N -Branching random walk with α-stable spine

Abstract : We consider a branching-selection particle system on the real line, introduced by Brunet and Derrida in [7]. In this model the size of the population is fixed to a constant N. At each step individuals in the population reproduce independently, making children around their current position. Only the N rightmost children survive to reproduce at the next step. Bérard and Gouéré studied the speed at which the cloud of individuals drifts in [2], assuming the tails of the displacement decays at exponential rate; Bérard and Maillard [3] took interest in the case of heavy tail displacements. We take interest in an intermediate model, considering branching random walks in which the critical spine behaves as an α-stable random walk.
Type de document :
Article dans une revue
Theory of Probability and Its Applications c/c of Teoriia Veroiatnostei i Ee Primenenie, Society for Industrial and Applied Mathematics, 2017, 62 (2), pp.365--392
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01322452
Contributeur : Bastien Mallein <>
Soumis le : lundi 30 mai 2016 - 11:17:17
Dernière modification le : lundi 22 janvier 2018 - 12:24:25
Document(s) archivé(s) le : mercredi 31 août 2016 - 10:51:37

Fichiers

brwSelectionN.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01322452, version 1
  • ARXIV : 1503.03762

Collections

INSMI | UPMC | PSL | USPC | PMA

Citation

Bastien Mallein. N -Branching random walk with α-stable spine. Theory of Probability and Its Applications c/c of Teoriia Veroiatnostei i Ee Primenenie, Society for Industrial and Applied Mathematics, 2017, 62 (2), pp.365--392. 〈hal-01322452〉

Partager

Métriques

Consultations de la notice

180

Téléchargements de fichiers

33