Branching random walk with selection at critical rate

Abstract : We consider a branching-selection particle system on the real line. In this model the total size of the population at time n is limited by exp an 1/3. At each step n, every individual dies while reproducing independently, making children around their current position according to i.i.d. point processes. Only the exp a(n + 1) 1/3 rightmost children survive to form the (n + 1)th generation. This process can be seen as a generalisation of the branching random walk with selection of the N rightmost individuals, introduced by Brunet and Derrida in [9]. We obtain the asymptotic behaviour of position of the extremal particles alive at time n by coupling this process with a branching random walk with a killing boundary.
Type de document :
Article dans une revue
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2016, <http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal-papers>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01322449
Contributeur : Bastien Mallein <>
Soumis le : vendredi 27 mai 2016 - 11:05:43
Dernière modification le : jeudi 20 juillet 2017 - 09:30:32
Document(s) archivé(s) le : dimanche 28 août 2016 - 10:30:53

Fichiers

brw_light_selection.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01322449, version 1
  • ARXIV : 1502.07390

Collections

Citation

Bastien Mallein. Branching random walk with selection at critical rate. Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2016, <http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal-papers>. <hal-01322449>

Partager

Métriques

Consultations de
la notice

42

Téléchargements du document

36