
HAL Id: hal-01321615
https://hal.science/hal-01321615

Submitted on 26 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ASTOR: A Program Repair Library for Java
Matias Martinez, Martin Monperrus

To cite this version:
Matias Martinez, Martin Monperrus. ASTOR: A Program Repair Library for Java. Proceedings of
ISSTA, Demonstration Track, 2016, Saarbrücken, Germany. pp.441-444, �10.1145/2931037.2948705�.
�hal-01321615�

https://hal.science/hal-01321615
https://hal.archives-ouvertes.fr

ASTOR: A Program Repair Library for Java

Matias Martinez
University of Lugano, Switzerland

Martin Monperrus
University of Lille & Inria, France

ABSTRACT
During the last years, the software engineering research com-
munity has proposed approaches for automatically repair-
ing software bugs. Unfortunately, many software artifacts
born from this research are not available for repairing Java
programs. To-reimplement those approaches from scratch
is costly. To facilitate experimental replications and com-
parative evaluations, we present Astor, a publicly available
program repair library that includes the implementation of
three notable repair approaches (jGenProg2, jKali and jMutRe-
pair). We envision that the research community will use As-
tor for setting up comparative evaluations and explore the
design space of automatic repair for Java. Astor offers re-
searchers ways to implement new repair approaches or to
modify existing ones. Astor repairs in total 33 real bugs
from four large open source projects.

1. INTRODUCTION
Reducing maintenance costs and improving software qual-

ity are two extremely important concerns in software engi-
neering. Software bugs are a threat to the perceived software
quality and increase maintenance costs. Recently, software
repair approaches have been proposed for repairing bugs in
an automated manner. A repair approach is both an algo-
rithm (or workflow) and its realization in a prototype. A
major problem for open-science is that those prototypes are
hard-wired for a given programming language or are not
publicly available.

In this paper, we present Astor (Automatic Software Trans-
formations fOr program Repair). Astor automatically re-
pairs Java program and includes three modes corresponding
to three notable repair approaches (their original implemen-
tations being for C): GenProg [13], Kali [12] and mutation
based repair MutRepair from Debroy et al. [3]. They are
called jGenProg2, jKali and jMutRepair. Astor also pro-
poses typical routines for repair such as fault localization or
program validation in order to facilitate the implementation
of new repair systems for Java.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA 2016
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

We envision that the research community will use Astor
for setting up comparative evaluations. Researchers will ex-
plore the design space of automatic repair by modifying al-
ready implemented approaches. They may also build novel
repair approaches on top of the basic routines provided by
Astor.

jGenProg2, jKali and jMutRepair have unique features.
jGenProg2 supports locality-aware repair, an optimization
presented in our previous work [8], that aims at decreasing
the time to repair bugs. JKali exhaustively explores the
repair search space based on code removal. JMutRepair
supports the easy addition of new mutation operators.

To evaluate jGenProg2, jKali and jMutRepair, we exe-
cuted them over a large dataset of real bugs [5]. The result
of this experiment shows that 33 out of 224 bug (14.7%) are
automatically repaired by Astor. It indicates the correct-
ness and scalability of Astor’s code base. Since the code of
Astor is open, it can be validated by peers. Bug fixes and
extensions by the community are welcome.

To sum up, our contribution is a publicly available pro-
gram repair library that includes the implementation
of three notable repair approaches (jGenProg2, jKali
and jMutRepair). We envision that the research com-
munity will use Astor for setting up comparative evalu-
ations and for exploring the design space of automatic
repair for Java.

The paper continues as follow: Section 2 summarizes the
goal of developing Astor. Section 3 describes Astor and Sec-
tion 4 presents a short evaluation. Section 5 presents the
related work. Finally, Section 6 concludes the paper.

2. GOALS
The goals of developing Astor are the following. a) to

provide an implementation in Java of notable repair ap-
proaches originally provided for other programming languages,
b) to provide a public implementation of notable repair ap-
proaches that are not available, c) to provide extension points
for easily customizing the repair workflow, for example, for
adding a new repair operator, d) to allow researchers to build
novel repair approaches by reusing the routines Astor pro-
vides. Since Astor is publicly available on Github, it wel-
comes bug fixes and extensions, and most importantly from
a scientific viewpoint, peer validation of its code.

3. THREE REPAIR MODES

3.1 Astor Core in a Nutshell
Astor provides one with test-suite based repair [9], a tool

that takes as input a buggy program, its test suite with at
least one failing test case, and produces (when it is possi-
ble) a patch that repairs the bug (i.e., all test cases pass
after repair). Astor is a meta-repair tool, it proposes several
“modes”, where each mode corresponds to different repair al-
gorithms. In this section, we present the three main modes
of Astor.

3.2 jGenProg2
jGenProg2 is a Java implementation of GenProg [13], a

redundancy-based repair approach [8], which synthesizes can-
didate fixes from existing code written somewhere else in the
system under repair. GenProg is for repairing C code, jGen-
Prog2 is for repairing Java code.

3.2.1 Main features of jGenProg2
The design of jGenProg2 is as follows: a) Fault localiza-

tion: it uses an existing fault localization technique called
Ochiai [1] and not the original ad hoc metric of GenProg[13].
b) Representation: it works at the level of statements: that
is, it removes, replaces, and inserts statements. c) Naviga-
tion of the search space: Astor provides two options, one
is evolutionary optimization (stacking several changes), the
other is one-point repair consisting of searching for repairs
that consist of a single change (no crossover). d) Code trans-
formation: the replace operator replaces one statement by
another of the same type (e.g. assignment is only replaced
by another assignment). e) Location awareness: 3 strategies
for reusing code: Application (GenProg), Package and File
(introduced by Astor, see Section 3.2.2).

3.2.2 Locality aware repair
In this paper we focus on new feature that jGenProg2

introduces: locality aware repair.
In the original GenProg version and its subsequent ver-

sions, the ‘Insert’ and ‘Replace’ operators reuse code that
”is taken exclusively from elsewhere in the same program”
[6]. In other words, the whole application under repair acts
as a pool of repair ingredients. Our intuition, based on find-
ings from our previous research [8], is that using smaller
ingredient spaces (such as the same file only) would allow
jGenProg2 to: 1) find patches faster, 2) find more patches
in certain cases. It is here where redundancy-based repair
approaches faces a trade-off: including more ingredients into
the space would increase the possibility to find a correct re-
pair, but the time to find it into the space would also in-
crease.

We enrich jGenProg2 with the notion of location-aware
search space. The scope of an ingredient space defines the
places where ingredients are taken from. In jGenProg2,
there are three scopes: file, package and application. Given
an operator op that affects statement s from file f , which
belongs to package p: a) the file scope takes ingredients
only from those in file f , b) the package scope takes only
from those files from package p, c) the application scope is
the default one, the one of GenProg, it considers the whole
codebase

jGenProg2 is an implementation of GenProg for Java,
augmented with location awareness.

3.3 jKali
In [12], Qi et al. have presented Kali, a system that aims

at identifying weak test suites and under-specified bugs.
Kali performs “repair” by only removing or skipping code
of C programs. We have implemented jKali, a Java imple-
mentation of Kali built over the Astor primitives. Kali is for
C, jKali is for Java code.

jKali carries out an exhaustive search of the repair space,
and implements all Kali operators, which are: a) removal
of statements, b) change of if conditions to true and false,
c) insertion of return statements. jKali navigates the suspi-
cious statements retrieved by fault localization: for each of
them in descending order of suspiciousness, the tool applies
each operator to produce a candidate program. In other
words, the exhaustive search is done both on the space of
suspicious statements and the space of code transformations
(the three ones presented above).

jKali is a faithful implementation of Kali [12] for Java.

3.4 jMutRepair
Debroy and Wong [3] have devised a repair approach that

applies operators taken from mutation testing for repair-
ing C code. We implemented their approach, which we call
jMutRepair. jMutRepair applies mutation operators on sus-
picious if condition statements. jMutRepair performs one
single change to the condition.

Our implementation considers three kinds of mutation op-
erators: Relational, Logical and Unary, corresponding to op-
erators OP2, OP3 and OP8 of the original paper [3]. For
the Relational category, there are six interchangeable opera-
tors: >,>=, <,=<,==, and ! =. For the Logical category,
there are two compatible ones: OR,AND. For the Unary
category, there are two mutations: negation and positivation
(removal of the negation operator). jMutRepair also carries
out an exhaustive search in the solution space and uses test
cases for validating the candidate repairs.

jMutRepair is a mutation-based repair approach imple-
mentation for Java with a 3 built-in mutation operators
and an easy way to add new ones.

3.5 Implementation
Astor uses Spoon [11] for Java code analysis and manip-

ulation. The code and documentation of Astor are publicly
available on GitHub: https://github.com/SpoonLabs/
astor. Astor has 9.2k loc and 126 Java classes.

4. EVALUATION
We have used Astor for repairing real bugs of open-source

Java programs. We present the results of three experiments
made on bugs from the Defects4J benchmarks [4].

4.1 Defects4J
We have used the tree modes from Astor for a large eval-

uation consisting in searching for patches for 224 bugs from
the Defects4J benchmarks [5], those from projects Apache
Commons Math, Apache Commons Lang, JFreeChart and
Joda Time. A patch is said to be test-adequate if it passes
all tests, incl. the failing one. As shown by previous work
[12], a patch may be test-adequate yet incorrect, when it
only works on the inputs from the test suite and does not

https://github.com/SpoonLabs/astor
https://github.com/SpoonLabs/astor

Table 1: Test-Adequate Patches for 224 Bugs in De-
fects4J with the Three Repair Modes of Astor. In
Total, 33 bugs (14.7%) are repaired

.
Project jGenProg jKali jMutRepair
Chart C1, C3, C5, C7, C13,

C15, C25,
C1, C5, C13, C15, C25,
C26

C1, C7, C25, C26∑
= 7

∑
= 6

∑
= 4

Lang 0 0 L27∑
= 0

∑
= 0

∑
= 1

Math M2, M5, M7, M8, M28,
M40, M49, M50, M53,
M60, M70, M71, M73,
M78, M80, M81, M82,
M84, M85, M95

M2, M8, M28, M32,
M40, M49, M50, M78,
M80, M81, M82, M84,
M85, M95

M2, 28, 40, 50, 57, 58,
81, 82, 84, 85, 88

∑
= 20

∑
= 14

∑
= 11

Time T4, T11 T4, T11 T11∑
= 2

∑
= 2

∑
= 1

Total 29 22 17

generalize. jGenProg2 uses a time limit of 3 hours. jKali
and jMutRepair ran without any time limit and perform an
exhaustive search.

Table 1 summarizes the results. jGenProg2 finds test-
adequate patches for 7 bugs from Chart project, 20 from
Commons Math and 2 from Joda Time (resp 6 bugs from
Chart, 14 from Math and 2 from Joda Time for jKali).
Moreover, jMutRepair is the only approach from Astor to
repair one bug from Apache Lang. To sum up jGenProg2
finds test-adequate patches for 29 out of 224 bugs, jKali 22
and jMutRepair 17. All patches are available at https:
//goo.gl/yeLXmo.

Astor is capable of finding test-adequate patches for 33
real bugs from large-scale Java programs.

4.2 Locality Aware Repair Evaluation
In this section we present a first evaluation of the opti-

mization introduced by jGenProg2 (Section 3.2.2). We run
jGenProg2 to repair Commons Math bugs using the baseline
configuration (Application scope) and the optimized modes
(File and Package scopes). Due to the stochastic nature of
jGenProg2 we launch 20 repair attempts per bug and per
scope. We set up a timeout of 3 hours for each attempt.
Table 2 presents the median time for finding the first patch
using the Insert and Replace operators (those that reuse
code for synthesizing patches).

We consider that the “Application” scope is the baseline,
because it is the one used in GenProg. Table 2 shows that
the median time to find the first patch is in average 11.1,
16.7 and 41.1 minutes using the configuration File, Package
and Application (baseline), respectively. This validates the
fact that locality-aware repair speeds-up repair. The table
also shows the percentage of time saved by the optimization.
Compared to the base-line, the File scope allows faster repair
for 17 out of 21 bugs. Math-71 cannot be repaired using the
baseline configuration, yet can be repaired with File and
Package scope.

Interestingly, bug Math-60 could not be repair with the
optimized ingredient search space. The reason is that the
only valid patch ingredient must be taken from another file
(resp package) than the file (resp package) of the buggy
statement.

The location-based optimization allows jGenProg2 to
reduce repair time from 41.1 to 11.1 minutes (73%),
without hampering repair capability.

Table 2: Experimental results on repairing the bugs
of Commons Math project with 3 different ingredi-
ent scope: File, Package and Application. The local-
ity awareness of jGenProg2 enables to find a patch
faster.

Bug ID Median time for finding
the first patch (in min-
utes)

Time reduction

File Package Application File vs App Pack vs App
Math-2 9 21.5 31 71% 30.6%
Math-5 5.4 5.3 27.8 80.7% 80.9%
Math-7 27.9 29.3 168.6 83.4% 82.6%
Math-28 26.4 33.4 46.2 42.8% 27.6%
Math-40 23 52.6 31.8 27.6% -39.6%
Math-44 12.1 10.9 47.1 74.3% 76.8%
Math-49 8.7 20.8 19.7 55.6% -5.6%
Math-50 4.6 5.6 7.4 38.5% 25.1%
Math-53 2 2.2 86.2 97.7% 97.5%
Math-60 - - 51.1 - % - %
Math-70 0.2 0.3 31.3 99.3% 99%
Math-71 4.9 7.6 - - % - %
Math-73 0.4 0.5 15.5 97.2% 96.7%
Math-74 - 67.4 12.2 - % -81.9%
Math-78 2.4 4.1 12.6 80.9% 67.7%
Math-80 10.2 3.7 11 7.3% 66.4%
Math-81 6.6 4.5 3.6 -45.7% -21%
Math-82 10.3 29.9 116.1 91.1% 74.2%
Math-84 36.2 23.1 46.6 22.2% 50.3%
Math-85 18.3 7 46.6 60.7% 85.1%
Math-95 2.3 4.3 9.9 76.7% 56.5%

Total 11.1 16.7 41.1 58.97 % 45.7 %

4.3 Examples of Real Bugs Repaired
In this section, we present three small case studies of re-

pairing real bugs from the project Apache Commons Math
using our tools: jGenProg2, jKali, jMutRepair.

4.3.1 Bug Math-70 repaired by jGenProg2
Our implementation of jGenProg2 correctly repairs the

bug Math-70 from Defects4J. As listing 1 shows, the patch
generated by jGenProg2 replaces a method invocation by an
overridden method. The patch is the same that the patch
done by the project’s developers.

Listing 1: Patch for bug Math-70
− return s o l v e (min , max) ;
+ return s o l v e (f , min , max) ;

4.3.2 Bug Math-50 repaired by jKali
jKali is capable of repairing bug Math-50 from project

Math , which was reported in Commons Math’s issue tracker
as major bug #631. The patch, presented in listing 2, re-
moves an if condition and its then branch and is identical
to the patch provided by the developers.

Listing 2: Patch for bug 50
− i f (x == x1) {
− f 0 = computeObjectiveValue (x0) ; }

4.3.3 Bug Math-85 repaired by jMutRepair
jMutRepair generates a patch for bug Math-85, which has

been reported in the project issue tracker as issue #280. The
patch, presented in listing 3 is identical to the developer’s
patch and changes a relational operator from >= to >.

Listing 3: Patch for bug Math-85
− i f (f a ∗ fb >= 0.0) {
+ i f (f a ∗ fb > 0 .0) {

https://goo.gl/yeLXmo
https://goo.gl/yeLXmo

In this section, we have shown that our implementations of
state-of-the-art repair approaches are able to repair real Java
bugs, by generating patches that are syntactically equivalent
to those manually written by developers.

5. RELATED WORK
In the last few years, several test-suite based repair ap-

proaches have been proposed, using different techniques for
optimizing the solution search. For example, Arcuri [2] ap-
plies co-evolutionary computation to automatically gener-
ate bug fixes. GenProg by Weimer [13] applies genetic pro-
gramming to the AST of a buggy program and generates
patches by adding, deleting, or replacing AST nodes. The
authors provide a GenProg implementation for repairing C
code. Our implementation of GenProg targets Java code.
Debroy & Wong [3] propose a mutation-based repair method
inspired from mutation testing. This work combines fault lo-
calization with program mutation to exhaustively explore a
space of possible patches. The tool is not publicly available.
Kali by Qi et al. [12] has recently been proposed to exam-
ine the fixability power of simple actions, such as statement
removal. As GenProg, Kali targets C code. We have built
a Java version of Kali over Astor framework, which includes
all transformations proposed by Kali. SemFix by Nguyen et
al. [10] is a constraint based repair approach for C . This
approach provides patches for assignments and conditions
by combining symbolic execution and code synthesis. Nopol
by DeMarco et al. [14] is also a constraint based method,
which focuses on fixing bugs in if conditions and missing pre-
conditions, as Astor, it is implemented for Java and publicly
available. SPR [7] defines a set of staged repair operators so
as to early discard many candidate repairs that cannot pass
the supplied test suite. SPR is publicly available but targets
C programs.

6. CONCLUSION
In this paper we have presented Astor, a publicly avail-

able repair framework for Java that includes an implemen-
tation of GenProg, Kali and mutation-based repair. Those
threee repair modes can repair a total of 33 real bugs in
a benchmark of real bugs from open-source Java programs.
We hope that Astor will facilitate future research and com-
parative evaluations in automatic repair. Astor is publicly
available at https://github.com/SpoonLabs/astor.

7. REFERENCES
[1] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van

Gemund. An evaluation of similarity coefficients for
software fault localization. In Proceedings of the 12th
Pacific Rim International Symposium on Dependable
Computing, PRDC ’06, pages 39–46, 2006.

[2] Andrea Arcuri. Evolutionary repair of faulty software.
Appl. Soft Comput., 11(4):3494–3514, June 2011.

[3] Vidroha Debroy and W. Eric Wong. Using mutation
to automatically suggest fixes for faulty programs. In
Proceedings of the 2010 Third International
Conference on Software Testing, Verification and
Validation, ICST ’10, pages 65–74, 2010.

[4] Thomas Durieux, Matias Martinez, Martin
Monperrus, Romain Sommerard, and Jifeng Xuan.
Automatic Repair of Real Bugs: An Experience

Report on the Defects4J Dataset. Technical Report
1505.07002, Arxiv, 2015.

[5] René Just, Darioush Jalali, and Michael D. Ernst.
Defects4J: A Database of existing faults to enable
controlled testing studies for Java programs. In ISSTA
2014, Proceedings of the 2014 International
Symposium on Software Testing and Analysis, pages
437–440, San Jose, CA, USA, July 23–25, 2014.

[6] Claire Le Goues, Michael Dewey-Vogt, Stephanie
Forrest, and Westley Weimer. A systematic study of
automated program repair: Fixing 55 out of 105 bugs
for $8 each. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, pages
3–13, Piscataway, NJ, USA, 2012. IEEE Press.

[7] Fan Long and Martin Rinard. Staged program repair
with condition synthesis. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 166–178, New
York, NY, USA, 2015. ACM.

[8] Matias Martinez, Westley Weimer, and Martin
Monperrus. Do the fix ingredients already exist? an
empirical inquiry into the redundancy assumptions of
program repair approaches. In Companion Proceedings
of the 36th International Conference on Software
Engineering, ICSE Companion 2014, pages 492–495,
2014.

[9] Martin Monperrus. A critical review of ”automatic
patch generation learned from human-written
patches”: Essay on the problem statement and the
evaluation of automatic software repair. In Proceedings
of the International Conference on Software
Engineering, 2014.

[10] Hoang Duong Thien Nguyen, Dawei Qi, Abhik
Roychoudhury, and Satish Chandra. Semfix: Program
repair via semantic analysis. In Proceedings of the
2013 International Conference on Software
Engineering, ICSE ’13, pages 772–781, Piscataway,
NJ, USA, 2013. IEEE Press.

[11] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez,
Carlos Noguera, and Lionel Seinturier. Spoon: A
library for implementing analyses and transformations
of java source code. Software: Practice and
Experience, page na, 2015.

[12] Zichao Qi, Fan Long, Sara Achour, and Martin
Rinard. An analysis of patch plausibility and
correctness for generate-and-validate patch generation
systems. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA
2015, pages 24–36, New York, NY, USA, 2015. ACM.

[13] Westley Weimer, ThanhVu Nguyen, Claire Le Goues,
and Stephanie Forrest. Automatically finding patches
using genetic programming. In Proceedings of the 31st
International Conference on Software Engineering,
ICSE ’09, pages 364–374, 2009.

[14] Jifeng Xuan, Matias Martinez, Favio Demarco,

Maxime ClÃl’ment, Sebastian Lamelas, Thomas
Durieux, Daniel Le Berre, and Martin Monperrus.
Nopol: Automatic repair of conditional statement
bugs in java programs. IEEE Transactions on
Software Engineering, 2016.

https://github.com/SpoonLabs/astor

APPENDIX
A. APPENDIX

This appendix demonstrates how to download, configure
and run Astor with the version of April 2016.

A.1 Download Astor
To download the code, execute:
git clone https://github.com/SpoonLabs/astor

Astor is a Maven project1. That means, its resources are
organized as follows: a) one folder ‘src’ where the source
code is located, b) a file called ‘pom.xml’ which describe the
project metadata such as its dependencies, c) a folder ‘tar-
get’ where compiled code (bytecode) is located after a com-
pilation, d) a folder ‘examples’ which contains real buggy
projects for testing Astor.

A.2 Build Astor
To compile Astor project, run command mvn build .

To generate a bytecode package (jar), run command

mvn package . This creates jar“astor-X-dependencies.jar”
into folder ‘target’. For simplicity, you can rename it to ‘as-
tor.jar’.

A.3 Setup Buggy Project
Once Astor package is built, let us focus on the project to

repair. Astor contains several buggy projects into the folder
‘examples’ In this demo we use ‘/examples/math 70’ corre-
sponding to bug MATH-70 from Defects4J. First, compile
the code of the buggy application to be repair. If it is a
maven project (as MATH-70 is) run mvn compile .

As Astor needs to know the directory layout of the project
to repair, then, identify the folders where source code and
byte code are located. For example, folders ‘src’ and ‘bin’,
or ‘src/java/main’ and ‘target/java/’.

Finally, execute all tests from the buggy project. If the
project is a maven project run mvn test . There must
be at least one failing test case that exposes the bug that
Astor will aim at repairing. Write down the names of the
failing test cases for passing later to Astor as argument. For
MATH-70 the failing test case is:

‘org.apache.commons.math.analysis.solvers.BisectionSolverTest”

A.4 Create Astor Command
Once Astor is built and a buggy project is set up, you

must create the command to launch Astor over the buggy
project.

The main class of Astor is ‘fr.inria.main.evolution.AstorMain’
Astor requires some arguments, such as:
-mode “execution mode (jgenprog, jkali, jmutrepair)”
-location “location of the project to repair”
-dependencies “folder with the dependencies (jars) of

the application to repair”
-failing “failing test case names”
-jvm4testexecution “JDK location that Astor uses to

execute the application to repair”
Additionally, there are many optional arguments that can

be passed to Astor. For example, argument -srcjavafolder
corresponds to the folder name where source code is located
inside the project to repair. By default, Astor uses the value
‘src/main/java’, which corresponds to the standard direc-
tory layout defined for Maven.
1https://maven.apache.org/

To see the complete list of arguments and their explana-
tions execute:

java -cp astor.jar fr.inria.main.evolution.AstorMain -help

Default values of all arguments are stored into the file ‘con-
figuration.properties’.

Now, let us present the command line to run jGenProg2
over MATH-70:

java -cp astor.jar fr.inria.main.evolution.AstorMain
-location ./examples/math_70
-mode jgenprog -scope package -failing
org.apache.commons.math.analysis.solvers.BisectionSolverTest
-dependencies ./examples/libs/junit-4.4.jar
-srcjavafolder /src/java/ -srctestfolder /src/test/
-binjavafolder /target/classes
-bintestfolder /target/test-classes
-flthreshold 0.5 -seed 10 -maxtime 100 -stopfirst true

Note that this command line executes Astor in mode jGen-
Prog (-mode jgenprog), using a package ingredient scope
(-scope package, see section 3.2.2). Moreover, the com-
mand overrides the directory layout of the buggy project
(-srcjavafolder... -bintestfolder...). Finally,
the argument -maxtime 100 indicates a timeout of 100
minutes to find a patch and -stopfirst true means to
stop finding more solutions after finding the first one.

A.5 Astor Execution and Results
To execute Astor, it is necessary to install Java JDK 1.8.

After the execution of a command, Astor writes in the out-
put folder (property ‘workingDirectory’ in the configuration
file, by default is ‘./outputMutation/’) a folder with all the
variants generated by an approach. Each variant folder con-
tains the files that Astor has produced and possibly a can-
didate patch.

The summary of the execution is printed on the screen at
the end of the execution. If there is at least one solution,
it prints “Solution found” and then it lists the program
variants that are solution (i.e., repaired versions of the pro-
gram). Then, the folder of each of those solution variants
contains a file “Patch.xml”, which summarizes the changes
done on the variant for repairing the bug. Listing 4 presents
the file generated after executing the presented command
line for MATH-70. It is only present if the variant is a valid
solution (fixes the failing test and no regression). If Astor
does not find any solution in the execution, it prints to the
screen “No solution found”.

Listing 4: Patch.xml for MATH-70
<patch>
<operat ion generat ion=”42 ” l i n e=”72 ”

l o c a t i on=
”org . apache . commons . math . ana l y s i s . s o l v e r s . B i s e c t i onSo l v e r ”
type=”ReplaceOp ”>
<o r i g i n a l>return so l v e (min , max)</ o r i g i n a l>
<modif ied scope=”LOCAL”>return so l v e (f , min , max)</modi f ied>

</ operat ion>
</patch>

A.6 Using Extension Points
Astor offers extension points to customize existing ap-

proaches or to implement new ones. For instance, Astor
offers an extension point to add new repair operators. For
example, one can include to jMutRepair a new operator that
mutates right-hand side expressions of assignments. A new
operator class must extend the abstract class ‘AstorOper-
ator’. Then, the canonical name of this operator’s class is
passed to Astor via the argument -customop.

	Introduction
	Goals
	Three Repair Modes
	Astor Core in a Nutshell
	jGenProg2
	Main features of jGenProg2
	Locality aware repair

	jKali
	jMutRepair
	Implementation

	Evaluation
	Defects4J
	Locality Aware Repair Evaluation
	Examples of Real Bugs Repaired
	Bug Math-70 repaired by jGenProg2
	Bug Math-50 repaired by jKali
	Bug Math-85 repaired by jMutRepair

	Related Work
	Conclusion
	References
	Appendix
	Download Astor
	Build Astor
	Setup Buggy Project
	Create Astor Command
	Astor Execution and Results
	Using Extension Points

