Maximal displacement in the $d$-dimensional branching Brownian motion

Abstract : We consider a branching Brownian motion evolving in R d. We prove that the asymptotic behaviour of the maximal displacement is given by a first ballistic order, plus a logarithmic correction that increases with the dimension d. The proof is based on simple geometrical evidence. It leads to the interesting following side result: with high probability, for any d ≥ 2, individuals on the frontier of the process are close parents if and only if they are geographically close.
Type de document :
Article dans une revue
Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2015, <10.1214/ECP.v20-4216>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01322443
Contributeur : Bastien Mallein <>
Soumis le : vendredi 27 mai 2016 - 11:02:33
Dernière modification le : mardi 11 octobre 2016 - 15:20:24
Document(s) archivé(s) le : dimanche 28 août 2016 - 10:38:46

Fichiers

bbm_d_dim-arxiv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

INSMI | UPMC | PSL | USPC

Citation

Bastien Mallein. Maximal displacement in the $d$-dimensional branching Brownian motion. Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2015, <10.1214/ECP.v20-4216>. <hal-01322443>

Partager

Métriques

Consultations de
la notice

56

Téléchargements du document

24