ)
−(φL − φK)

− 1

2

∑

σ=K|L∈E(K)

1

dσ
(v · nK,σ)

− min

(

φL − φMσ
L

dσ
dL|Mσ

L

, φK − φL

)

,

where Mσ
K refers to the opposite cell to σ in K. It is easy to see that:

1

dσ
min

(

φK − φMσ
K

dσ
dK|Mσ

K

, φL − φK

)

= ∇φ(xK) · nK,σ +O(hM),

and,

1

dσ
min

(

φL − φMσ
L

dσ
dL|Mσ

L

, φK − φL

)

= ∇φ(xK) · nL,σ +O(hM).

Therefore,

F̃K(φM,v) =
1

2

∑

σ∈E(K)

(v · nK,σ)
+
∇φ(xK) · nK,σ+

1

2

∑

σ∈E(K)

(v · nL,σ)
+
∇φ(xK) · nL,σ +O(hM),

which leads to:

F̃K(φM,v) = ∇φ(xK) ·
∑

σ=K|L∈E(K)

1

2

(

(v · nK,σ)
+
nK,σ + (v · nL,σ)

+
nL,σ

)

+O(hM)

= ∇φ(xK) · v +O(hM).

Noticing, thanks to the consistency of ∇E , that:

FM(φM) =
∑

K∈M
F̃K

(

φM,
∇φ(xK)

|∇φ(xK)|

)

XK +O(hM),

we can conclude that:
lim

m→∞
FM(φM) = |∇φ|,

which concludes the proof. �

5.1.2. Monotonicity. Let (φM, ψM) ∈ HM. Let us define the following partial
order

(22) φM ≤ ψM ⇐⇒ ∀K ∈ M, φK ≤ ψK .

Then we get the following result with the Cartesian upwind scheme only.

Proposition 5.3 (Monotonicity of the upwind Cartesian scheme).
Suppose that the following CFL condition is satisfied

(23) δt ≤ 1
∑

σ∈E(K)
1+ 1

2

√
1+r2

dσ

, r = max
(σ,σ′)∈E(K)

dσ
dσ′

.

Then he have the following result:

∀(φM, ψM) ∈ HM, φM ≤ ψM =⇒ φM + δt FM(φM) ≤ ψM + δt FM(ψM).
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Proof. For the sake of clarity we prove the result in 2D. The extension to all di-
mension can be done at the cost of heavier notations and CFL conditions. We can
equivalently check that SCH is a non decreasing function of each variable. Let
K ∈ M and φM ∈ HM. We have:

φM + δt FM(φM) K = φK + δt
∑

σ=K|L∈E(K)

1

dσ
fK,σ (φM) ,

with,

fK,σ (φM) =
(φL − φK)−

√

(φL − φK)2 + d2σ|∇//σφM|2
(φL − φK)

The monotonicity of fK,σ in φL is equivalent to the monotonicity of the function:

f : x 7−→ x−x

|x| = −x−, ∀x ∈ R

because ∇//σφM does not depend on φL in the Cartesian case (see eq. (15)).
We can conclude that fK,σ is a non decreasing function of φL. Concerning the
monotonicity in φK− and φK+ it is equivalent to the variations of:

f : x 7−→ − 1

x+
,

which is a non decreasing function. We can conclude that SCH(φM) K is an
increasing function of each (φM )M∈M

M 6=K
. Concerning φK , we have:

SCH(φM) K = g(φK) =

φK − δt
∑

σ=K|L∈E(K)

1

dσ

(φK − φL)
+(φK − φL)

√

(φL − φK)2 + d2σ|∇//σφM|2

The analysis of this function can be split into three cases. If, ∀σ ∈ E(K), φK ≤ φL,
then g(φ) = φK which is non decreasing. The second case is when, ∀σ ∈ E(K),
φK ≥ max(φK+ , φK− , φL). We have:

g(φK) = φK −
∑

σ=K|L∈E(K)

δt

dσ
(φK − φL) .

which is non decreasing if,

δt ≤ 1
∑

σ∈E(K) d
−1
σ

.

Finally, suppose that ∀σ ∈ E(K), φL ≤ φK ≤ φK+ (orφK−), we have, denoting by
rσ = dσ

d
σ+

:

g(φK) = φK −
∑

σ=K|L∈E(K)

1

dσ

φK − φL
√

(φK − φL)2 + r2σ(φK − φK+)2
(φK − φL).

Let us derive this function:

g′(φK) = 1−
∑

σ=K|L∈E(K)

1

dσ

φK − φL
√

(φK − φL)2 + r2σ(φK − φK+)2

−
∑

σ=K|L∈E(K)

1

dσ

r2σ(φK+ − φK)(φK − φL)(φK+ − φK)

((φK − φL)2 + r2σ(φK − φK+)2)3/2

One can notice directly that:
∑

σ=K|L∈E(K)

1

dσ

φK − φL
√

(φK − φL)2 + r2σ(φK − φK+)2
≤ 1.

9



In order to upper-bound the second sum, we analyze the function

h : x 7−→ r2x(a− x)a

(x2 + d2(a− x)2)3/2
,

where a, r are strictly positive constants. We split the function in two parts h(x) =
h1(x)h2(x) with:

h1(x) =
r2x(a− x)

x2 + r2(a− x)2
,

h2(x) =
a

√

x2 + r2(a− x)2
.

Concerning h1 we can equivalently consider the function defined on R+ by:

y 7−→ r2

y + r2

y

=
r2y

y2 + r2
.

A quick study of the function shows that,

max
y∈R+

r2y

y2 + r2
=
r

2
= max

x∈[0,a]
h1(x).

The same work is performed with h2 and leads to:

max
x∈[0,a]

h2(x) =

√
1 + r2

r

Gathering the results, we get that:

∀x ∈ [0, a], h(x) ≤ 1

2

√

1 + r2

As a result, writing out r = max
(σ,σ′)∈E(K)

dσ
dσ′

, we get that g′(φK) ≥ 0 provided that

eq. (23) is satisfied. This CFL condition ensures that φM + δt FM(φM) K is a non
decreasing function of φK , which concludes the proof. �

Remark 5.1. All the results proved here can be extended with a transport velocity

u 6= 0 and a front propagation speed uf 6= 1. Only the CFL conditions are modified,

the sketch of the proofs is the same. However the monotonicity results cannot be

extended to the MUSCL interpolation, and more generally to the non Cartesian

case.

6. A convergence result in the Cartesian case

The previous section ensures that the upwind scheme satisfies the basic properties
to seek a convergence result on Cartesian meshes. We first recall the theorem given
in [3], adapted to our notations.

Theorem 6.1. Let D(m) =
{

M(m), E(m),P(m), δt(m)
}

be a sequence of discretiza-

tions such that the space and time steps tend to zero as m→ ∞. Let Ḡ be the vis-

cosity solution of eq. (4). Consider the following explicit scheme, for n ∈ [0, N−1]:

ðtGn
m + FM(Gn

m) = 0,

and the complete solution defined by G
(T )
m =

N−1
∑

n=0

Gn+1
m X[tn,tn+1]. We suppose that:

• The spatial operator FM is strongly consistent with the continuous operator

G 7−→ |∇G|.
• The scheme is invariant under translations: FM(GM + v) = FM(GM).
• The scheme is monotone.

10



Then,

GM(m) −→ Ḡ uniformly as m→ ∞.

Since we have shown the required properties in Theorem 6.1, we can thus con-
clude to the convergence of the scheme, which we state in the following corollary.

Corollary 6.2. Let D(m) =
{

M(m), E(m),P(m), δt(m)
}

be a sequence of discretiza-

tions such that the space and time steps tend to zero as m → ∞. Now suppose

there exists r > 0, such that ∀m ∈ N, ∀ (σ, σ′) ∈ E(m),

dσ
dσ′

≤ r.

Suppose that, for any m ∈ N,

δt(m) ≤ max
K∈M(m)

1
∑

σ∈E(K)
1+ 1

2

√
1+r2

dσ

.

Then the solution of the upwind Cartesian scheme eq. (7)-eq. (21) G
(T )
m converges

uniformly towards Ḡ.

7. Numerical results

7.1. One dimension. The domain is Ω = (0, 1). We use zero-flux boundary con-
ditions in x = 0 and x = 1. We suppose that the time and space steps are constant
for simplicity. Consider the following initial data:

(24) G0(x) = | sin(4πx)|
We give the solution at T = 0.05s, with an upwind interpolation for the spatial
operator, and a fixed CFL equal to 1/10.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T=0s
T=0.05s

Figure 2. Solution of the G-equation with the upwind scheme at
T = 0.05s.

It is possible to determine the unique viscosity solution of the eikonal equation for
a given bounded uniformly continuous initial data. The expression of the solution
is given by eq. (26) and its proof can be found in the appendix A. Consequently
we can highlight numerically the theoretical result about the convergence of the
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solution of our scheme towards the viscosity solution. The figure below gives the
error in L1 norm according to the space step, for a fixed CFL equal to 1

10 .
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L1  norm error
y=x

Figure 3. L1 norm error at T=0.05s and CFL=
1

10
– upwind interpolation.

We can also see the behavior of the scheme if we use discontinuous initial data.
We consider the following:

G0(x) =

∣

∣

∣

∣

0, if x ≤ 0.5

1, otherwise.

The result at time T = 0.2s is given below, for the upwind scheme and the MUSCL
scheme.
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Figure 4. solution at T = 0.05s and CFL=
1

10
with h = 10−3.

The MUSCL scheme brings less numerical diffusion, as expected. Normally one
can not define a viscosity solution for discontinuous initial data. However one
expects the solution to be the same as the general viscosity solution given for BUC
initial data (see eq. (26) in the Appendix).

7.2. Two Dimensions.

7.2.1. Unstructured grid. The computational domain is Ω = [−1

2
,
1

2
]2. The mesh

consists in convex quadrilaterals. We give an example of the discretization below.
These grids are built from a regular Cartesian grid for which a random displacement

Figure 5. Example of a 10× 10 unstructured grid

of length ǫh is applied to each node where h is the space step. We consider zero-flux
boundary conditions. The initial data are given in the polar coordinates (r, θ):

G0(r, θ) = r

(

1 +
1

2
cos (4θ)

)

.
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Results obtained at different times are given below. The scheme used is the upwind

version for unstructured meshes, with a space step h =
1

200
, and a constant CFL

equal to 1
10 .

Initial data T = 0.08s

T = 0.2s

Figure 6. G at different times with the upwind scheme on an

unstructured mesh – h =
1

200
– CFL =

1

10

Another possible test case is the following one:

(25) G0(r, θ) = | sin (4πr) |.

Results obtained with different meshes are displayed just below. The scheme used is

the upwind version for unstructured meshes, with a space step h =
1

400
, a constant

CFL equal to 1
10 and a final time equal to T = 0.04s.
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Initial time Exact solution

Unstructured grid: ǫ = 0.35 Rhomboidal mesh

Triangular mesh

Figure 7. G on different meshes –T = 0.04s – h =
1

400
– CFL =

1

10

Finally we plot some convergence results. Let Gvisc be the viscosity solution
associated to the initial data eq. (25) . We take Gvisc(., T = 0.01s) as a new initial
data. The final time is set to T = 0.04s. The results are given below, with a
constant CFL equal to 1

10 , using three different meshes : an unstructured mesh
with a deformation ratio equal to ǫ = 0.1, a triangular mesh which consists of a

15



square grid where each square is cut in half following the same diagonal, and a
Rhomboidal mesh composed of parallelograms with a large angle equal to 2π

3 .
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Figure 8. L1 norm error at T=0.05s and CFL=
1

10
– upwind interpolation.

7.2.2. Cartesian grids. We use the same test to compare the convergence of the
MUSCL scheme, the upwind scheme, and an upwind finite difference scheme de-
scribed in [8] designed for the Hamilton-Jacobi equations. In order to properly
observe a difference in the convergence rate we use a Runge-Kutta time discretiza-
tion of order two.

To conclude, we introduce a test case with a convective velocity u different from
zero. Let the computational domain be Ω = (0, 1)2. Zero-flux boundary conditions
are prescribed on the boundary. We consider the following initial data

G0(x) =

∣

∣

∣

∣

∣

0, if ‖x− (0.25, 0.8)‖ ≤ 0.15

1, otherwise.

The front propagation velocity is equal to uf = 0.8 and the convective velocity
corresponds to a vortex centered around (0, 0) with a constant angular speed equal
to 2π, namely

u = 2πreθ,

in polar coordinates.
The upwind scheme is used on a 400× 400 Cartesian grid with a CFL equal to

1
20 . Results are plotted below.

Numerical simulations performed in this section are in good agreement with the
properties verified by the scheme. The discretization proposed in this paper has
been implemented on a Computational Fluid Dynamics software called P2REMICS
[17]. It will be used on a complex model with reactive flows to simulate the flame
front propagation in the explosion phenomenon, for nuclear safety issues. Work on
this model and its related numerical simulations is underway.
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Appendix A. Viscosity solutions of the eikonal equation

It is possible to compute the viscosity solution of 4 for every GO ∈ BUC(Rd).
It is then defined on Rd × (0,+∞) by:

(26) G(x, t) = inf
|x−y|≤t

G0(y).

The proof of this result can be found in [4], and it is based on the following lemma

Lemma A.1. Let us set

S(t)G(x) = inf
|x−y|≤t

G(y).

Then S is a monotonous semigroup on C(Rd).

Proof. The proof is rather simple as

S(t) ◦ S(s)G(x) = inf
|x−y|≤t

(

inf
|z−y|≤s

G(z)

)

.

This computation is equivalent to seek the infimum in the set

{z such that ∃y such that |x− y| ≤ t and |z − y| ≤ s} .
Now, this set is equal to the set

{z} such that |x− z| ≤ t+ s,

so the infimum are equal and S(t+ s) = S(t) ◦ S(s). Now consider G1 and G2 two
functions of C(Rd) such that G1 ≤ G2 and let t > 0. Thanks to the continuity
of G2, ∃yx,t ∈ B(x, t) such that S(t)G2(x) = G2(yx,t). Consequently G2(yx,t) ≥
G1(yx,t) ≥ S(t)G1(x), which concludes the proof. �

Now let φ ∈ C1(Rd × (0,+∞)) and suppose that (x, t) is a local maximum of
G− φ. Thanks to the semigroup property of S we get that:

G(x, t) = S(t)G0(x) = S(h)S(t− h)G0(x) = S(h)G(x, t− h).

Therefore, for all 0 < h < t, we have

(27) G(x, t) = inf
|x−y|≤h

G(y, t− h).

(x, t) being a local maximum of G − φ, we have, if h is sufficiently small, and
|x− y| ≤ h:

G(y, t− h)− φ(y, t− h) ≤ G(x, t)− φ(x, t),

which is equivalent to

G(y, t− h) ≤ G(x, t)− φ(x, t) + φ(y, t− h).

Injecting this in 27 leads to

φ(x, t) ≤ inf
|x−y|≤h

φ(y, t− h).

A first order Taylor expansion at the point (x, t) leads to

0 ≤ inf
|x−y|≤h

[

−∂tφ(x, t) +∇φ(x, t) · y − x

h
+ o(1)

]

.

Using that fact that − inf(−) = sup(), we have

∂tφ(x, t) + sup
|x−y|≤h

∇φ(x, t) · x− y

h
+ o(1) ≤ 0.

Thanks to the Cauchy-Schwarz inequality:

|∇φ(x, t) · x− y

h
| ≤ |∇φ(x, t)|.
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By taking y = x − ∇φ(x, t)

|∇φ(x, t)|h we see that the previous upper-bound is reached.

Therefore ,
∂tφ(x, t) + |∇φ(x, t)|+ o(1) ≤ 0,

and passing to the limit when h→ 0 leads to the desired result.
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