P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. Excellent et al., Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM Journal on Scientific Computing, vol.37, issue.3, pp.37-1451, 2015.
DOI : 10.1137/120903476

URL : https://hal.archives-ouvertes.fr/hal-00776859

P. R. Amestoy, R. Brossier, A. Buttari, J. Excellent, T. Mary et al., Fast 3D frequency-domain full-waveform inversion with a parallel block low-rank multifrontal direct solver: Application to OBC data from the North Sea, GEOPHYSICS, vol.81, issue.6, 2016.
DOI : 10.1190/geo2016-0052.1

URL : https://hal.archives-ouvertes.fr/hal-01349119

P. R. Amestoy, R. Brossier, A. Buttari, J. Excellent, T. Mary et al., 3D frequency-domain seismic modeling with a Parallel BLR multifrontal direct solver, SEG Technical Program Expanded Abstracts 2015, pp.3606-3611
DOI : 10.1190/segam2015-5811693.1

URL : https://hal.archives-ouvertes.fr/hal-01237869

L. Excellent and B. Uçar, The multifrontal method, Encyclopedia of Parallel Computing, D. Padua, pp.1209-1216, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00787015

P. R. Amestoy, A. Buttari, J. Excellent, and T. Mary, Complexity and performance of the Block Low-Rank multifrontal factorization, SIAM Conference on Parallel Processing (SIAM PP16), 2016.

A. Aminfar, S. Ambikasaran, and E. Darve, A fast block low-rank dense solver with applications to finite-element matrices, Journal of Computational Physics, vol.304, p.5337, 1403.
DOI : 10.1016/j.jcp.2015.10.012

J. Anton, C. Ashcraft, and C. Weisbecker, A Block Low-Rank multithreaded factorization for dense BEM operators, SIAM Conference on Parallel Processing (SIAM PP16), 2016.

M. Bebendorf, Efficient inversion of the Galerkin matrix of general second-order elliptic operators with nonsmooth coefficients, Mathematics of Computation, vol.74, issue.251, pp.1179-1199, 2005.
DOI : 10.1090/S0025-5718-04-01716-8

M. Bebendorf, Why Finite Element Discretizations Can Be Factored by Triangular Hierarchical Matrices, SIAM Journal on Numerical Analysis, vol.45, issue.4, p.1472, 2007.
DOI : 10.1137/060669747

M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, Lecture Notes in Computational Science and Engineering, vol.63, 2008.

M. Bebendorf and W. Hackbusch, Existence of ?-matrix approximants to the inverse FE-matrix of elliptic operators with L?-coefficients, Numerische Mathematik, vol.95, issue.1, pp.95-96, 2003.
DOI : 10.1007/s00211-002-0445-6

S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with applications, Engineering analysis with boundary elements, pp.405-422, 2003.

I. S. Duff and S. Pralet, Towards Stable Mixed Pivoting Strategies for the Sequential and Parallel Solution of Sparse Symmetric Indefinite Systems, SIAM Journal on Matrix Analysis and Applications, vol.29, issue.3, pp.1007-1024, 2007.
DOI : 10.1137/050629598

I. S. Duff and J. K. Reid, The Multifrontal Solution of Indefinite Sparse Symmetric Linear, ACM Transactions on Mathematical Software, vol.9, issue.3, pp.302-325, 1983.
DOI : 10.1145/356044.356047

B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation, Communications on Pure and Applied Mathematics, vol.31, issue.3, pp.697-735, 2011.
DOI : 10.1002/cpa.20358

J. A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM Journal on Numerical Analysis, vol.10, issue.2, pp.345-363, 1973.
DOI : 10.1137/0710032

P. Ghysels, X. S. Li, F. Rouet, S. Williams, and A. Napov, An efficient multi-core implementation of a novel hss-structured multifrontal solver using randomized sampling, SIAM Journal on Scientific Computing, 2016.

L. Grasedyck and W. Hackbusch, Construction and Arithmetics of H -Matrices, Computing, vol.70, issue.4, pp.70-295, 2003.
DOI : 10.1007/s00607-003-0019-1

W. Hackbusch, A sparse matrix arithmetic based on h-matrices. part I: introduction to h-matrices, Computing, pp.62-89, 1999.

W. Hackbusch, B. N. Khoromskij, and R. Kriemann, Hierarchical Matrices Based on a Weak Admissibility Criterion, Computing, vol.73, issue.3, pp.73-207, 2004.
DOI : 10.1007/s00607-004-0080-4

W. Hackbusch, B. N. Khoromskij, and S. A. Sauter, On H 2 -matrices, in Lectures on applied mathematics : proceedings of the symposium organized by the Sonderforschungsbereich 438 on the occasion of Karl-Heinz Hoffmann's 60th birthday, pp.9-29, 1999.

G. Karypis and V. Kumar, MeTiS ? A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices ? Version 4.0, 1998.

J. W. Liu, The Role of Elimination Trees in Sparse Factorization, SIAM Journal on Matrix Analysis and Applications, vol.11, issue.1, pp.134-172, 1990.
DOI : 10.1137/0611010

J. Peiró and S. Sherwin, Finite Difference, Finite Element and Finite Volume Methods for Partial Differential Equations, Handbook of materials modeling, pp.2415-2446, 2005.
DOI : 10.1007/978-1-4020-3286-8_127

F. Rouet, X. S. Li, P. Ghysels, and A. Napov, A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization, ACM Transactions on Mathematical Software, vol.42, issue.4, 2016.
DOI : 10.1145/2930660

R. Schreiber, A New Implementation of Sparse Gaussian Elimination, ACM Transactions on Mathematical Software, vol.8, issue.3, pp.256-276, 1982.
DOI : 10.1145/356004.356006

S. Wang, X. S. Li, F. Rouet, J. Xia, and M. V. , A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure, ACM Transactions on Mathematical Software, vol.42, issue.3, pp.1-21, 2016.
DOI : 10.1145/2830569

J. Xia, Efficient Structured Multifrontal Factorization for General Large Sparse Matrices, SIAM Journal on Scientific Computing, vol.35, issue.2, pp.832-860, 2013.
DOI : 10.1137/120867032

J. Xia, C. Chandrasekaran, M. Gu, and X. S. Li, Superfast Multifrontal Method for Large Structured Linear Systems of Equations, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.3, pp.31-1382, 2009.
DOI : 10.1137/09074543X