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Brownian motion and Random Walk above
Quenched Random Wall

Bastien Mallein∗ Piotr Miłoś†

February 1, 2016

Abstract
We study the probability of a random walk staying above a trajectory of another random walk.

More precisely, let {Bn}n∈N and {Wn}n∈N be two centered random walks (subject to moment
conditions). We establish that P (∀n≤NBn ≥Wn|W ) ∼ N−γ , where γ is a non-random exponent
and ∼ is understood on the log scale. In the classical setting (i.e. Wn ≡ 0) it is well-known that
γ = 1/2. We prove that for any non-trivial wall W one has γ > 1/2 and the exponent γ depends
only on Var(B1)/Var(W1).

Further, we prove that these results still hold if B depends weakly on W , this problem naturally
emerges in studies of branching random walks in a time-inhomogenous random environment. They
are valid also in the continuous time setting, when B and W are (possibly perturbed) Brownian
motions. Finally, we present an analogue for Ornstein-Uhlenbeck processes. This time the decay
is exponential exp(−γN).

1 Introduction and main results
We recall a classical result concerning a standard Brownian motion {Bt}t≥0:

P (∀s≤t1 +Bs ≥ 0) = P
(

inf
s≤t

Bs ≥ −1
)

= 1− 2P (Bt ≤ −1) = P (|Bt| < 1) ∼ 1√
2π
t−1/2, (1.1)

where in the second line we utilized the reflection principle. The above can be viewed as the probability
of a Brownian motion staying above the wall f(t) = 0. It is well-known for any f(t) = O(t1/2−ε), ε > 0
the order of decay remains the same:

lim sup
t→+∞

t1/2P (∀s≤t1 +Bs ≥ f(t)) < +∞ and lim inf
t→+∞

t1/2P (∀s≤t1 +Bs ≥ f(t)) > 0.

We will concentrate on the case when the wall is sampled randomly and then kept frozen (i.e. a
quenched result). In our typical example, when the wall is another Brownian motion, we prove that
the order decay is t−γ . Importantly, γ > 1/2, which can be interpreted as the relevance of the disorder
introduced by the wall. As a benchmark we compare this result with a wall sampled from an i.i.d.
sequence, which turns out be the same as for f(t) = 0, i.e. γ = 1/2.

This phenomenon is universal. An analogous result holds for the decay of probability of a random
walk staying over a path of another random walk (even for random walks in time-changing random
environment). We also extend this result to strongly ergodic diffusions, Ornstein-Uhlenbeck processes
in our case. Below we present our results in separate subsections.
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1.1 Brownian motion over Brownian motion
Theorem 1.1. Let B,W be two independent standard Brownian motions. There exists a continuous
function γ : R→ R such that for any β ∈ R, 0 ≤ a < b ≤ +∞ and x > 0

lim
t→+∞

logP
(
∀s≤tx+Bs ≥ βWs, Bt − βWt ∈ (at1/2, bt1/2)|W

)
log t = −γ(β) a.s. and in Lp, p ≥ 1

Moreover, γ is symmetric, convex and for any β 6= 0,

γ(β) > γ(0) = 1/2. (1.2)

Consequently, γ is strictly increasing and limβ→+∞ γ(β) = +∞.

Remark 1.2. We conjecture that β 7→ γ(β) is strictly convex.
Remark 1.3. Inequality (1.2) can be interpreted as the relevance of the disorder. Namely, for any β > 0
we have

lim
t→+∞

E [− logP (∀s≤tx+Bs ≥ βWs|W )]
log t > lim

t→+∞

− logP (∀s≤tx+Bs ≥ βWs)
log t = 1

2 .

We compare Theorem 1.1 with a similar result for a random wall with fast decay of correlations. For
simplicity, we choose an i.i.d. sequence but the result is still valid for other processes such as Ornstein-
Uhlenbeck. In this case, the wall has no impact on the asymptotic behaviour of the probability.

Fact 1.4. Let {Xi}i∈N be an i.i.d. sequence of random variables such that EXi = 0 and EX2
i < +∞

and B an independent Brownian motion, we have

lim
N→+∞

logP
(
∀n∈{1,...,N}x+Bn ≥ Xn|X

)
logN = −1

2 a.s.

The result of Theorem 1.1 is stable under some perturbations of the starting condition and the
wall.

Theorem 1.5. Let B,W be two independent Brownian motions, f : R+ → R and g : R+ → R+ such
that

f(0) = 0 , lim
t→+∞

|f(t)|
t1/2−ε = 0, inf

t≥0
g(t) > 0 and lim

t→+∞

log g(t)
log t = 0.

for some ε > 0. For any β ∈ R and 0 ≤ a < b ≤ +∞ we have

lim
t→+∞

logP
(
∀s≤tg(t) +Bs ≥ βWs + f(s), Bt − βWt ∈ (at1/2, bt1/2)|W

)
log t

= −γ(β), a.s. and Lp, p ≥ 1.

1.2 Ornstein-Uhlenbeck process over Ornstein-Uhlenbeck process
We extend Theorem 1.1 to a more general setting. We recall that an Ornstein-Uhlenbeck process
{Xt}t≥0 with parameters σ, µ > 0 is a diffusion fulfilling the stochastic differential equation

dXt = σdWt − µXtdt.

Remark 1.6. We recall a well-known relation. Let W be a standard Wiener process then

Xt := xe−µt + σ√
2µ
e−µtWe2µt−1 (1.3)

is an Ornstein-Uhlenbeck process with parameters σ, µ > 0 starting from X0 = x.
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The main result of this section is following.

Theorem 1.7. Let X,Y be two independent Ornstein-Uhlenbeck processes with the parameters σ1 =
σ2 = 1 and µ1, µ2 > 0. There exists two functions γµ1,µ2 and δµ1,µ2 such that for any β ∈ R,
0 ≤ a < b ≤ +∞, if X0 > βY0 then

lim
t→+∞

logP (∀s≤tXs ≥ βYs, Xt − βYt ∈ (a, b)|Y )
t

= −γµ1,µ2(β), a.s. and in Lp, p ≥ 1, (1.4)

lim
t→+∞

logP (∀s≤tXs ≥ βYs, Xt − βYt ∈ (a, b))
t

= −δµ1,µ2(β). (1.5)

Both functions are symmetric, convex, and for any β 6= 0,

γµ1,µ2(β) > δµ1,µ2(β) > 0. (1.6)

Using (1.3) one checks that the assumption σ1 = σ2 = 1 is non-restrictive. Indeed, we set
g(β;σ1, σ2, µ1, µ2) be

g(β;σ1, σ2, µ1, µ2) := lim
t→+∞

− logP (∀s≤tXs ≥ βYs, Xt − βYt ∈ (a, b)|Y )
t

where X,Y are two independent Ornstein-Uhlenbeck processes with parameters (µ1, σ
2
1) and (µ2, σ

2
2)

respectively. By scaling property of the Brownian motion, we have

g(β;σ1, σ2, µ1, µ2) = γµ1,µ2

(
β
σ2

σ1

)
and γµ1,µ2 = µ2γµ1/µ2,1.

The same relations hold for δµ1,µ2 .
Remark 1.8. By (1.3), one can see that Theorem 1.7 for µ = µ1 = µ2 is equivalent to Theorem 1.1.
Indeed, one checks that

γµ,µ(β) = 2µγ(β), δµ,µ(β) = µ.

We stress however that the case of different µ’s cannot be expressed in the terms of Theorem 1.1.
Moreover, we suspect that max(µ1, µ2) > δµ1,µ2(β) > min(µ1, µ2).

1.3 Random walk in random environment
Results analogous to Theorem 1.1 hold for random walks. Let {Bn}n∈N , {Wn}n∈N be two independent
random walks. Some technical difficulties arise while dealing with these processes. In fact, there may
exist n such that x+Bn < Wn a.s. To resolve this issue we introduce the event

Ax :=
⋂
N≥0
{P (∀n≤Nx+Bn ≥Wn|W ) > 0} , (1.7)

and study the asymptotic behaviour of the probability for B to stay above W on the event Ax. We
first briefly study this event.

Fact 1.9. For any x ≤ x′ we have Ax ⊂ Ax′ and limx→+∞ P (Ax) = 1. Moreover the following
conditions are equivalent:

• For any x > 0, P (Ax) = 1.

• supSB ≥ supSW , where SB , SW are respectively the supports of the measures describing B1 and
W1 (we allow both the sides to be infinite).
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Theorem 1.10. Let B,W be two independent random walks such that EB1 = EW1 = 0 and suppose
that there exists b > 0 such that Eeb|B1| < +∞ and Eeb|W1| < +∞. Then for any x > 0 and
0 ≤ a < b ≤ +∞ we have

lim
N→+∞

− logP
(
∀n≤Nx+Bn ≥Wn, BN −WN ∈ (aN1/2, bN1/2)|W

)
logN

=
{
γ
(√

Var(W1)
Var(B1)

)
on Ax,

+∞ on Acx.
, a.s.

Theorem 1.10 can be extended to a more general model of a random walk in random environment
that we define now.

Let µ = {µn}n∈N be an i.i.d. sequence with values in the space of probability laws on R. Con-
ditionally on µ we sample {Xn}n∈N a sequence of independent random variables such that Xn has
law µn. Moreover, we set

Sn :=
n∑
j=1

Xj , Wn := −
n∑
j=1

E(Xj |µ) and Bn := Sn +Wn.

Note that W is a random walk and conditionally on µ the process B is the sum of independent centred
random variables. We make the following assumptions:

(A1) We have EW1 = 0, Var(W1) ∈ [0,+∞) and Var(B1) = EB2
1 ∈ (0,+∞).

(A2) There exist C1, C2 > 0 such that E(eC1|B1||µ) ≤ C2 a.s.

(A3) There exists C > 0 such that EeC|W1| < +∞.

We introduce a function f : N→ N and we extend definition (1.7) as follows

Ax :=
⋂
N≥0
{P (∀n≤Nx+Bn ≥Wn + f(n)|W ) > 0} . (1.8)

Our result states

Theorem 1.11. Let S be a random walk in random environment, and B, W as described above. Let
f : N 7→ N such that |f(n)| = o(n1/2−ε) for some ε > 0. For any x > 0 and 0 ≤ a < b ≤ +∞ the
following limit exists

lim
N→+∞

− logP
(
∀n≤Nx+ Sn ≥ f(n), SN ∈ (aN1/2, bN1/2)|µ

)
logN

=
{
γ
(√

Var(W1)
Var(B1)

)
on Ax,

+∞ on Acx.
, a.s. (1.9)

The previous result holds with some uniformity on the starting position. It is somewhat cumber-
some to define an analogue Ax in this case. For this reason we state an example when xN ↗ +∞ and
this event is trivial.

Theorem 1.12. Let S,B and W be as above. Let f : N 7→ N such that |f(n)| = o(n1/2−ε) for some
ε > 0 and {xn}n ≥ 0 be such that xn ↗ +∞ and xn = eo(logn). Then for any 0 ≤ a < b ≤ +∞ the
following limit exists

lim
N→+∞

logP
(
∀n≤NxN + Sn ≥ f(n), SN ∈ (aN1/2, bN1/2)|W

)
logN = −γ

(√
Var(W1)
Var(B1)

)
a.s.
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1.4 Related works
Our result can be understood from various perspectives. One of them is the so-called entropic repulsion.
This question was asked in [2] in the context of the Gaussian free field for d ≥ 3. Namely, the authors
studied the repulsive effect on the interface of the wall which is a fixed realization of an i.i.d. field
{φx}x∈Zd . They observe that the tail of φx plays a fundamental role. When it is subgaussian than the
effect of the wall is essentially equivalent to the wall given by 0, while when the tail is heavier than
Gaussian the interface is pushed much more upwards. It would be interesting to ask an analogous
question in our case. By Fact 1.4 we know already that the disorder has a negligible effect when
EX2+ε

i < +∞, for ε > 0. We expect that when EX2
i =∞ the repulsion becomes much stronger.

The paper [2] was followed by [3] which could be seen as an analogue of our work. Namely, the
topic of this paper is a Gaussian free field interface conditioned to be above the fixed realization of
another Gaussian free field. The authors obtain the precise estimates for the probability of this event
and the entropic repulsion induced by the conditioning.

A natural question arising in random walk theory is to study the probability for a random walk to
stay non-negative during n units of time. Typically this probability decays as n−1/2, which is known
as the ballot theorem. Our result stated in Theorem 1.11 provides a version of this result for random
walks in random environment. The decay is like n−γ for γ ≥ 1/2. Moreover, γ > 1/2 whenever the
quenched random walk is not centered.

This perspective was the initial motivation for analyzing the problems in this paper (more precisely
the result given in Theorem 1.11). In fact, the question arises from studies of extremal particles of a
branching random walk in a time-inhomogeneous random environment. In the companion paper [8] we
show that the randomness of the environment has a slowing effect on the position of the maximal parti-
cle. Namely, the logarithmic correction to the speed is bigger than in the standard (time-homogenous)
case, which is a consequence of (1.2).

1.5 Organization of the paper
The next section is a collection of preliminary results on the FKG inequality, Ornstein-Uhlenbeck
processes and some technical results. We prove in Section 3 the convergence (1.4) using Kingman’s
theorem. Section 4 shows that the disorder of the wall has an effect (expressed by inequality (1.6).
Section 5 is devoted to a translation of the results from Ornstein-Uhlenbeck to Brownian motion
settings, and generalize it to Theorem 1.5. This last theorem is used in Section 6 to study the
analogue problem for random walks in random environment. The concluding Section 7 contains further
discussion and open questions.

2 Preliminaries and Technical Results
In this section we list a collection of results that will be useful in the rest of the article. We first
introduce the so-called FKG inequality for a Brownian motion and an Ornstein-Uhlenbeck process. It
states that increasing events are positively correlated. We also list some facts concerning Ornstein-
Uhlenbeck and derive technical consequences.

2.1 The FKG inequality for Brownian motion and Ornstein-Uhlenbeck pro-
cesses

In the proofs we will often use the so-called FKG inequality. Let C := C([0, T )R), for T ≥ 0 be the
usual space of continuous functions with the uniform norm topology. We introduce a partial ordering
≺ on this space. For two f, g ∈ C we set

f ≺ g if and only if ∀t∈[0,T ]f(t) ≤ g(t). (2.1)

By [1, Theorem 4 and Remark 2.1] we have

5



Fact 2.1. (The FKG inequality) Let X be a Brownian motion or an Ornstein-Uhlenbeck process and
F,G : C → R be bounded measurable functions, which are non-decreasing with respect to ≺ then

E [F (X)G(X)] ≥ [EF (X)] [EG(X)] . (2.2)

The result of [1] is stated for the Brownian motion. It can be transferred easily to the Ornstein-
Uhlenbeck process as (1.3) preserves the order ≺ defined in (2.1). The same reasoning hold for other
proofs in this section. To shorten and simplify proofs, we only work with Brownian motion.

We will often use the following corollary of Fact 2.1.

Corollary 2.2. Let X be a Brownian motion or an Ornstein-Uhlenbeck process and A,B be increasing
events (i.e. such that the functions 1A and 1B are non-decreasing for ≺), then

P (A ∩B) ≥ P (A)P (B) . (2.3)

We also use the following property, sometimes called the strong FKG.

Fact 2.3. Let X be a Brownian motion or an Ornstein-Uhlenbeck process, f, g : R+ → R ∪ {−∞}
be measurable such that f(t) ≥ g(t) for t ∈ R+. We assume that P

(
∀t∈[0,T ]Xt ≥ f(t)

)
> 0 and

P
(
∀t∈[0,T ]Xt ≥ g(t)

)
> 0. The probability distribution P

(
·|∀t∈[0,T ]Xt ≥ f(t)

)
stochastically dominates

P
(
·|∀t∈[0,T ]Xt ≥ g(t)

)
with respect to ≺, in other words for any measurable function h : R+ → R, we

have
P
(
∀t∈[0,T ]Xt ≥ h(t)|∀t∈[0,T ]Xt ≥ f(t)

)
≥ P

(
∀t∈[0,T ]Xt ≥ h(t)|∀t∈[0,T ]Xt ≥ g(t)

)
.

Proof. Let us assume that P (X0 = f(0)) = 0, and P (X0 = g(0)) = 0. We leave to the reader re-
moving this condition. Using the Girsanov theorem it is easy to show that P

(
∀t∈[0,T ]Xt ≥ f(t)

)
=

P
(
∀t∈[0,T ]Xt > f(t)

)
. We will change ≥ to > and vice-versa whenever convenient. Notice that{

∀t∈[0,T ]Xt ≥ f(t)
}

=
{
∀t∈[0,T ]Xt ≥ f̃(t)

}
, where f̃ : [0, T ] 7→ R is given by

f̃(x) := inf
ω∈F

ω(x),

for F :=
{
ω ∈ C : ∀t∈[0,T ]ω(t) > f(t)

}
. It is well-known that f̃ is upper semincontinous. Thus without

loss of generality we assume that both f and g are upper semincontinous. By Baire’s theorem there
exists a sequence {fn}n such that fn ∈ C and fn(t)↘ f(t) point-wise. This in particular implies that
An :=

{
∀t∈[0,T ]Xt > fn(t)

}
is an increasing sequence of events and

⋃
nAn =

{
∀t∈[0,T ]Xt > f(t)

}
(we

tacitly assume that we work on the canonical Wiener space). We have an analogous sequence {gn} for
g. Taking min(fn, gn) we may assume that gn ≤ fn.

For any continuous fn and ε > 0 we can find a finite set 0 ≤ t1 < t2 . . . < tk ≤ T such that

P
({
∀i∈{1,...,n}Xti ≥ f(ti)

}
\
{
∀t∈[0,T ]Xt ≥ f(t)

})
≤ ε.

Assume now that the statement of the fact is false. Then there exists a measurable, bounded non-
decreasing function F : C → R such that

E
(
F |∀t∈[0,T ]Xt ≥ f(t)

)
< E

(
F |∀s∈[0,T ]Xt ≥ g(t)

)
. (2.4)

Using previous arguments we can find n and 0 ≤ t1 < . . . < tk ≤ T such that

E
(
F |∀i∈{1,...,k}Xti ≥ fn(ti)

)
< E

(
F |∀i∈{1,...,k}Xti ≥ gn(ti)

)
. (2.5)

Using the same techniques as [5, B.6] one shows that P
(
(Xt1 , . . . , Xtk) ∈ ·|∀i∈{1,...,k}Xti ≥ fn(ti)

)
stochastically dominates P

(
(Xt1 , . . . , Xtk) ∈ ·|∀i∈{1,...,k}Xti ≥ gn(ti)

)
. We notice that conditionally on

Xti = x and Xti+1 = y the process {Xt − [(ti+1 − t)x+ (t− t)y] /(ti+1 − ti)}t∈[ti,ti+1] is a Brownian
bridge. Moreover if we condition on the whole vector (Xt1 , Xt2 , . . . , Xtk), by the Markov property
the brides on the different intervals are independent. Finally by simple calculations we arrive at
contradiction with (2.5) and consequently also with (2.4).
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2.2 Integrability estimates for Ornstein-Uhlenbeck processes
We list standard estimates on Ornstein-Uhlenbeck processes.

Fact 2.4. Let X be an Ornstein-Uhlenbeck process with parameters σ, µ > 0 starting from X0 = x.

1. The process X is a strong Markov process with an invariant measure N
(
0, σ2/(2µ)

)
. For any

t > 0 the random variable Xt is distributed as N
(
xe−µt, σ

2

2µ (1− e−2µt)
)
.

2. For any y ∈ R the tail of inf {t ≥ 0 : Xt = y} decays exponentially.

3. The process
{
X̃t

}
t≥0 given by X̃t := Xt − e−µtX0 is an Ornstein-Uhlenbeck process with param-

eters σ, µ > 0 starting from X̃0 = 0.

4. The random variableM := supt≤1 Xt has Gaussian concentration i.e. for some constants C, c > 0
there is

P (M > x) ≤ C exp(−cx2), x ≥ 0.

We recall standard Gaussian tail estimates.

Fact 2.5. Let Z be a standard Gaussian random variable and x > 0. Then we have
1√
2π

x

1 + x2 e
−x2/2 ≤ P (Z ≥ x) ≤ 1√

2π
1
x
e−x

2/2. (2.6)

We present a convex analysis result.

Lemma 2.6. Let X be a Brownian motion or Ornstein-Uhlenbeck process and h1, h2 : R→ R∪{−∞}
be càdlàg functions such that

P (∀s≥0Xs ≥ h1(s)) > 0, P (∀s≥0Xs ≥ h2(s)) > 0.

Then the function

[0, 1] 7−→ R+
λ 7−→ − logP (∀s≥0Xs ≥ λh1(s) + (1− λ)h2(s))

is convex.

Proof. By standard limit arguments it is enough to show that for any n,N ∈ N the function

[0, 1] 7→ R+
λ 7→ − logP

(
∀k≤NXk/n ≥ λh1(k/n) + (1− λ)h2(k/n)

) (2.7)

is convex. To this end we will use the Prekopa-Leindler inequality along the lines of the proof below
[4, Theorem 7.1]. Let Hλ(x) = d(x)1∀kxk≥λh1(k/n)+(1−λ)h2(k/n)(x), where by d we denote the joint
density of (X1/n, X2/n, . . . , XN/n). The density d is log-concave i.e for any λ ∈ (0, 1) and x, y ∈ RN

we have d(λx+ (1− λ)y) ≥ d(x)λd(y)(1−λ). Similarly

1∀kλxk+(1−λ)yk≥λh1(k/n)+(1−λ)h2(k/n) ≥
(
1∀kxk≥h1(k/n)

)λ (1∀kyk≥h2(k/n)
)1−λ

.

Thus the assumption of the Prekopa-Leindler inequality is fulfilled i.e.

Hλ(λx+ (1− λ)y) ≥
(
H1(x)

)λ (
H0(y)

)1−λ
.

Now [4, Theorem 7.1] implies (2.7).

Finally, we prove the random variable − logP (∀s≤1Xs ≥ Ys|Y ) is integrable.
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Fact 2.7. Let X,Y be Ornstein-Uhlenbeck processes.

1. Let C, c > 0 and x ≥ 0. We assume that X0 ∼ N (x, c2
1) with c1 ≥ c and Y0 ∼ N (0, C1) with

C1 ≤ C. Then there exists a constant C̃ > 0 such that

E [− logP (∀s≤1Xs ≥ Ys|Y )] ≤ C̃ (2.8)

2. Let X0 = x > 0 and Y0 = 0, we set ρ = inf {t ≥ 0 : Yt = 0,∃s < t : |Ys| = 1}. Then

E [− logP (∀s≤ρXs ≥ Ys|Y )] < +∞. (2.9)

3. Let X0 = 0, Y0 = 0 and a, b > 0 then the random variable

− logP (∀s≤1Xs ≥ Ys − a,X1 ≥ Y1 + b|Y )

has exponential moments.

Proof. Let X,Y be two independent Ornstein-Uhlenbeck processes of parameters (µ1, σ1), (µ2, σ2). We
first prove point 3. By the FKG property (2.3) we have

− logP (∀s≤1Xs ≥ Ys − a,X1 ≥ Y1 + b|Y ) ≤ − logP (∀s≤1Xs ≥ Ys − a|Y )− logP (X1 ≥ Y1 + b|Y ) .

Proving the exponential integrability of the second summand is easy and left to the reader. Let us
denote the first one by H and apply (1.3). We have

H ≤ − logP
(
∀s≤1Bt1(s) ≥ β|Wt2(s)| − a′|W

)
.

where B,W are Brownian motions, β = σ2
σ1
, t1(s) = eµ1s−1 and t2(s) = eµ2s−1 ((µ1, µ2 are parameters

of the Ornstein-Uhlenbeck processes X and Y ). The constants a′, β > 0 can be calculated explicitly
but do not matter for the calculations. We denote

A1 :=
{
∀i∈N∀s∈[ 3

4 2−i,2−i]Bt1(s) ≥ β|Wt2(s)| − a′
}
,

A2 :=
{
∀i∈N\{0}∀s∈[2−i, 3

2 2−i]Bt1(s) ≥ β|Wt2(s)| − a′
}
.

Using the FKG property (2.3) we write

H ≤ − logP (A1 ∩ A2|W ) ≤ − logP (A1|W )− logP (A2|W ) .

Let us denote the first expression as H1. We will prove that it is exponentially integrable. One can
apply exactly the same argument to the second one. We notice that

B :=
{
∀i∈N∀s∈[ 3

4 2−i,2−i]Bt1(s) −Bt1(2−i/2) ≥ β|Wt2(s) −Wt2(2−i/2)| − 2−i/4a′/8
}
⊂ A1.

Let θ > 0, using the fact that the increments of a Brownian motion are independent we obtain

L(θ) := EeθH1 = E
(
P (B|W )−θ

)
=
∏
i∈N

Li(θ),

where

Li(θ) := E
(
P
(
∀s∈[ 3

2 2−i,2−i]Bt1(s)−t1(2−i/2) ≥ β|Wt2(s)−t2(2−i/2)| − 2−i/4a′′|W
)−θ)

,

and a′′ := a′/8. By the Brownian scaling we get

Li(θ) = E
(
P
(
∀s∈[ 3

2 2−i,2−i]B2i[t1(s)−t1(2−i/2)] ≥ β|W2i[t2(s)−t2(2−i/2)]| − 2i/4a′′|W
)−θ)

.
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It is easy to check that there exist 0 < c1 < C1 such that for any i ∈ N we have c1 ≥ 2i[t1( 3
4 2−i) −

t1(2−i/2)] and C1 ≤ 2i[t1(2−i)− t1(2−i/2)] analogously we define 0 < c2 < C2 for t2. We put

M := sup
s∈[c2,C2]

βWs, m := inf
s∈[c1,C1]

Bs.

With this notation we estimate

Li(θ) ≤ E
(
P
(
m ≥M − 2i/4a′′|W

)−θ)
=: L̃i(θ).

We have

0 ≤ L̃i(θ)− 1 = E

(
1− P

(
m ≥M − 2i/4a′′|W

)θ
P
(
m ≥M − 2i/4a′′|W

)θ
)
.

It is well-known that for x ≥ 0 we have q(x) := P (M > x) ≤ C3e
−c3x

2 for some c3, C3 > 0. We also
prove a bound from below for the tail of m. Namely, we have

P (m > x) ≥ P

(
{Bc1 ≥ x+ 5} ∩

{
sup

s∈[c1,C1]
|Bs −Bc1 | ≤ 5

})

≥ P (Bc1 ≥ x+ 5)P
(

sup
s∈[c1,C1]

|Bs −Bc1 | ≤ 5
)
≥ C4e

−c4x
2
,

for some c4, C4 ≥ 0. We combine the estimates to get

L̃i(θ)− 1 ≤ 2θP
(
M ≤ 2i/4a′′/2

)
P
(
m ≤ −2i/4a′′/2

)
+ P

(
M ≥ 2i/4a′′/2

)
P (m ≥ 0)−θ

+
ˆ +∞

0
P (m ≥ y)−θ P

(
M ≥ y + 2i/4a′′

)
dy.

One easily checks that the first two terms estimate by ≤ C5e
−c5i for c5, C5 > 0. For the last one we

have
ˆ +∞

0
P (m ≥ y)−θ P

(
M ≥ y + 2i/4a′′

)
dy ≤ C−θ4 C3

ˆ +∞

0
eθc4y

2
e−c3(y+2i/4)2

dy ≤ C6e
−c6i,

for c6, C6 > 0, where the last estimate holds under assumption that θ is small (it is enough that
θc4 < c3). Putting together we obtain that

0 ≤ L̃i(θ)− 1 ≤ C5e
−c5i + C6e

−c6i.

This is enough to claim that
∏
i∈N L̃i(θ) < +∞ and consequently also

∏
i∈N Li(θ) < +∞ and thus the

exponential integrability of H1.
Similar, but simpler, calculations prove that

E [− logP (∀s≤1Xs ≥ Ys|Y,X0 = x, Y0 = 0)] < +∞. (2.10)

Let us now pass to the proof of (2.9). By the FKG inequality (2.3) we have

E [− logP (∀s≤ρXs ≥ Ys|Y )] ≤E [− logP (∀s≤1Xs ≥ Ys|Y )]

+ E

 dρe∑
i=1
− logP

(
∀s∈[i,i+1]Xs ≥ sup

s∈[0,ρ]
Ys|Y

) .
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The first term is finite by (2.10). To treat the second one we study

pi(m) := − logP
(
∀s∈[i,i+1]Xs ≥ m

)
.

By point 3 of Fact 2.4 the process X̃t := Xi+t −Xi+te
−µt is an Ornstein-Uhlenbeck process starting

from X̃0 = 0. Therefore we have

pi(m) ≤ − logP (Xi ≥ meµ + 1)− logP
(
∀s∈[0,1]X̃s ≥ −1

)
.

Clearly − logP
(
∀s∈[0,1]X̃s ≥ −1

)
> −∞, using point 1 of Fact 2.4 and (2.6) one easily checks that

pi(m) ≤ C9(m2 + 1),

for C9 > 0. Recalling that M = sups∈[0,ρ] Ys and Fact 3.3 we conclude

E

 bρc∑
i=1

pi (M)

 ≤ E
(
ρ
[
C9(M2 + 1)

])
≤
(
E
(
ρ2)E [C9(M2 + 1)

]2)1/2
< +∞.

The estimate (2.8) follows by similar calculations and Fact 2.4.

3 Existence and properties of the function γ

Let X,Y be two independent Ornstein-Uhlenbeck processes with parameters (µ1, σ1) and (µ2, σ2). The
main result of the section is the existence of γ > 0 such that

lim
t→+∞

− logP (∀s≤tXs ≥ βYs, Xt − βYt ∈ (a, b)|Y )
t

= γ a.s.

To make notation lighter we write γ instead of γµ1,µ2(σ2/σ1). We start proving the annealed part of
Theorem 1.7.

Lemma 3.1. There exists δ > 0 such that for any 0 ≤ a < b ≤ +∞,

lim
t→+∞

− logP (∀s≤tXs ≥ βYs, Xt − βYt ∈ (a, b))
t

= δ.

Proof. This is a standard result from the spectral theory. We set T = inf{t ≥ 0 : Xt = Yt}, the process
{(Xs∧T , Ys∧T )}s≥0 is a Markov process. We set L its infinitesimal operator. The exponent δ is the
first eigenvalue of L on the domain D :=

{
(x, y) ∈ R2 : x ≥ y

}
.

3.1 Path decomposition
We provide a decomposition of the path Y . This decomposition is used both in proofs of (1.4) and
(1.6). We define the random variables {τi}i≥0 , {ρi}i≥0 such that ρ0 = 0 and

ρi+1 := inf
{
t ≥ ρi : Yt = 0 and ∃s∈(ρi,t)|Ys| = 1

}
and τi := sup {t < ρi+1 : Yt = 0} .

We also define ri := ρi+1 − ρi and denote

Y i(t) := Yt+ρi , t ∈ [0, ri]. (3.1)

Remark 3.2. Note that ρi is a stopping time (contrary to τi). Details of the definition of ρi and τi are
not important. What matters for our proofs is that on the interval [τi, ρi+1] the process performs a
“macroscopic” excursion which is symmetric around 0.
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Figure 3.1: Notation used in the paper.
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Fact 3.3. The sequence
{

(Y i, ri)
}
i≥0 is i.i.d. and the random variables ri and M i := sups≤ri Y

i(s)
have tails which decay exponentially.

Proof. The first statement follows by the fact that Yρi = 0 and the strong Markov property of Y . We
define ρ̃ := inf {t ≥ 0 : |Yt| = 1} then ρ1 = inf {t ≥ ρ̃ : Yt = 0}.

By point 2 of Fact 2.4 both ρ̃ and ρ1− ρ̃ have exponential tails, thus also r1 = ρ1 has an exponential
tail. Let us now consider x ≥ 0 and

P
(
M i ≥ x

)
≤ P

(
sup
s≤x

Y i(s) ≥ x
)

+ P (ri ≥ x) ≤
dxe∑
k=1

P

(
sup

s∈[k−1,k]
Y i(s) ≥ x

)
+ P (ri ≥ x) .

We deduce the concentration of M i using point 4 of Fact 2.4.

3.2 A modified version of Theorem 1.7
In a first time, we study the asymptotic behaviour of logP(∀u∈[0,ρn]Xu ≥ Yu|Y ) as n → +∞, using
Kingman’s subadditive ergodic theorem.

Lemma 3.4. We assume that Y0 = 0. For any 0 < a < b ≤ +∞, there exists γ̃a,b such that

lim
n→+∞

− log infx∈(a,b) P(∀u∈[0,ρn]Xu ≥ Yu, Xρn ∈ (a, b)|Y,X0 = x)
logn = γ̃a,b a.s. and in L1.

Proof. Let 0 < a < b ≤ +∞, we set I = (a, b). For any 0 ≤ m < n, we set

pm,n := inf
x∈(a,b)

P(∀u∈[ρm,ρn]Xu ≥ Yu, Xρn ∈ I|Y,Xρm = x) (3.2)
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and qm,n = − log pm,n. Note that when b = +∞, the FKG inequality (2.3) the minimal value of pm,n
is attained at x = a. We prove that {qm,n}n>m≥1 fulfils the assumptions of Kingman’s subadditive
ergodic theorem as stated in [6, Theorem 9.14].

By the Markov property, as Yρn = 0 for any 1 ≤ m < n we have

p0,n = p0,mP(∀u∈[ρm,ρn]Xu ≥ Yu, Xρn ∈ I|Y,∀u∈[0,ρm]Xu ≥ Yu, Xρm ∈ I) ≥ p0,mpm,n,

thus q0,n ≤ q0,m + qm,n, which is the subadditivity condition [6, (9.9)].
We fix k ≥ 1. We recall that

{
Y l
}
l≥0 is i.i.d. Consequently the sequence{

qlk,(l+1)k
}
l≥0 (3.3)

is i.i.d. and condition [6, (9.7)] is fulfilled. Further, condition [6, (9.8)] follows by the fact that the
process {Yt+ρk}t≥0 is an Ornstein-Uhlenbeck process distributed as Y . As q0,n ≥ 0; Fact 2.7 implies
that Eq0,1 < +∞ thus [6, Theorem 9.14] applies and

lim
n→+∞

− log p0,n

n
= lim
n→+∞

q0,n

n
=: γ̃a,b, a.s. and L1. (3.4)

The constant γ̃a,b is non-random since (3.3) is ergodic.

In a second time, we prove the constant γ̃ does not depend on (a, b).

Lemma 3.5. There exists γ̃ > 0 such that for any 0 < a < +∞ we have γ̃ = γ̃a,+∞.

Proof. For any a ≥ 0 and x > 0, we write

pn(x, a) := P(∀u∈[0,ρn]Xu ≥ Yu, Xρn > a|Y,X0 = x),

and accordingly qn(x, a) := − log pn(x, a). We prove that

lim
n→+∞

qn(x, a)
n

= γ̃, a.s. and L1, (3.5)

exists and is independent of x > 0, a ≥ 0. Fix x > 0, by (3.4), we know that

lim
n→+∞

qn(x, x)
n

= γ̃x,+∞, a.s. and L1,

as the minimum in (3.2) is attained in x = a. We prove that pn(x, 0,+∞) behaves similarly. As
pn(x, x) ≤ pn(x, 0,+∞), we have

0 ≤ dn := qn(x, x,+∞)
n

− qn(x, 0,+∞)
n

= − 1
n

log pn(x, x,+∞)
pn(x, 0,+∞)

= −n−1 logP
(
Xρn ≥ x|∀u∈[ρ0,ρn]Xu ≥ Yu, X0 = x, Y

)
≤ −n−1 logP (Xρn ≥ x|X0 = x, Y ) ,

by the FKG inequality. We conclude easily that dn → 0 a.s. and in L1. By a simple monotonicity
argument we conclude that convergence (3.5) holds for any pair (x, a), when x > 0 and a ∈ [0, x] and
the limit depends only on x.

We now fix x1 > x2 > 0, we have pn(x1, 0,+∞) ≤ pn(x2, 0,+∞). On the other hand

qn(x2, 0,+∞)
n

≤ − logP (∀s≤ρ1Xs ≥ Ys, Xρ1 ≥ x1|Y,X0 = x2)
n

+ qn(x1, 0,+∞)
n

. (3.6)

This proves that γ̃ = γ̃x,+∞ does not depend of x.
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Lemma 3.6. For any 0 < a < b ≤ +∞, we have γ̃ = γ̃a,b

Proof. Using the previous lemma, we set γ̃ = γa,+∞ for any a > 0. To show the claim it is enough to
prove that for any b < +∞ the limit cannot be smaller. We define n0 = dn− C1 logne for C1 > 1 to
be fixed later and n1 = n− 1. Using the Markov property we decompose

P(∀u≤ρnXu ≥ Yu, Xρn ∈ (a, b)|Y ) ≥ p1(n)p2(n)p3(n),

where

p1(n) := inf
x∈(a,b)

P(∀u≤ρn0
Xu ≥ Yu, Xρn0

∈ (a, n)|Y,X0 = x),

p2(n) := inf
x∈[a,n]

P(∀u∈[ρn0 ,ρn1 ]Xu ≥ Yu, Xρn1
∈ (a, logn)|Y,Xρn0

= x),

p3(n) := inf
x∈[a,logn]

P(∀u∈[ρn1 ,ρn]Xu ≥ Yu, Xρn ∈ (a, b)|Y,Xρn1
= x).

We prove that

lim
n→+∞

− log p1(n)
n

= γ̃, lim
n→+∞

− log p2(n)
n

= 0, lim inf
n→+∞

P
(
− log p3 ≤ n1/2

)
> 0, (3.7)

where the first convergences hold in probability. This limit and (3.4) imply the claim of the lemma.
Let us now treat the second convergence. Clearly we have

p2(n) ≥ inf
x∈[a,n]

P(∀u∈[ρn0 ,ρn1 ]Xu ≥ Yu, Xρn1
≥ a|Y,Xρn0

= x)− sup
x∈[a,n]

P(Xρn1
≥ logn|Y,Xρn0

= x)

≥ P(∀u∈[ρn0 ,ρn1 ]Xu ≥ Yu, Xρn1
≥ a|Y,Xρn0

= a)− P(Xρn1
≥ logn|Y,Xρn0

= n).

We fix C1 such that with high probability P(Xρn1
≥ logn|Y,Xρn0

= n) ≤ exp(−2C1γ̃ logn). This can
be done since on the interval [n0, n1] the drift of the Ornstein-Uhlenbeck process removes the starting
condition Xn0 = n. Using (3.4) we conclude that the second term is negligible and in fact we have

lim sup
n→+∞

− log p2(n)
C1 logn ≤ γ̃, in probability.

This yields the second convergence in (3.7). An analogous proof gives the first one. For the last one
we consider an event An := {ρn − ρn1 ∈ [1, 2], sups∈[ρn1 ,ρn] |Ys| ≤ a/2}. Clearly,

p3(n) ≥ inf
x∈[1,logn]

P(Xρn ∈ (a, b)|Y,Xρn1
= x)P(∀u∈[ρn1 ,ρn]Xu ≥ Yu|Y,Xρn1

= a,Xρn = a).

Conditionally on An the second term is bounded from below by a constant and the first one by
exp(−(logn)3). We conclude that for large n there is P(− log p3 ≤ n1/2) ≥ P(An). This finishes the
proof as the right-hand side is non-zero and does not depend on n.

Finally, we prove the limit in Lemma 3.4 holds for any starting position.

Lemma 3.7. For any x > y and 0 ≤ a < b ≤ +∞, we have

lim
n→+∞

− logP(∀u∈[0,ρn]Xu ≥ Yu, Xρn ∈ (a, b)|Y,X0 = x, Y0 = y)
logn = γ̃ a.s and in L1,

Proof. We prove this result assuming Y0 = 0, leaving to the reader removing this condition. We write

qn(x, a, b) = − logP(∀u∈[0,ρn]Xu ≥ Yu, Xρn ∈ (a, b)|Y,X0 = x)
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Using the two previous lemmas, we have

lim sup
n→∞

qn(x, a, b)
n

≤ lim
n→+∞

supx∈(a,b) qn(x, a, b)
n

= γ̃,

as supx∈(a,b) qn(x, a, b) = q0,n. Similarly, for any x ≥ a, we have

lim inf
n→+∞

qn(x, a, b)
n

≥ lim inf
n→+∞

qn(x, a,+∞)
n

≥ lim inf
n→+∞

qn(a, a,+∞)
n

≥ γ̃,

by the FKG inequality. Finally, using a reasoning similar to (3.6), a similar inequality holds for x ≤ a.
Consequently, the convergence

lim
n→+∞

qn(x, a, b)
n

= γ̃, a.s. and L1, (3.8)

holds for any a, b, x.

3.3 Existence and basic properties of γ

We now prove that (1.4) holds. To this end we state an auxiliary fact, whose proof is postponed to
the end of the section.

Fact 3.8. For any C ≥ 0, a ≥ C and b ∈ (a,+∞] the family of random variables {Ht}t≥0 defined by

Ht := − logP (∀s≤tXs ≥ Ys + C,Xt − Yt ∈ (a, b)|Y )
t

. (3.9)

is Lp-uniformly integrable for any p ≥ 1.

Lemma 3.9. For any 0 ≤ a < b ≤ +∞ and X0 > Y0, we have

lim
t→+∞

− logP (∀s≤tXs ≥ Ys, Xt − Yt ∈ (a, b)|Y )
t

= γ̃

E(r1) a.s. and in L1.

Consequence of this lemma, we set γµ1,µ2(1) = γ̃
E(r1) .

Proof. Let m(t) := bt/Eρ1 − t2/3c and M(t) := bt/Eρ1 + t2/3c and

At :=
{
t ∈ [ρm(t), ρM(t)]

}
.

Clearly, ρn =
∑n−1
k=0 rk, using Fact 3.3 one checks that 1At → 1 a.s. By Fact 3.8 it follows that

lim
t→+∞

Ht1Act = 0, a.s and Lp. (3.10)

By (3.8) we have

lim inf
t→+∞

Ht ≥ lim
t→+∞

1At
− logP

(
∀s≤ρm(t)Xs ≥ Ys|Y

)
m(t)

m(t)
t

= γ̃

Er1
, a.s and Lp. (3.11)

The bound from above is slightly more involved

1AtHt ≤ 1At
− logP

(
∀s≤ρm(t)Xs ≥ Ys,∀s∈[ρm(t),ρM(t)]Xs − Ys ∈ (a, b)|Y

)
M(t)

M(t)
t

.
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Let us denote the probability in the expression above by p. We fix a′, b′ such that a < a′ < b′ < b and
use the Markov property

log p ≥ logP
(
∀s≤ρm(t)Xs ≥ Ys, Xρm(t) − Yρm(t) ∈ (a′, b′)|Y

)
+ log

[
inf

x∈[a′,b′]
logP

(
∀s∈[ρm(t),ρM(t) ]Xs − Ys ∈ (a, b)|Y,Xρm(t) = x

)]
.

It is easy to check that the second term divided by t converges to 0 (which essentially follows by the
fact that M(t)−m(t) = o(t)). Thus using (3.8) again we obtain

lim inf
t→+∞

Ht ≤
γ̃

Er1
, a.s and Lp.

This together with (3.11) concludes the proof of (1.4).

Lemma 3.10. The function γ is symmetric and convex.

Proof. We recall that for any β ∈ R,

γ(β) = − logP(∀s≤tXs ≥ βYs|Y )
t

a.s.

As the law of Y is symmetric, γ is symmetric. To prove convexity we use Lemma 2.6. To this end we
fix t > 0 and λ ∈ (0, 1). Applied conditionally on W the lemma implies

− logP(∀s≤tXs ≥ (λa+ (1− λ)b)Ys|Y )
t

≤ −λ logP(∀s≤tXs ≥ aYs|Y )
t

− (1−λ) logP(∀s≤tXs ≥ bYs|Y )
t

.

Taking t→ +∞ we obtain γ(λa+ (1− λ)b) ≤ λγ(a) + (1− λ)γ(b).

Proof of Fact 3.8. Without loss of generality it is enough to work with integer times and assume that
a > C. Denoting the probability in (3.9) by pt we estimate

− log pn ≤ − logP
(
∀s≤nXs ≥ Ys + C,∀k∈{1,...,n}Xk − Yk ∈ (a, b)|Y

)
≤ − logP

(
∀s∈[0,1]Xs ≥ Ys + C,X1 − Y1 ∈ (a, b)|Y

)
+

∑
k∈{1,...,n−1}

qk,

where qk := − log
[
infx∈(a,b) P

(
∀s∈[k,k+1]Xs ≥ Ys + C,Xk+1 − Yk+1 ∈ (a, b)|Y,Xk − Yk = x

)]
.

By the Markov property the random variables {qk}k≥1 are independent and identically distributed
thus, by Fact 2.7, the sequence

{ 1
n

∑n
k=1 qk

}
n
is Lp-uniformly integrable. Further, the proof follows

by standard arguments.

4 Relevance of the Disorder
Thanks to Lemmas 3.1, 3.9 and 3.10, the only thing left to prove Theorem 1.7 is the strict inequality
(1.6). Observe that for any fixed t > 0, by Jensen’s inequality we have

E [− logP (∀s≤tXs ≥ Ys|Y )] > − logP (∀s≤tXs ≥ Ys) ,

which implies γµ1,µ2 ≥ δµ1,µ2 . Obtaining the strict inequality is much harder. We recall the path
decomposition from Section 3.1. The key observation, on which the proof strategy hinges on, is that
Jensen’s inequality applied on each interval [ρi, ρi+1] separately is strict. The main technical difficulty
will be to control its “gap” uniformly in i. This control is established in Proposition 4.5.

In the whole section, unless specified otherwise, we assume that Y0 = 0 and X0 = 1. Before
the main proof we present three technical lemmas. The first one is a concentration inequality for a
conditioned Ornstein-Uhlenbeck process
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Lemma 4.1. Let X be an Ornstein-Uhlenbeck process. For any C1 > 0 there exist C2, C3 > 0 such
that for any f : R+ 7→ R+ being a C1-Lipschitz function we have

P (Xt ≥ x+ f(t)|∀s≤tXs ≥ f(s)) ≤ exp
(
−C2x

2) , x ≥ C3f(t), (4.1)

as soon as X0 ∈ [f(0) + 1, (C1 + 1)f(0)).

Proof. To avoid cumbersome notation we assume that t ∈ N. The proof for general t follows similar
lines and is left to the reader. Further we assume that

∀s≤tf(s) ≥ min
{

(s+ 1)1/3, (t− s+ 1)1/3
}
, (4.2)

If it is not the case using Fact 2.3 we freely can change f by s 7→ f(s)+min
{

(s+ 1)1/3, (t− s+ 1)1/3}
which is (C1 + 1)-Lipschitz.

We shorten xt := x+ f(t) and let c1 > 1. Using Fact 2.3 we estimate

P (Xt ≥ xt|∀s≤tXs ≥ f(s)) ≤ P
(
Xt ≥ xt

∣∣∀s≤tXs ≥ f(s),∀n∈{1,...,t}Xn ≥ c1f(n)
)

(4.3)

=
P
(
Xt ≥ xt,∀s≤tXs ≥ f(s)

∣∣∀n∈{1,...,t}Xn ≥ c1f(n)
)

P
(
∀s≤tXs ≥ f(s)

∣∣∀n∈{1,...,t}Xn ≥ c1f(n)
)

≤
P
(
Xt ≥ xt

∣∣∀n∈{1,...,t}Xn ≥ c1f(n)
)

P
(
∀s≤tXs ≥ f(s)

∣∣∀n∈{1,...,t}Xn ≥ c1f(n)
) .

Let us first treat the denominator denoted by Id. We use (4.2) and choose c1 sufficiently large so that
Id is bounded from below by a constant independent on t and f . Using Fact 2.3 and the Markov
property we obtain

Id = P
(
∀s∈[0,1]Xs ≥ f(s)

∣∣∀n∈{1,...,t}Xn ≥ c1f(n)
)

× P
(
∀s∈[1,t]Xs ≥ f(s)

∣∣∀n∈{1,...,t}Xn ≥ c1f(n),∀s∈[0,1]Xs ≥ f(s)
)

≥ P
(
∀s∈[0,1]Xs ≥ f(s) |X1 ≥ c1f(1)

)
P
(
∀s∈[1,t]Xs ≥ f(s)

∣∣∀n∈{1,...,t}Xn ≥ c1f(n)
)
.

Continuing in a same manner we obtain that

Id ≥ P
(
∀s∈[0,1]Xs ≥ f(s)|X1 ≥ c1f(1)

)
×

∏
n∈{1,...,t}

P
(
∀s∈[n−1,n]Xs ≥ f(s) |Xn−1 = c1f(n− 1)

)
.

(4.4)
By point 3 of Fact 2.4 the process {Xt}t∈[0,1] defined by X̃t := Xn−1+t−c1e

−µtf(n−1) is an Ornstein-
Uhlenbeck process starting from X̃0 = 0. Thus

P
(
∀s∈[n−1,n]Xs ≥ f(s) |Xn−1 = c1f(n− 1)

)
≥ P

(
∀s∈[0,1]X̃s ≥ sup

s∈[n−1,n]
f(s)− c1e

−µf(n− 1)
)

≥ P
(
∀s∈[0,1]X̃s ≥ −c1e

−µf(n)/2
)
.

We used inequality sups∈[n−1,n] f(s)− c1e
−µf(n− 1) ≤ −c1e

−µf(x)/2 which can be easily verified by
(4.2) and Lipschitz property as soon as c1 is large enough. By point 4 of Fact 2.4 we conclude that

P
(
∀s∈[n−1,n]Xs ≥ f(s) |Xn−1 = c1f(n− 1)

)
≥ 1− C exp

(
−c
[
c1e
−µf(n)/2

]2)
.

By this estimate, (4.4), (4.2) and increasing c1 if necessary we obtain

P (∀s≤tXs ≥ f(s) |∀n≤tXn−1 ≥ c1f(n) ) ≥ p,
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for some p > 0. From now on c1 is fixed. Now in order to show (4.1) it is enough to prove that the
nominator in (4.3) decays in a Gaussian fashion. This is the aim for the rest of the proof. We define
a sequence {Gn}n≥0 by putting G0 = X0 > 0 and

Gn := Xn − cnXn−1, n ≥ 1 (4.5)

where cn := Cov(Xn,Xn−1)
Cov(Xn,Xn) . It is easy to check that in fact cn = c ∈ (0, 1) and moreover the random

variables {Gn}n≥0 are independent, distributed according to N (0, b2) where b is a function of the
parameters of the process X. We will prove that there exist c2, C2 > 0 such that for any x > C2f(t)
and t ∈ N we have

P
(
Xt ≥ x+ f(t)

∣∣∀n∈{1,...,t}Xn ≥ c1f(n)
)
≤ e−c2x

2
. (4.6)

We start by choosing constants B, c2 > 0 so that they fulfill

B ∈ (c, 1), c2 <
(1−B)2

2b2 . (4.7)

Let L ≥ 0, without loss of generality we assume that f(t) ≥ L. This assumption with the Lipschitz
property yields that

A−1
L ≤

f(t+ 1)
f(t) ≤ AL. (4.8)

for AL such that AL ↘L 1. We fix L such that B/(cAL) > 1. We proceed inductively. The constants
L and C2 potentially may be increased during the further proof (the other constants stay fixed). We
stress that this increase happens once and later the constants are valid for all steps of the induction.

Checking the base case is an easy exercise left to the reader. Let us assume that (4.6) holds for
t ≥ 0. Let x be such that x+ f(t+ 1) ≥ c1f(t+ 1), we have

P
(
Xt+1 ≥ x+ f(t+ 1)

∣∣∀n∈{1,...,t+1}Xn ≥ c1f(n)
)

=
P
(
Xt+1 ≥ x+ f(t+ 1),∀n∈{1,...,t}Xn ≥ c1f(n)

)
P
(
∀n∈{1,...,t+1}Xn ≥ c1f(n)

)
=
P
(
Xt+1 ≥ x+ f(t+ 1)

∣∣∀n∈{1,...,t}Xn ≥ c1f(n)
)

P
(
Xt+1 ≥ c1f(t+ 1)

∣∣∀n∈{1,...,t}Xn ≥ c1f(n)
) .

We denote the denominator by Id. By (4.5) and (4.8) we have

Id ≥ P (Gt+1 ≥ c1f(t+ 1)− cc1f(t)) ≥ P (Gt+1 ≥ c1(AL − c)f(t)) . (4.9)

By (4.5) and the union bound we conclude that the nominator is smaller than I1
n + I2

n, where

I1
n := P

(
Xt ≥

B

c
(x+ f(t+ 1))

∣∣∀n∈{1,...,t}Xn ≥ c1f(n)
)
, I2

n := P (Gt+1 ≥ (1−B) (x+ f(t+ 1))) .

Let x > C2f(t+ 1) then

B

c
(x+ f(t+ 1))− c1f(t) ≥ B

c
(C2 + 1)f(t+ 1)− c1f(t) ≥ f(t)

[
B

cAL
(C2 + 1)− c1

]
≥ C2f(t).

We assumed that B/(cAL) > 1 thus the last inequality holds if we choose C2 large enough. We can
thus use the induction hypothesis (4.6) for t. We have

I1
n ≤ exp

{
−c2

(
B

c
x+ B

c
f(t+ 1)− f(t)

)2
}
≤ exp

{
−c2

(
B

c
x+ [B/(cAL)− 1]f(t)

)2
}
.
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Recalling (4.9) and increasing L so that c1(AL − c)f(t) ≥ c1(AL − c)L ≥ 2 holds we can use the
Gaussian tail estimate (2.6) as follows

I1
n

Id
≤ 5c1(AL − c)f(t)

b
exp

{
c2

1(AL − c)2f(t)2

2b2

}
exp

{
−c2

(
B

c
x+ [B/(cAL)− 1]f(t)

)2
}

≤ 5c1(AL − c)f(t)
b

exp
{
c2

1(AL − c)2

2b2 f(t)2 − 2c2B[B/(cAL)− 1]
c

xf(t)
}

exp
{
−c2B

2

c2 x2
}
.

We increase C2 (we recall that x ≥ C2f(t + 1)) so that c2
1(AL−c)2

2b2 < C2
2c2B[B/(cAL)−1]

cAL
. Then we

increase L if necessary so that the first two factors are bounded by 1/2. Finally

I1
n

Id
≤ 1

2 exp
{
−c2B

2

c2 x2
}
,

which by (4.7) implies I1
n/Id ≤ exp

{
−c2x

2} /2. We perform similar calculations for I2
n:

I2
n

Id
≤ 5c1(AL − c)f(t)

b
exp

{
c2

1(AL − c)2f(t)2

2b2

}
exp

{
− (1−B)2

2b2 (x+ f(t)/AL)2
}

≤ 5c1(AL − c)f(t)
b

exp
{
c2

1(AL − c)2

2b2 f(t)2 − (1−B)2

b2AL
xf(t)

}
exp

{
− (1−B)2

2b2 x2
}

≤ 1
2 exp

{
− (1−B)2

2b2 x2
}
,

where the last estimates follows by increasing C2 and L if necessary (analogously to the previous case).
Now, by (4.7) follows I2

n/Id ≤ exp(−c2x
2)/2. Recalling the previous step we obtain (I1

n + I2
n)/Id ≤

exp(−c2x
2) which establish (4.6) for t+ 1.

A similar property holds for conditioning in future.

Lemma 4.2. Let X be an Ornstein-Uhlenbeck process starting from X0 = 1 and u ∈ [c, C], for
C > c > 0. Then there exist C1, c1 > 0 such that for any t > 1 we have

P
(
Xu ≥ x|∀s∈[u,u+t]Xs ≥ (1 + s− u)1/3

)
≤ C1e

−c1x
2
.

Proof. We set f(s) := (1 + dse)1/3, by Fact 2.3 it is enough show the claim with f(s) instead of
(1 + s)1/3. Using the Markov property we write

P
(
Xu ≥ x|∀s∈[u,u+t]Xs > f(s− u)

)
=

P
(
{Xu ≥ x} ∩

{
∀s∈[u,u+t]Xs > f(s− u)

})
P
(
∀s∈[u,u+t]Xs > f(s− u)

)
=
´ +∞
x

w(y, t)P (Xu ∈ dy)´ +∞
0 w(y, t)P (Xu ∈ dy)

,

where
w(y, t) = P (∀s≤tXt ≥ f(s)|X0 = y) .

The function is increasing with respect to y. By the Gaussian concentration of Xu, one checks that to
show the claim it is enough to that

w(x, t)
w(3, t) ≤ exp

(
C1(log x)5/3

)
, (4.10)
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for C1 > 0 for x ≥ 3. It will be easier to rewrite w as w(x, t) = P (∀s≤tXt ≥ f(s)− xe−µs) with the
assumption that X0 = 0. Let us set tx := dCt log xe, where Ct > 0 will be adjusted later. For x > 3
we have

w(x, t) = P
(
∀s∈[tx,t]Xs ≥ f(s)− xe−µs|∀s≤txXs ≥ f(s)− xe−µs

)
P
(
∀s≤txXs ≥ f(s)− xe−µs

)
≤ P

(
∀s∈[tx,t]Xs ≥ f(s)− xe−µs|∀s≤txXs ≥ f(s)− xe−µs

)
≤ P

(
∀s∈[tx,t]Xs ≥ f(s)− xe−µs|∀s≤txXs ≥ f(s) + 1− 3e−µs

)
,

where in the last line we used Fact 2.3. Moreover, by convention we assume that the probability above
is 1 if tx ≥ t. Similarly we estimate

w(3, t) ≥ P
(
∀s≤txXs ≥ f(s) + 1− 3e−µs,∀s∈[tx,t]Xs ≥ f(s)

)
≥ P

(
∀s≤txXs ≥ f(s) + 1− 3e−µs

)
P
(
∀s∈[tx,t]Xs ≥ f(s)|∀s≤txXs ≥ f(s) + 1− 3e−µs

)
.

Using calculations similar to (4.4) and f(tx) = O((log x)1/3) one can show that

P
(
∀s≤txXs ≥ f(s) + 1− 3e−µt

)
≥ c3e

−C3(log x)2/3tx ,

for some c3, C3 > 0. Now we will show that for Ct (recall that tx := dCt log xe) large enough and
y ≥ f(tx) + 1− 3e−µtx there exists a constant c > 0 such that

P
(
∀s∈[tx,t]Xs ≥ f(s)|Xtx = y

)
P
(
∀s∈[tx,t]Xs ≥ f(s)− xe−µt|Xtx = y

)
= P

(
∀s∈[tx,t]Xs ≥ f(s)|∀s∈[tx,t]Xs ≥ f(s)− xe−µs, Xtx = y

)
≥ c.

One verifies that this is enough to conclude the proof of (4.10) and consequently the proof of the
lemma. Equivalently we will show that

H := P
(
∃s∈[tx,t]Xs ≤ f(s)|∀s∈[tx,t]Xs ≥ f(s)− xe−µs, Xtx = y

)
≤ 1− c. (4.11)

We consider

H ≤
dte∑
k=tx

P
(
∃s∈[k,k+1)Xs ≤ f(s)|∀s≤tXs ≥ f(s)− xe−µs, Xtx = y

)
≤
dte∑
k=tx

P
(
∃s∈[k,k+1)Xs ≤ f(k)|∀s∈[k,k+1]Xs ≥ f(k)− xe−µs, Xtx = y

)
.

The first inequality follows by the union bound and the second one by the assumption on f and
Fact 2.3. The first term (i.e. k = tx) can be made arbitrarily small by choosing Ct (and thus tx) large.
To estimate the other terms we define a function pk : R+ 7→ R by

pk(A) = − logP
(
∀s∈[k,k+1]Xs ≥ A|Xtx = y

)
.

By Lemma 2.6 one deduces that p is convex. Further we notice

P
(
∀s∈[k,k+1]Xs ≥ A|Xtx = y

)
≤ P (Xk ≥ Aeµ|Xtx = y)P

(
∀s∈[k,k+1]Xs ≥ A|Xk = eµA

)
.

The second factor can be easily bounded from below by a strictly positive constant uniform in A, k.
Thus for some C4 > 0 we have pk(A) ≤ C4(x+ 1)2. Using the convexity of pk it is easy to deduce that
for some C5 > 0 we have p′k(A) ≤ C5(x+ 1), where p′k denotes the left derivative of pk. Thus

logP
(
∀s∈[k,k+1]Xt ≥ f(k)|∀s∈[k,k+1]Xt ≥ f(k)− xe−µk

)
= pk(f(k)− xe−µk)− pk(f(k)) ≥ −C5xe

−µkf(k).
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Now we can make the final estimate. We write
dte∑

k=tx+1

(
1− exp(−C5xe

−µkf(k))
)
≤ C6

dte∑
k=btxc

f(k)e−µ(k−dlog k/µe).

for some C6 > 0. Increasing Ct (recall that tx := dCt log xe) if necessary, we can make the sum
arbitrarily small, proving (4.11) and concluding the proof.

We introduce bt : [0, t] 7→ R+ by

bt(s) := min
{

(s+ 1)1/3, (t− s+ 1)1/3
}
. (4.12)

Let us recall the notation of Section 3.1. We have

Lemma 4.3. There exist C, c > 0 such that for any n, k ∈ N we have

P (∀s≤ρkYs ≤ Cbρk(s)) > c, P ({P (Bn,k| {ri}) ≥ 1/10}) > c, (4.13)

where Bn,k :=
{
∀ρk+1≤s≤ρnYs ≤ C(s− ρk+1 + 1)1/3}.

Proof. The proof is rather standard. We present a sketch, leaving details to the reader. We denote
f(s) := C(s+ 1)1/3. We consider

P (∀s≤ρkYs ≤ Cbρk(s)) = 1− P (∃s≤ρkYs ≥ Cbρs(s)) (4.14)
≥ 1− P (∃s≤ρkYs ≥ Cf(s))− P (∃s≤ρkYs ≥ Cf(ρk − s)) .

Let us treat the second term. Let l ∈ N, we have

P (∃s≤ρkYs ≥ Cf(s)) ≤ P (∃s≥0Ys ≥ Cf(s)) ≤ P
(
∃s∈[0,ρl]Ys ≥ Cf(s)

)
+

+∞∑
i=l

P
(
∃s∈[ρi,ρi+1]Ys ≥ Cf(s)

)
.

(4.15)
We recall Fact 3.3 and the notation there. For large enough i and some c > 0 we have

P
(
∃s∈[ρi,ρi+1]Ys ≥ Cf(s)

)
≤P
({
M i ≥ Cf(ρi)

}
∩ {ρi ≥ ci}

)
+ P (ρi < ci)

≤P
(
M i ≥ Cf(ci)

)
+ P (ρi < ci)

≤e−C1Cf(ci) + e−C2i,

where C1, C2 > 0. Increasing l and C one can make (4.15) as small as we want. Treating the third of
term (4.14) similarly we obtain the first statement of (4.13). We set An,k := {P (Bn,k| {ri}) ≥ 1/10}
and p := P (An,k) . We have

P (Bn,k) = EE[1Bn,k | {ri}] = E
[
1An,kE[1Bn,k | {ri}]

]
+ E

[
1Ac

n,k
E[1Bn,k | {ri}]

]
≤ p+ (1− p)/10 = 1

10 + 9
10p.

By the first argument we choose C such that P (Bn,k) > 1/10 which implies p > 0 (uniformly in n and
k).

4.1 Reformulation of the problem
We introduce necessary notions and reformulate the problem. LetM be the space of finite measures
on R+. Given m ∈M we denote ‖m‖ :=

´
R+
m(dx). Let P be a functional space

P := {f : f is a continuous function from an interval [0, t] to R such that f(0) = f(t) = 0} . (4.16)
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Let us define an operator T :M×P 7→M. Given a measurem ∈M and f ∈ P such that f : [0, t] 7→ R
we set T (m, f) := m̃ defined by

m̃(dx) := ‖m‖Pm/‖m‖ (∀s≤tXs ≥ f(s), Xt ∈ dx) ,

where under Pm/‖m‖ the process X is an Ornstein-Uhlenbeck process such that X0 =d m/‖m‖.
For n ∈ N we define iterativelyM-valued random variables Tn by

Tn :=
{
δ1 n = 0
T (Tn−1, Y

n−1) n > 0
, (4.17)

where Y n is given by (3.1). Using the Markov property one proves by induction that

Tn = P (∀s≤ρnXs ≥ Ys, Xρn ∈ dx|Y ) . (4.18)

Let us denote F := σ(ρi, i ∈ N). The following lemma relates Tn to our original problem.

Lemma 4.4. Let γµ1,µ2 and δµ1,µ2 be the same as in Theorem 1.7. Then

γµ1,µ2 = lim
n→+∞

E [− log ‖Tn‖]
nEr1

, δµ1,µ2 ≤ lim inf
n→+∞

E [− logE (‖Tn‖|F)]
nEr1

. (4.19)

The following proposition is the main technical result of this proof

Proposition 4.5. There exist c > 0 and n0 ∈ N such that

E log ‖Tn‖ − E logE(‖Tn‖|F) ≤ −nc, (4.20)

for any n ≥ n0.

We observe that this proposition together with Lemma 4.4 imply (1.6).

Proof of Lemma 4.4. The first convergence in (4.19) holds by (3.8) (recall also relation between γ̃ and
γµ1,µ2 given in (3.11)). We observe that (4.18) yields E (‖Tn‖|F) = P (∀s≤ρnXs ≥ Ys|F). We note
that methods of Section 3 imply that

− logP (∀s≤ρnXs ≥ Ys|F)
n

(4.21)

converges a.s. and in L1 (details are left to the reader). We define r(n) := Eρn − n2/3 = nEr1 − n2/3

and a sequence of events An := {ρn ≥ r(n)}. Using Fact 3.3 one proves 1Acn → 0 a.s. Consequently
the convergence of (4.21) implies

lim
n→+∞

E1Acn logP
(
∀s≤r(n)Xs ≥ Ys|F

)
n

= 0.

Using E (‖Tn‖|F) ≤ 1 we estimate

E logE (‖Tn‖|F) ≤ E1An logE (‖Tn‖|F) (4.22)
≤ E1An logP

(
∀s≤r(n)Xs ≥ Ys|F

)
= E logP

(
∀s≤r(n)Xs ≥ Ys|F

)
− E1Acn logP

(
∀s≤r(n)Xs ≥ Ys|F

)
.

We denote the first term the right-hand side of (4.22) by Jn. Applying Jensen’s inequality we get

Jn ≤ logP
(
∀s≤r(n)Xs ≥ Ys

)
.

By (1.5) and the definition of r(n) we have lim supn Jn/(nEr1) ≤ −δµ1,µ2 and the second term (4.22)
can be shown to converge to 0. We conclude that the second claim of (4.19) holds.
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Remark 4.6. We believe that the second convergence in (4.19) can be improved to

δµ1,µ2 = lim
n→+∞

E [− logE (‖Tn‖|F)] /(nEr1).

This stronger result is not needed to our applications thus we skip proving it. A careful reader will
notice some technical complications in the proof of Proposition 4.5 coming from the conditioning on
F and might be tempted to replace E (‖Tn‖|F) with E‖Tn‖.

4.2 Proof of Proposition 4.5
Proof of Proposition 4.5. We recall F = σ(ρi, i ∈ N) and define a filtration {Fk}k≥0 by putting F0 :=
{∅,Ω} and

Fk := σ
{
Y i : i < k

}
, k > 0,

(see also Figure 3.1). We recall (4.17) and for k ∈ {0, 1, . . . , n} defineM-valued random variables T kn
by

T kn := E(Tn|Fk,F).

This definition and (4.18) imply that

T kn = P
(
∀s≤ρnXs ≥ Ys, Xρn ∈ dx|

{
Y i
}
i<k

,F
)
, Tnn = Tn. (4.23)

By the Markov property of X we have

log ‖T k+1
n ‖ = log ‖Tk‖ + logPTk/‖Tk‖

(
∀ρk≤s≤ρnXs ≥ Ys|Y k,F

)
. (4.24)

This expression requires some comment. We recall that Tk is a random measure, conditionally on
m = Tk/‖Tk‖ we understand X to be an Ornstein-Uhlenbeck process starting from m at time ρk. Let
us now denote

Gn,k := E
[
logPTk/‖Tk‖

(
∀ρk≤s≤ρnXs ≥ Ys|Y k,F

)
|Fk,F

]
− logPTk/‖Tk‖ (∀ρk≤s≤ρnXs ≥ Ys|F) .

We notice that Gn,k is a random variable, which by Jensen’s inequality fulfills Gn,k ≤ 0 (we will prove
strict inequality later). In this notation (4.24) yields

E
[
log ‖T k+1

n ‖|Fk,F
]

= log ‖Tk‖ + logPTk/‖Tk‖ (∀ρk≤s≤ρnXs ≥ Ys|F) +Gn,k = log ‖T kn‖ +Gn,k.

We apply this relation iteratively

E [log ‖Tn‖|F ] = E [log ‖Tnn ‖|F ] = E [E [log ‖Tnn ‖|Fn−1,F ] |F ]
= E

[
log ‖Tn−1

n ‖|F
]

+ E[Gn,n−1|F ]
= E

[
E
[
log ‖Tn−1

n ‖|Fn−2,F
]]

+ E[Gn,n−1|F ]
= E

[
log ‖Tn−2

n ‖|F
]

+ E[Gn,n−2|F ] + E[Gn,n−1|F ]
= . . .

= E
[
log ‖T 0

n‖|F
]

+
n−1∑
k=0

E[Gn,k|F ].

We notice that ‖T 0
n‖ = P (∀s≤ρnXs ≥ Ys|F) = E [‖Tn‖|F ]. Thus

E [log ‖Tn‖] = E logE [‖Tn‖|F ] +
n−1∑
k=0

EGn,k.
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One easily sees that an inequality
EGn,k ≤ c, (4.25)

for some c < 0, is sufficient to conclude the proof of the proposition. Proving (4.25) is our aim
now. To avoid heavy notation we denote Ẽ(·) := E(·|F) and Ẽk(·) := Ẽ(·|Fk). Further, we
introduce additional randomization: a probability measure P± and the random variable η such that
P±(η = 1) = P±(η = −1) = 1/2. For k ∈ N we define

{
Ỹ ks (η)

}
s≥0 by

Ỹ ks (η) :=
{
η|Ys| if s ∈ [τk, ρk+1]
Ys otherwise.

.

There are two easy but crucial observations to be made at this point. Firstly,

∀s≥0Ỹ
k
s (1) ≥ Ỹ ks (−1) and ∀s∈(τk,ρk+1)Ỹ

k
s (1) > Ỹ ks (−1). (4.26)

Secondly, the excursions of an Ornstein-Uhlenbeck process are symmetric around 0. Formally, under
E±⊗ Ẽk the process Ỹ k(η) has the same law as Y under Ẽk. Let us shorten m := Tk/‖Tk‖ and denote
“the gap”

∆n,k := E±Ẽk log P̃m
(
∀ρk≤s≤ρnXs ≥ Ỹ ks (η)|Y k

)
− Ẽk logE±P̃m

(
∀ρk≤s≤ρnXs ≥ Ỹ ks (η)|Y k

)
. (4.27)

By Jensen’s inequality we have Gn,k ≤ ∆n,k ≤ 0. In oder to show (4.25) we will obtain a bound from
above on ∆n,k which is strictly negative and uniform in n, k. We define

gn,k :=
P̃m
(
∀ρk≤s≤ρnXs ≥ Ỹ ks (1)|Y k

)
P̃m
(
∀ρk≤s≤ρnXs ≥ Ỹ ks (−1)|Y k

) , (4.28)

and zn,k := P̃m
(
∀ρk≤s≤ρnXs ≥ Ỹ ks (−1)|Y k

)
. In this notation (4.27) writes as

∆n,k = Ẽk
[

1
2 (log(gn,kzn,k) + log zn,k)− log

(
gn,kzn,k + zn,k

2

)]
= Ẽk

[
1
2 log gn,k − log

(
gn,k + 1

2

)]
(4.29)

≤ −1
8 Ẽk(gn,k − 1)2.

To explain the last inequality we observe that (4.26) yields gn,k ≤ 1 and that for x ∈ (0, 1] we have and
elementary inequality 1

2 log x− log
(
x+1

2
)
≤ − 1

8 (x− 1)2. Now we concentrate on proving that in fact,
uniformly in n, k we have gn,k < 1. Let us analyze the expressions appearing in (4.28). We denote
Qm,k(·) := P(·|Y k), Ai :=

{
∀ρk≤s≤ρk+1Xs ≥ Ỹ ks (i)

}
and B :=

{
∀ρk+1≤s≤ρnXs ≥ Ys

}
. We fix x ∈ R+

and we want to find a formula for pi := Qδx,k(Ai ∩ B). By the Markov property we get

pi = Qδx,k
[
Qδx,k(1Ai |Xρk+1)Qδx,k(1B|Xρk+1)

]
.

We denote Lk(x, y; i) := Qδx,k(1Ai |Xρk+1 = y), which expresses more explicitly as

Lk(x, y; i) = P̃
(
∀ρk≤s≤ρk+1Xs ≥ Ỹ ks (i)|Y k, Xρk = x,Xρk+1 = y

)
. (4.30)

We write
pi = Qδx,k

[
L(x,Xρk+1 ; i)

Qδx,k(1B|Xρk+1)
Qδx,k(1B)

]
×Qδx,k(B).

Let us now consider a measure defined by

µx,n,k(Xρk+1 ∈ D) := Qδx,k
[
1Xρk+1∈D

Qδx,k(1B|Xρk+1)
Qδx,k(1B)

]
,
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where D ⊂ R is a Borel set. One easily verifies that it is a probability measure. Removing the
conditional expectation we get

µx,n,k(Xρk+1 ∈ D) = Qδx,k

[
Qδx,k(1Xρk+1∈D1B|Xρk+1)

Qδx,k(1B)

]
=

Qδx,k(1Xρk+1∈D1B)
Qδx,k(1B)

= Qδx,k
(
Xρk+1 ∈ D|B

)
.

Again, writing more explicitly we have

µx,n,k(dy) = P̃
(
Xρk+1 ∈ dy|∀ρk+1≤s≤ρnXs ≥ Ys, Xρk = x

)
. (4.31)

Finally, concluding the above calculations we obtain that for i ∈ {−1, 1} we have

P̃m
(
∀ρk≤s≤ρnXs ≥ Ỹ ks (i)|Y k

)
=
ˆ
R+

ˆ
R+

Lk(x, y; i)µx,n,k(dy)m(dx) (4.32)

× P̃m
(
∀ρk+1≤s≤ρnXs ≥ Ys

)
.

Before going further let us comment on the further strategy. It is easy to see that for any fixed
x, y ∈ R+ we have Lk(x, y; 1) < Lk(x, y;−1). The gap vanished however smaller when x, y → +∞.
The uniform inequality gn,k < 1 can be obtained by by showing that with positive probability the
measure µx,n,k(dy)m(dx) is uniformly concentrated in a box.

Let C1 > 0 be a constant as in Fact 4.3. We denote sequences of events

An,k := A1
k ∩ {rk ∈ [1, 10]} ∩ A2

n,k,

A1
k := {ρk ≥ 1} ∩ {∀s≤ρkYs ≤ C1bρk(s)} ,

A2
n,k :=

{
P̃ (Bn,k|F) ≥ 1/10

}
,

where Bn,k :=
{
∀ρk+1≤s≤ρnYs ≤ C1(s− ρk+1 + 1)1/3}. We first prove concentration of m = Tk/‖Tk‖

(recall (4.18)). Let R > 0, by the FKG property stated in Fact 2.3, conditionally on the event A1
k we

have

(Tk/‖Tk‖) ([R−1, R]) = P̃ (Xρk ∈ [0, R]|∀s≤ρkXs ≥ Ys, Y )− P̃
(
Xρk ≤ R−1|∀s≤ρkXs ≥ Ys, Y

)
≥ P̃

(
Xρk ∈ [R−1, R]|∀s≤ρkXs ≥ C1bρk(s)

)
− P̃

(
Xρk ≤ R−1|Xρk ≥ 0

)
.

Using Lemma 4.1 we can choose R > 0 such that the first term is arbitrarily close to 1. By easy
calculations the second term can be made arbitrarily close to 0. We fix R such that

(Tk/‖Tk‖) ([R−1, R]) ≥ 1A1
k
(1/2). (4.33)

Our next aim is to study concentration of (4.31). To this end we denote

p(x) := P̃
(
Xρk+1 ∈ [0, Ce]|∀ρk+1≤s≤ρnXs ≥ Ys, Xρk = x

)
,

where Ce > 0 is to be fixed later. Using Fact 2.4 we estimate

p(x) ≥ P̃
({
Xρk+1 ∈ [0, Ce]

}
∩ Bn,k|∀ρk+1≤s≤ρnXs ≥ Ys, Xρk = x

)
= P̃

(
Xρk+1 ∈ [0, Ce]|Bn,k ∩

{
∀ρk+1≤s≤ρnXs ≥ Ys, Xρk = x

})
× P̃

(
Bn,k|∀ρk+1≤s≤ρnXs ≥ Ys, Xρk = x

)
≥ P̃

(
Xρk+1 ∈ [0, Ce]|∀ρk+1≤s≤ρnXs ≥ C1(s− ρk+1 + 1)1/3, Xρk = x

)
P̃ (Bn,k) .
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Assuming that rk = ρk+1− ρk ∈ [1, 10], we can set Ce such that Lemma 4.2 implies that the first term
is bounded away from 0 uniformly in n, k and x ∈ [R−1, R]. Together with (4.33) this implies

ˆ R

R−1
µx,n,k([0, Ce])m(dx) ≥ C1An,k ,

for some C > 0. One further finds ce > 0 (we skip details) such that
ˆ R

R−1
µx,n,k([ce, Ce])m(dx) ≥ (C/2)1An,k . (4.34)

We are now ready to come back to (4.28). We recall (4.30) and denote

rk := sup
x∈[R−1,R],y∈[ce,Ce]

Lk(x, y; 1)
Lk(x, y;−1) , Lk := inf

x∈[R−1,R],y∈[ce,Ce]
Lk(x, y;−1). (4.35)

We have Lk(x, y;−1) > Lk(x, y; 1). Moreover, one verifies that for η ∈ {−1, 1} the functions Lk(·, ·; η)
are continuous and Lk(x, y; η) > 0 if x, y > 0. These imply rk < 1 (note that rk is a random variable
since it depends on Y k). Similarly we have Lk > 0. One checks that

ˆ
R+

ˆ
R+

Lk(x, y; i)µx,k,n(dy)m(dx) ≤ 1.

Using the elementary inequality (a+ c)/(b+ d) ≤ (a+ 1)/(b+ 1) valid for 0 < a ≤ b and 0 < c ≤ d ≤ 1
we get

gn,k ≤
´ R
R−1

´ Ce
ce

Lk(x, y; 1)µx,n,k(dy)m(dx) + 1´ R
R−1

´ Ce
ce

Lk(x, y;−1)µx,n,k(dy)m(dx) + 1
≤
rk
´ R
R−1

´ Ce
ce

Lk(x, y;−1)µx,n,k(dy)m(dx) + 1´ R
R−1

´ Ce
ce

Lk(x, y;−1)µx,n,k(dy)m(dx) + 1
.

Further, we notice that for rk ∈ [0, 1] we have (rka+ 1)/(a+ 1) ≤ (rkb+ 1)/(b+ 1) if b ≤ a. Applying
(4.34) we get

gn,k ≤
rkLk

´ R
R−1 µx,n,k([ce, Ce])m(dx) + 1

Lk
´ R
R−1 µx,n,k([ce, Ce])m(dx) + 1

≤ rkLkC/2 + 1
LkC/2 + 1 ≤ 1 + CLk (rk − 1)

4 ,

where the last estimate follows by (ab+ 1)/(a+ 1) ≤ 1 + a(b− 1)/2 valid for a, b ∈ [0, 1]. Combining
the last inequality with (4.29) we arrive at

Gn,k ≤ −C3Ẽk
[
1An,kL2

k (rk − 1)2
]
. (4.36)

for a constant C3 > 0.
We are now ready to show (4.25) (which concludes the proof of the proposition). By the strong

Markov property we have

EGn,k ≤ −C3E
[
1An,kL2

k (rk − 1)2
]
≤ −C3P

(
A1
k

)
E
[
L2
k (rk − 1)2 1rk∈[1,10]

]
P
(
A2
n,k

)
.

We notice that the law of L2
k (rk − 1)2 1rk∈[1,10] does not depend on k and it is not concentrated on 0,

thus P
(
A1
k

)
E
[
L2
k (rk − 1)2 1rk∈[1,10]

]
> 0. The other two terms are uniformly bounded away from 0

by Fact 4.3.
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5 Proofs for Brownian motion
As explained in Remark 1.8 Theorem 1.7 implies Theorem 1.1. We will now show how to prove its
extension given in Theorem 1.5.

Proof of Theorem 1.5. For simplicity we assume that a = 0 and b = +∞, therefore we ignore the
condition Bt− βWt ∈ (at1/2, bt1/2). Denoting x := inft≥0 g(t), one can find A > 0 and ε > 0 such that

−x/2−Aj(t) ≤ f(t) ≤ x/2 +Aj(t), t ≥ 0,

where j(t) := min(t, t1/2−ε). We have

P (∀s≤tx/2 +Bs ≥Ws +Aj(s)|W ) ≤ P (∀s≤tx+Bs ≥Ws + f(s)|W )
≤ P (∀s≤tg(t) +Bs ≥Ws + f(s)|W ) ≤ P (∀s≤tg(t) +Bs ≥Ws −Aj(s)|W )

≤ P
(
∀h(t)≤s≤tg(t) + x/2 +Bs ≥Ws −Aj(s)|W

)
, (5.1)

where h(t) is any function such that (h(t))1/2−ε ≥ g(t) +x+ 1 and h(t) = eo(log t). The right-hand side
of the last expression is bounded from above by P

(
∀h(t)≤s≤t1 +Bs ≥Ws − (A+ 1)j(s)|W

)
. We will

show that the event

A :=
{

lim
t→+∞

−
logP

(
∀h(t)≤s≤t1 +Bs ≥Ws −Aj(s)|W

)
log t = γ(β)

}
, (5.2)

fulfills P (A) = 1. The same method can be used to show the almost sure convergence of the left-hand
side of (5.1) (we skip the details). These will conclude the proof. We define a stochastic process
{Zt}t≥0 by

Zt := exp
(ˆ t

0
Aj′(s)dWs −

1
2

ˆ t

0
[Aj′(s)]2ds

)
.

This process is an uniformly integrable martingale (since
´ +∞

0 [j′(s)]2ds ≤ +∞). We denote its limit
by Z∞ and define the measure (on the Wiener space) dQ = Z∞dP. By the Girsanov theorem under
this measure {Ws −Aj(s)}s≥0 is a standard Wiener process. We will show that

Q(A) = 1, (5.3)

which is enough to conclude the proof. Indeed, one easily verifies that P (Z∞ > 0) = 1, which together
with E1AZ∞ = Q(A) = 1 implies P (A) = 1. We are now going to show (5.3). By Theorem 1.1 it is
enough to prove

0 ≤ δt := −
(

logP (∀0≤s≤t1 +Bs ≥Ws|W )
log t −

logP
(
∀h(t)≤s≤t1 +Bs ≥Ws|W

)
log t

)
→ 0, Q− a.s.

We have

δt = −
logP

(
∀s≤h(t)1 +Bs ≥Ws|∀h(t)≤s≤t1 +Bs ≥Ws,W

)
log t

≤ −
logP

(
∀s≤h(t)1 +Bs ≥Ws|W

)
log t ,

where the last inequality holds by Fact 2.3. Now the proof is straightforward, indeed

−
log
(
∀0≤s≤h(t)1 +Bs ≥Ws,W

)
log t = −

logP
(
∀0≤s≤h(t)1 +Bs ≥Ws,W

)
log h(t)

log h(t)
log t → 0, Q− a.s.
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Theorem 1.1 and log h(t)/ log t→ 0.
In order to prove the Lp convergence it is enough to show that that the family

{− logP (∀s≤tx/2 +Bs ≥Ws +Aj(s)|W ) /t}t≥0 ,

is Lp-uniformly integrable. This follows by easy calculations from Fact 3.8 using relation (1.3).

We end this section with a proof of Fact 1.4.

Proof of Fact 1.4. Let (Xk)k≥0 be a sequence of i.i.d. random variables such that E(X2+ε
k ) < +∞.

By Borel-Cantelli lemma, we have

L := max
{
n ∈ N : |Xn| ≥ n1/(2+ε)

}
< +∞ a.s.

Therefore, we have

lim sup
N→+∞

logP (∀n≤NBn ≥ Xn|X)
logn ≤ lim sup

N→+∞

logP
(
∀L<n≤NBn ≥ n1/(2+ε)|L

)
logn ≤ −1

2 a.s.

Similarly, setting M = maxn≤LXn, we have

lim inf
N→+∞

logP (∀n≤NBn ≥ Xn|X)
logn ≥ lim inf

N→+∞

logP
(
∀n≤NBn ≥ −M − n1/(2+ε)|L,M

)
logn ≥ −1

2 a.s.

6 Proof of the facts for random walks
We now use definitions of Section 1.3. We write S a random walk in random environment µ, and set

Wn = −E(Sn|µ) and Bn = Sn +Wn.

To make the notation more clear in this section we assume that we have two probability spaces (Ω,F ,P),
(Ω̂,G,Q) which supports B and µ respectively. The measure P depends on the realization of µ, which
is made implicit in the notation. Thus we are going to prove

lim
N→+∞

logP
(
∀n≤Nx+Bn ≥Wn + f(n), BN −WN ∈ (aN1/2, bN1/2)

)
logN

=
{
−γ
(√

Var(W1)
Var(B1)

)
on Ax,

−∞ on Acx.
, Q-a.s. (6.1)

Further to simplify the notation we put γ := γ
(√

Var(W1)
Var(B1)

)
and

pN := P
(
∀n≤Nx+Bn ≥Wn + f(n), BN −WN ∈ (aN1/2, bN1/2)

)
. (6.2)

We need a bound that the inhomogeneous random walk B grows fast. This will be contained in the
first two lemmas of this section. We will use tilting of measure. Let us denote the increments of B by

Xn := Bn −Bn−1.

Let us recall C1 from the assumption (A2). For any θ ∈ [0, C1] and n ∈ N we define a probability
measure Hn,θ by

dHn,θ
dP := eθXnψ−1

n (θ), ψn(θ) = EeθXn . (6.3)

The tilting is supposed to “increase” X ′ns. The following lemma quantifies this
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Lemma 6.1. There exist θ0 ∈ (0, C1) and 0 < c ≤ c̃ such that for any θ ≤ θ0 and n ∈ N we have

Hn,θ(Xn) ∈ [cθEX2
n, c̃θEX2

n].

Proof. By (6.3) we have
Hn,θ(Xn) = ψ−1

n (θ)EXne
θXn .

The proof will be finished once we show that for any n and small enough θ we have

EXne
θXn = (EX2

n)θ + o(θ), ψn(θ) = 1 +O(θ2). (6.4)

By the assumption of the uniform exponential integrability in (A2) and Cauchy’s estimate [9, Theorem
10.26] for any n and 0 ≤ θ ≤ C1/2 we get

ψ′′n(θ) ≤ C, |ψ′′′n (θ)| ≤ C,

for some C > 0. By the assumptions ψn(0) = 1 and ψ′n(0) = EXn = 0, thus the second statement
of (6.4) follows by the Taylor formula (with the Lagrange reminder). For the first one we notice that
EXne

θXn = ψ′n(θ), ψ′′n(0) = EX2
n and again apply the Taylor expansion.

We present now the aforementioned bound.

Lemma 6.2. There exist c, C > 0 such that for large enough N on the event{
N∑
n=1

E(X2
n) ≥ NQ(EX2

i )/2
}

we have
P
(
BN ≥ c

√
N log logN

)
≥ N−C(log logN)2

.

Proof. We define an := 1
4θ0cn

1/2 log logn, where θ0, c are given by Lemma 6.1 and consider the events
AN := {SN ≥ aN} . We denote also bn := (θ0n

−1/2 log logn) ∨ 0 and let us define the tilted measure
PN by

dPN
dP := ΛN , ΛN := exp

(
N∑
n=1

bnXn

)
N∏
n=1

ψ(bn)−1. (6.5)

Further, we write qN := P (AN ) = PN
(
1ANΛ−1

N

)
. We have to estimate

qN = PN
(
1ANΛ−1

N

)
=
(

N∏
n=1

ψ(bn)
)
PN

(
1AN exp

(
−

N∑
n=1

bnXn

))
≥ PN

(
1AN exp

(
−

N∑
n=1

bnXn

))
.

We introduce X̃n := Xn − ENXn and accordingly B̃n :=
∑n
i=1 X̃i. In our notation

qN ≥ exp
(
−

N∑
i=1

(ENXn)bn

)
PN

(
1AN exp

(
−

N∑
n=1

bnX̃n

))
.

Now, by Lemma 6.1 and the assumption (A2) we obtain

N∑
n=1

(ENXn)bn ≤ C1

N∑
n=1

b2
n ≤ 2C1(logN)(log logN)2,

for C1 > 0. Next, we apply the Abel transform
N∑
n=1

bnX̃n =
N∑
n=1

bn(B̃n − B̃n−1) = B̃NbN +
N−1∑
n=1

(bn − bn+1)B̃n.
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We define events BN :=
{
∀n≤N |B̃n| ≤ C2an

}
, for some C2 > 0. We have an elementary estimation

|bn − bn+1| ≤ C3n
−3/2 log logn, C3 > 0. Putting things together we obtain

qN ≥ N−C1(log logN)2
PN

(
1AN∩BN exp

(
−|B̃NbN | − C3

N−1∑
n=1
|n−3/2 log logn)||B̃n|

))

≥ N−C1(log logN)2
PN

(
1AN∩BN exp

(
−B̃NbN − C4

N−1∑
n=1

n−1(log logn)2

))
≥ N−C5(log logN)2

PN (AN ∩ BN ) ,

where we introduced C4, C5 > 0. We notice that

AN ⊇

{
B̃N ≥ aN −

N∑
n=1

ENXi

}
⊇
{
B̃N ≥ −aN/2

}
.

Finally, we leave to the reader proving that lim infN→∞ PN (AN ∩ BN ) > 0, which concludes the
proof.

Let us recall the event Ax defined in (1.8). Let us denote by p̃N the version of pN from (6.2)
without condition BN −WN ∈ (aN1/2, bN1/2) i.e.

p̃N := P (∀n≤Nx+Bn ≥Wn + f(n)) . (6.6)

In the following lemma we prove a crude bound corresponding to the bound from above in Theo-
rem 1.11. Namely

Lemma 6.3. We have

lim inf
N→+∞

log p̃N
N2 ≥

{
0 on Ax,
−∞ on Acx.

Q− a.s.

Proof. The proof will follow again by the change of measure techniques. Due to a very big normalization
the proof can be somewhat brutal. We fix bN = b ∈ (0, C1) (C1 as in (A2)) and use ΛN and PN as in
(6.5). We denote BN := {∀n≤Nx+Bn ≥Wn + f(n)} and calculate

p̃N = PN (1BNΛ−1
N ) ≥ PN

(
1BN exp

(
−

N∑
n=1

bXn

))
.

We introduce also B1
N :=

{
∀n∈{1,...,N}Xn ≤ N1/2}. Trivially we have

p̃N ≥ PN

(
1BN∩B1

N
exp

(
−

N∑
n=1

bXn

))
≥ e−bN

3/2
PN (BN ∩ B1

N ) (6.7)

≥ e−bN
3/2 [

PN (BN )− PN ((B1
N )c)

]
≥ e−bN

3/2
[
PN (BN )−Ne−cN

1/2
]
,

where the last inequality follows by the union bound and the fact that exponential moments of Xn are
uniformly bounded, see (A2). Let us concentrate on PN (BN ). We denote v = Q

[
E(X2

i )
]
and define

L := inf
{
n ≥ 0 : ∀k≥n

k∑
i=0

E(X2
i ) ≥ kv/2

}
.

Clearly Q(L < +∞) = 1. Fix K > 0 and denote the following events in G (i.e. describing conditions
on W )

AK := A1
K ∩ A2

K , A1
K := {L < K} , A2

K :=
{
∀k≥KWk ≤ k2/3 − f(k)

}
.
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Using the Markov property we get

PN (BN ) ≥ PN
(
∀n∈{1,...,K}x+Bn ≥Wn + f(n), BK ≥ Kv/2

)
(6.8)

× PN
(
∀n∈{K,...,N}Bn ≥Wn + f(n)|BK = Kv/2

)
.

We denote the first term by p̃K . It is easy to check that the law of Bn under PN stochastically
dominates the one under P thus {pK = 0} ⊂ Acx. Conditionally on A2

K we have

PN
(
∀n∈{K,...,N}Bn ≥Wn + f(n)|BK = Kv/2

)
≥ 1−

+∞∑
n=K

PN (Bn ≤ nv/4|BK = Kv/2) .

We denote B̃n := Bn − ENBn. By Lemma 6.1, conditionally on A1
K , we have ENBk ≥ ckv/2, thus

PN
(
∀n∈{K,...,N}Bn ≥Wn + f(n)|BK = Kv/2

)
≥ 1−

+∞∑
n=0

PN
(
B̃n ≤ −cnv/4|B0 = Kv/2

)
.

Observing that the random variables Xn are uniformly exponentially integrable we get a constant
c1 > 0 such that

PN
(
∀n∈{K,...,N}Bn ≥Wn + f(n)|BK = Kv/2

)
≥ 1−

+∞∑
n=K

e−c1n > 0,

for K large enough. Putting the above estimates to (6.8) we obtain that for some C > 0

1AKPN (BN ) ≥ 1AKCp̃K .

Using this in (6.7) we have

lim inf
N→+∞

log p̃N
N2 ≥

{
0 on AK ∩ Ax,
−∞ on AcK ∪ Acx.

Q− a.s.

The proof is concluded passing K ↗ +∞ and by observing that 1AK → 1, Q-a.s.

We finally pass to the proof of Theorem 1.11. We notice that by the very definition of Ax (see
1.8) it is obvious that the convergence holds on Acx. Thus in the proofs below we concentrate on
proving the convergence on the event Ax. The instrumental tool of this proof will be the so-called
KMT coupling. We choose the measure Q to be a special one. By [7, Corollary 2.3] we can find a
probability space (Ω̃,G,Q) with processes {Wk}k≥0 and

{
Ŵk

}
k≥0

, which is a random walk with the

increments distributed according to N (0, σ2
W ), where σ2

W = Var(W1) and

lim sup
k→+∞

|Ŵk −Wk|
(log k)2 = 0, Q− a.s. (6.9)

Further we can extend the measure Q so that Ŵ is a marginal of a Brownian motion, also denoted by
Ŵ . This is rather standard and left to the reader also we keep Q to denote the extended measure and
Ŵ for the Brownian motion.

First we prove (6.1) for this special measure. At the end of the proof we argue how this statement
implies the thesis of Theorem 1.11. We start with the bound from above. We recall pN defined in
(6.2). One finds A and ε > 0 such that for any n ∈ N we have f(n) ≥ −An1/2−ε. Further we set p̃N
of (6.6) with this function, i.e.

p̃N := logP
(
∀n≤Nx+Bn ≥Wn −An1/2−ε

)
.
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In this part we will show

lim sup
N→+∞

log pN
logN ≤ lim sup

N→+∞

log p̃N
logN ≤ −γ, Q-a.s. (6.10)

We define a function f : N×M(R)N 7→ R by

f(n, µ) :=
n∑
i=1

EX2
i . (6.11)

We recall that the measure P depends on realization of W and that
{
Zi := EX2

i

}
i≥0 is a sequence of

i.i.d variables with respect to Q. It is easy to check, using the exponential Chebyshev inequality, that
(A2) implies existence of C̃1 > 0 such that Zi ≤ C̃1. We define a sequence of events belonging to G
given by

AN :=
{
∀k≤N |Ŵk −Wk| ≤ (logN)2

}
∩

{
∀k≤N sup

t∈[k,k+1]
|Ŵt − Ŵk| ≤ (logN)2

}
(6.12)

∩

{
∀k≥logN max

l∈{−k2/3,...,k2/3}
|Ŵk − Ŵk+l| ≤ k4/9

}
∩
{
∀k≥logN |f(k, µ)− kQ(E(X2

1 ))| ≤ k1/2 log k
}
.

We have 1AN → 1 Q-a.s. The convergence of the first term follows by (6.9). The proof of the others
are rather standard (we note that exponents 2/3 and 4/9 can be made smaller but this is not relevant
for our proof). As an example we treat the last but one term. We set

qk := P

(
max

l∈{−k2/3,...,k2/3}
|Ŵk − Ŵk+l| ≤ k4/9

)
.

By the properties of a Wiener process we know that maxl∈{−k2/3,...,k2/3} |Ŵk − Ŵk+l| has the tails
decaying faster than exp

(
−t2/(4k2/3)

)
, for t large enough. Thus

1− qk ≤ P

(
max

l∈{−k2/3,...,k2/3}
|Ŵk − Ŵk+l| ≥ k4/9

)
≤ exp

(
−k2/9/4

)
.

This quantity is summable thus the proof follows by the standard application of the Borel-Cantelli
lemma. From now on, we will work conditionally on AN . Using its first condition we have

p̃N ≤ logP
(
∀logN≤n≤N2(logN)2 +Bn ≥ Ŵn −An1/2−ε

)
. (6.13)

We use the coupling techniques also for P. Namely, by [7, Theorem 3.1] on a common probability space
(denoted still by P), we have processes {Bk}k≥0, distributed as the random walk from our theorem
and

{
B̂t

}
t≥0

a Brownian motion which approximates B. Recalling (6.11) we define

BN :=
{
∀k≤N |Bk − B̂f(k,µ)| ≤ (logN)2

}
∩

{
∀k≤N sup

t∈[k,k+1]
(B̂t − B̂k) ≤ (logN)2

}
. (6.14)

Applying [7, Theorem 3.1] to the first term and and standard considerations to the second one we
obtain logP (BcN ) / logN →N→+∞ −∞. We continue estimations of (6.13) as follows

p̃N ≤ P
(
∀logN≤n≤N4(logN)2 + B̂f(n,µ) ≥ Ŵn −An1/2−ε,BN

)
+ P (BcN ) .
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We extend, in the piece-wise linear fashion, the function f to the whole line with respect to its
first argument. This function is non-decreasing and we denote its generalized inverse by g(t, µ) :=
inf {s ≥ 0 : f(s, µ) ≥ t}. We change to the continuous time (writing t instead of n). By the second
and last condition of (6.12) for some C > 0 we have

p̃N ≤ P
(
∀C logN≤t≤N/C5(logN)2 + B̂t ≥ Ŵg(t,µ) −A(g(t, µ))1/2−ε

)
+ P (BcN ) .

Using two last conditions of (6.12) one checks that
{
∀t≥C logNŴg(t,µ) ≥Wt/Q(E(X2

1 )) − t4/9
}
and thus

conditionally on AN we have

p̃N − P (BcN ) ≤ P
(
∀C logN≤t≤N/C5(logN)2 + B̂t ≥ Ŵt/Q(E(X2

1 )) − t4/9 − 2At1/2−ε
)

=: p̂N .

Utilizing Theorem 1.5 one gets

lim
N→+∞

log p̂N
logN = −γ

(√
EW 2

1
Q(E(X2

1 ))

)
.

We recall that in our notation Q(E(X2
i )) is the same as E

[
E
(
B2

1 |µ
)]

= EB2
1 in the standard notation.

Recalling that P (BcN ) is negligible we obtain (6.10).
Before passing further let us state a simple conditioning fact.

Lemma 6.4. Let {Tn}n≥0 be a random walk and {an}n≥0 be a sequence. Then for any N the law
P
(
TN ∈ ·|∀n∈{1,...,N}Tn ≥ an

)
stochastically dominates the law of TN .

The proof follows by inductive application of the Markov property and is left to the reader.
We pass to the bound from below. We recall (6.2). Our aim is to prove

lim inf
N→+∞

log pN
logN ≥

{
−γ on Ax,
−∞ on Acx.

(6.15)

We denote KN := b(logN)6c and AN := cK
1/2
N log logKN (c is as in Lemma 6.2 ). Utilizing the

Markov property we obtain

log pN ≥ log qN + log p̂N ,

where

qN := P
(
∀n∈{0,...,KN}x+Bn ≥Wn + f(n), BKN ≥ AN , BKN ≤ N1/3

)
,

p̂N := inf
x∈[AN ,N1/3]

P
(
∀n∈{KN ,...,N}x+BKNn ≥Wn + f(n), x+BKNN −WN ∈ (aN1/2, bN1/2)

)
,

where for l we denote Blk = Bk −Bl, k ≥ l. For qN we utilize Lemma 6.4 as follows

qN ≥ P
(
∀n∈{0,...,KN}x+Bn ≥Wn

)
P (BKN ≥ AN )− P

(
BKN ≥ N1/3

)
. (6.16)

Let us further denote kN := b(logKN )6c and aN := k
1/2
N log log kN . Applying a similar procedure we

get

P
(
∀n∈{0,...,KN}x+Bn ≥Wn + f(n)

)
≥ logP (BkN ≥ aN ) + log p(x, 0, kN ) + log p(aN , kN ,KN ),

where p(x, k, l) := P
(
∀n∈{k,...,l}x+Bkn ≥Wn + f(n)

)
. We will prove that

lim inf
N→+∞

p̂N
logN ≥ −γ, Q− a.s. (6.17)
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Lemma 6.3 and Lemma 6.2 imply

lim inf
N→+∞

log p(x, 0, kN )
logN ≥

{
0 on Ax
−∞ on Acx

, and lim inf
N→+∞

logP (BKN ≥ AN )
logN = 0, Q− a.s. (6.18)

By simple scaling arguments we notice that (6.17) and (6.18) imply

lim inf
N→+∞

log p(aN , kN ,KN )
logN ≥ 0, and lim inf

N→+∞

logP (BkN ≥ aN )
logN = 0, Q− a.s.

We notice that by assumption (A2) for large N we have P
(
BKN ≥ N1/3) ≤ exp(−N1/4). Thus this

term is negligible in (6.16) and we get

lim inf
N→+∞

log qN
logN ≥

{
0 on Ax
−∞ on Acx

.

This together with (6.17) implies (6.15). For (6.17) we will apply coupling arguments similar to the
ones in the previous proof. We keep the notation (W, Ŵ ) and (B, B̂). We will also use the events of
(6.12). Finally, we know that for some ε > 0 we have f(n) ≤ n1/2−ε/2 for n large enough. We set a′, b′
such that a < a′ < b′ < b. Conditionally on AN for N large enough

p̂N ≥ P
(
∀KN≤n≤NAN +BKNn ≥ Ŵn + n1/2−ε/2, BKNN − ŴN ∈ (a′N1/2, b′N1/2)

)
.

Further, recalling (6.11) and (6.14) for a′ < a′′ < b′′ < b′ we we have

p̂N ≥ P
(
∀KN≤n≤NAN/2 + B̂f(n,µ)−f(KN ,µ) ≥ Ŵn + n1/2−ε

B̂f(N,µ)−f(KN ,µ) − ŴN ∈ (a′′N1/2, b′′N1/2)

)
− P (BcN ) .

Similarly as in the previous case the second term will be negligible. Let fN (·, µ) be the piece-wise
linearization of {KN , . . . , N} 3 n 7→ f(n, µ) − f(KN , µ). It is non-decreasing thus we may define its
inverse by gN (t, µ) := inf {s ≥ 0 : fN (s, µ) ≥ t}. We set v = Q(E(X2

1 )) (we recall that X1 = B1)

CN :=
{
∀t≥0|gN (t, µ)− t/v| ≤ [(logN)3 ∨ t2/3]

}
.

We leave to the reader verifying that 1CN → 1 Q-a.s. Now conditionally on CN we have

p̂N ≥ P
(
∀vKN/2≤t≤MN

AN/2 + B̂t ≥ ŴgN (t,µ) + (gN (t, µ))1/2−ε,DN
)
− P (BcN ) ,

where MN = vN −N3/4 and

DN :=
{
∀MN<t<vN+N3/4B̂t − ŴgN (t,µ) ∈ (a′′N1/2, b′′N1/2)

}
.

Using the third condition of (6.12) and performing simple calculations we have

AN ∩ CN ⊂
{
∀t≥logNŴgN (t,µ) ≤ Ŵt/v + t4/9 + (logN)3

}
.

Therefore on AN ∩ CN , for N large enough, we get

p̂N ≥ P
(
∀vKN/2≤t≤MN

AN/4 + B̂t ≥ Ŵt/v + t4/9,DN
)
− P (BcN ) .

We choose a′′′, b′′′ such that a′′ < a′′′ < b′′′ < b′′ and apply the Markov property

P
(
∀vKN/2≤t≤MN

AN/4 + B̂t ≥ Ŵt/v + t4/9,DN
)

≥ P
(
∀KN/2≤t≤MN

AN/4 + B̂t ≥ Ŵt/v + t4/9, B̂MN
− ŴMN/v ∈ (a′′′N1/2, b′′′N1/2)

)
× inf
x∈(a′′′N1/2,b′′′N1/2)

P
(
DN |B̂MN

− ŴMN/v = x
)
.
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It is easy to check that with high probability (with respect to Q) the last term is bigger than 1/2.
Recalling that P (BcN ) is negligible and utilizing Theorem 1.5 we obtain (6.17). This together with
(6.10) implies (6.1) for the special choice of the realization of W (i.e. we worked with the measure Q
on which we had the coupling (W, Ŵ )). To remove this assumption let us consider l be the space with
R-valued sequences with the product topology. Given any other probability measure P supporting W
and B we have P (W ∈ A) = Q(W ∈ A) for any A in the Borel σ-field of l. One checks that

A0 :=
{
g ∈ l : lim

N→+∞

logP (∀n≤Nx+Bn ≥ gn + f(n)) , BN −WN ∈ (aN1/2, bN1/2)
logN = −γ

}
belongs to this σ-field. Now we have

P (A0) = Q(A0) = 1.

This concludes the proof of Theorem 1.11. We skip the proof of Theorem 1.12, it follows by rather
simple modifications of the above proof.

We are still left with

Proof of Fact 1.9. The first part of the fact is easy (e.g. by the Hsu–Robbins theorem) and is left to
the reader. For the second part let us consider first that supSB = +∞. Then every step of B can
be bigger than the one of W thus clearly for any N we have P (∀n≤Nx+Bn ≥Wn|W ) > 0. Now, we
assume S := supSB < +∞. For any fixed N we have P (B1 ≥ S − x/(2N)) > 0. Further, one verifies
that

{∀n≤N : Bn −Bn−1 ≥ S − x/(2N)} ⊂ {P (∀n≤Nx+Bn ≥Wn|W ) > 0} .
Therefore, one obtains P (Ax) = 1. The second part of the proof goes easily by contradiction. If the con-
dition does not hold then there exists S and ε > 0 such that P (W1 ≥ S + ε) > 0 and P (B1 ≥ S − ε) = 0.
From this we see that P

(
Wd2x/εe ≥ d2x/εeS + 2x

)
> 0 while P

(
Bd2x/εe ≥ d2x/εeS

)
= 0.

7 Discussion and Open Questions
In the concluding section we discuss some open questions and further areas of research.

• The function γ introduced in Theorem 1.1 calls for better understanding. We are convinced that
it is strictly convex. It should be possible to obtain its asymptotics when β → +∞, we expect
that γ(β)/β2 → C, for C > 0.

• The qualitative results of our paper should hold in a much greater generality. Let us illustrate
that on an example. We expect that the convergence in Theorem 1.10 stays valid for any
processes {Wn}n∈N , {Bn}n∈N whose increments are weakly correlated (for example with the
exponential decay of correlations like Cov(Wn+1−Wn,Wk+1−Wk) ∼ exp(−c|n−k|)). Similarly
the qualitative statement of Theorem 1.1 should be valid if processes {Bt}t≥0 , {Wt}t≥0 are
diffusions without strong drift (possibly the proper condition to assume is that the spectral gap
is 0).

• The case β = 0 in Theorem 1.1 is well-studied, in particular it is known that conditioning a
Brownian motion to stay above the line has a repelling effect and such a process escapes to
infinity as t1/2 as t → +∞. Our result γ(β) > γ(0) for β 6= 0 suggests that the repelling effect
is stronger when the disorder is present. Quantifying this effect would be an interesting research
question.
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