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Abstract. This article proves most of the assertion in §116 of Maxwell’s trea-
tise on electromagnetism. The results go under the name Earnshaw’s Theorem
and assert the absence of stable equilibrium configurations of conductors and
dielectrics in an external electrostatic field.
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1. Introduction

This paper presents rigorous proofs of theorems that go under the name of Earnshaw’s

Theorem in Electrostatics. The original assertion dates to 1842. The generalisations that

we discuss are introduced in the remarkable §116 of Maxwell’s Treatise on Electromag-

netism [11]. The simplest version is that a point charge in the electrostatic field of other

fixed charges that are at finite distance from the point charge cannot be in a position of

stable equilibrium. We begin with an overview of the correct assertions of earlier authors,

contrasting them with dynamical instability.

1.1. What did Earnshaw prove? Earnshaw’s paper [6] discusses possible structures of

the aether. He proposes that particles of the aetherwhen subjected to a small displacement

should oscillate, with oscillation independent of the direction of the displacement. The

analysis is at the level of what is today called the theory of small oscillations. For an

equilibrium x of the dynamical equations

(1.1) x′′ = −∇xV (x) , ∇xV (x) = 0.
1
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expand the potential energy

V (x) = V (x) +
1

2

∑

i,j

∂2V (x)

∂xi∂xj
(x− x)i (x− x)j + h.o.t .

The theory of small oscillations omits the higher order terms thereby linearizing equation

(1.1). Solutions of the linearized equation are all sinusoidal oscillations if and only if the

hessian of V at x is strictly positive definite. This in turn implies that V has a strict local

minimum.

If all interparticle forces are inverse square law forces as is the case in electrostatics,

then the potential is a harmonic function. Earnshaw proves the following.

Proposition 1.1. For a harmonic potential, it is impossible that the solutions of the

linearized equation at an equilibrium are all oscillatory.

Proof. If the solutions are all oscillatory then the hessian is strictly positive. Then

∆V (x) = Tr
[
Hess V (x)

]
> 0 .

In particular, V is not harmonic. �

For Earnshaw this implied that looking for force laws governing the aether he needed to

look beyond inverse square law forces. From the perspective of Maxwell’s §116, when V

is harmonic then except degenerate cases, the linearized equation will have exponentially

growing modes indicating instability.

1.2. What did Maxwell prove? The fascinating §116 of Maxwell’s treatise has three

different arguments related to Earnshaw’s Theorem. The first two prove assertions with

the flavor of instability, and the third gives a number of far reaching generalisations. The

proof of most of them is the subject of this paper.

1.2.1. Repulsive restoring force. Maxwell considers a test particle of charge 1 near an

equilibrium x of the potential V (x) created by other charges that do not move. The

restoring force is equal to the electric field E(x) = −∇V (x). Since there are no charges

near x, V is harmonic on a neighborhood of x and Gauss’ Theorem asserts that the flux

of the electric field through small spheres centered at x is equal to zero.

Proposition 1.2. Suppose that x is an equilibrium for (1.1) and the potential energy V

is a non constant harmonic function on a neighborhood of x. Then there are arbitrarily

small displacements y so that the force E exerted at x+ y has projection on Ry pointing

away from x, that is y · E(x+ y) > 0. The force pushes away from x.

Proof. Maxwell only proves the weaker assertion y · E(x + y) ≥ 0 as follows. Changing

coordinates we may suppose that the equilibrium x is equal to 0. If the weaker assertion
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were false, one could choose a small r > 0 so that for all e with ‖e‖ = 1, e ·E(re) < 0 and

so that V is harmonic on the ball of radius r centered at x. Integrating over the sphere

of radius r yields a strictly negative flux of E through the sphere of radius r. By Gauss’

theorem that flux vanishes. The contracdition completes Maxwell’s proof.

To prove the stronger assertion it suffices to show that it is impossible that y · E(y)

vanishes identically on a neighborhood of the origin. The function y ·E(y) is real analytic

on the largest charge free ball B centered at the origin. If it vanishes on a neighborhood of

0, then it vanishes identically on B. Expand in a Taylor series of terms Ej homogeneous

of degree j,

E = E1 + E2 + · · ·+ Ej + · · · , E · y = E1 · y + E2 · y + · · ·+ Ej · y + · · · .

The right hand equation is the Taylor expansion of E(y) · y. Since E(y) · y = 0 it follows

that for all j, Ej(y) · y = 0. From the Taylor expansion

V = V0 + V1 + V2 + · · ·+ Vj + · · ·

one finds that Ej = −∇Vj+1. Therefore

∇Vj(y) · y = −Ej−1(y) · y = 0 .

The Euler homogeneity relation implies that ∇Vj(y) · y = jVj. Therefore Vj = 0 for j ≥ 1

proving that V is constant on B. �

1.2.2. No minima of potential energy. Another argument in Maxwell and other classics

depends on the maximum principal asserting that nonconstant harmonic functions cannot

have local extrema. Since the electrostatic potential energy V (x) is harmonic it cannot

have a local minimum. It is very common to confuse the notions of stability of an equi-

librium and minimum of potential energy. This is based on an appealing but incorrect

dynamical intuition. If there are nearby points xn with V (xn) < V (x) then a particle

starting near x will seek to decrease its potential energy by moving toward these points.

The counterexample of Wintner [19] based on the classical construction of Painlevé [13]

and recalled in our earlier article [16], gives a smooth potential V and an equilibrium x

that is not a local minimum and nevertheless is stable. The states xn are inaccessible

from states near x. They are blocked by maxima of potential energy between xn and x

serve as barriers.

1.2.3. Maxwell’s more general assertions. Maxwell’s §116 proves a variety of more general

statements about minima of potential energies. He first considers a solid body K with

attached charges and placed in the field of fixed external charges at finite distance from

the body. The restoring force argument works without modification when applied to the

center of mass of the body. There are small translations y of the body for which the force

has projection on y pointing away from x.
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Proposition 1.3. Suppose that there is an equilibrium with the center of mass at x.

Denote by V (x) the potential energy of K translated so that the center of mass is moved

to x ≈ x. Then if V (x) is not constant there are arbitrarily close translates with strictly

lower potential energy.

Proof. The potential energy V (x) is a harmonic function. If it is not equal to a constant

it cannot have a local minimum. �

Example 1.4. A classical result of Newton [12] in 1687 asserts that the gravitational field

of a uniformly mass distribution on the surface of a sphere vanishes in the interior. Exactly

the same argument applies to the electric field of a uniform spherical charge distribution.

Therefore a charged body K inside a uniformly charged sphere is acted on by no forces.

This is a nontrivial example where the potential energy V is locally constant.

Maxwell then considers the more complicated case that the rigid body is a perfect

conductor or a dielectric.

Corollary 1.5. If the solid body K is a charged or neutral perfect conductor or a dielectric

and there is an equilibrium with center of mass at x. Denote by V1(x) the potential

energy of the body with its charges frozen in their equilibrium configuration on K and

then translated with center of mass at x. Denote by V (x) ≤ V1(x) the potential energy

of the translated body with center of mass at x that minimizes energy with charges free to

move. If V1(x) is not constant, then there are arbitrarily small translations that lower the

potential energy.

Proof. If the harmonic function V1 is not constant then there are arbitrarily close points

x with V1(x) < V1(x) = V (x). The potential energy V (x) is obtained as a minimum over

charge distributions on K in the conductor case and over polarizations in the case of a

dielectric. The frozen configuration is one of the admissible states, so V (x) ≤ V1(x) <

V (x). �

Remark 1.6. Maxwell goes on to prove similar assertions when some of the external

charges are fixed and others lie on perfect conductors or dielectrics. The argument is the

same. First the external charges are frozen in their equilibrium condition, then they are

left to seek their configuration minimizing, hence lowering, the potential energy.

1.3. Duffin’s Theorem. Duffin [4] proved the following important result concerning the

potential energy of conductors and dielectric. It allows one to give a strengthening of

Corollary 1.5. His proof is for external charge distributions with finite self energy. The

method of renormalized energy in §10 allows one to remove this hypothesis.

Theorem 1.7. V (x) from Corollary 1.5 satisfies ∆V (x) ≤ 0. In particular if V (x) is

non constant, then it cannot have a local minimum.
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1.4. Dynamics, Dirichlet, and Lyapunov. The striking thing about all of these in-

teresting results is that not a single one addresses the question of dynamic stability, that

is the stability of an equilibrium as understood by Lyapunov and Poincaré and recalled

in the next definition. For more details on stability, instability and rigid body dynamics

see for example [2].

Definition 1.8. i. A point x is an equilibrium of (1.1) if and only if ∇xV (x) = 0,

equivalently x is a stationary point of V .

ii. Such an equilibrium x is stable when for any ǫ > 0 there is a δ > 0 so that the

solution of (1.1) with initial condition satisfying ‖x(0)− x(0)‖2 + ‖x′(0)‖2 < δ2 exists for

all positive time and satisfies for all t > 0, ‖x(t)− x(0)‖2 + ‖x′(t)‖2 < ǫ2.

Example 1.9. If the potential energy V is constant on a neighborhood of x, then there

are no forces and the equilibrium is unstable since a particle starting at the equilibrium

with a very small velocity moves steadily away.

A result due to Dirichlet after earlier work by Lagrange is the following.

Theorem 1.10. If the equilibrium x is a strict local minimum of V then it is stable.

The classic instability criterion is due to Lyapunov.

Theorem 1.11. If at an equilibrium the hessian of V has a strictly negative eigenvalue,

then the equilibrium is unstable.

1.5. Kozlov’s Theorem. Kozlov [9] in 1987 proved the following result that implies that

a point charge in an electrostatic field cannot have a stable equilibrium (see [18] for our

favorite proof).

Theorem 1.12. Suppose that x = 0 is an equilibrium for (1.1) and that the Taylor

expansion of V at the origin is

V = Vm(x) + higher order terms

with Vm a not identically zero homogeneous polynomial of degree m ≥ 2 and that Vm does

not have a minimum at the origin. Then the equilibrium is unstable.

Example 1.13. Kozlov’s Theorem implies instability of a point particle at equilibrium in

an electrostatic field. Indeed, If V is an electrostatic potential then it is harmonic. If it is

constant Example 1.9 proves instability. If it is not constant then it has an expansion as

in Theorem 1.12 with Vm a non zero harmonic polynomial of degree m. Thus Vm does not

have a local minimum at the origin by the maximum principal for harmonic functions.

Theorem 1.12 implies instability.
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1.6. Instability for a charged rigid body remains open. The argument of Kozlov

does not imply the instability of the motion of a charged rigid body with fixed charges.

An example of such a body is the small equilateral triangle in the figure centered at the

origin and with equal negative charges at the vertices. It is in the field of three equal

−
+

+

+

−
−

positive charges at the vertices of a concentric equilateral triangle. Consider only motions

of the triangle in its own plane. The position of the triangle is defined by the position

x ∈ R2 of the center and the angle θ ∈ S1 of rotation about the center. The triangle at

the origin and with θ = 0 is in equilibrium. A straightforward but not short computation

shows that the potential energy V (x, θ) has Taylor expansion at the origin

V (x, θ) = V (0, 0) +
Vθ,θ(0)

2
θ2 + O(|x, θ|3) , Vθ,θ(0) > 0 .

The leading term has a minimum at θ = 0 so Kozlov’s Theorem does not apply. The

expansion also implies that V is not the solution of second order linear homogeneous

elliptic partial differential equation (see [16]).

1.7. Palamodov’s outline of proof. Lyapunov conjectured that if V is real analytic

and x is an equilibrium that is not a local minimum of V then the equilibrium is unstable.

This was also on Arnold’s 1976 list of problems [1]. See [10], [14], [17] for the case d ≤ 2.

In 1995 Palamodov [15] outlined a very interesting proof. A detailed proof has never been

published. If this conjecture were proved it would imply our instability theorems and

also the instability of charged rigid bodies that we do not prove. Our proof for dielectrics

and perfect conductors yields a physical description of the instability mechanisms. It has

much to offer even if Lyapunov’s general conjecture gets a complete proof.

1.8. Our instability dichotomy. Our main new results are Theorems 7.1 and 11.5

that prove the instability of rigid bodies that are either dielectrics or conductors. The

same argument works as soon as the body has an open subset that has strictly positive

polarizability or is perfectly conducting. Of the general assertions of Maxwell the only

one that escapes our analysis is the case of a rigid body with fixed charges.



7

Suppose that V (x) is the potential energy of the body translated by x as in Corollary

1.5. Duffin’s theorem asserts that ∆V ≤ 0. Assume now that x is an equilibrium position

of the body. We prove II of the following remarkable dichotomy.

I. If ∆V (x) < 0 then the smallest eigenvalue λ of the hessian with respect to x at x is

strictly negative. The smallest eigenvalue of the hessian with respect to all the variables

is ≤ λ < 0. Theorem 1.11 implies instability.

II. If ∆V (x) = 0, then, amazingly, the field of the external charges is constant on a

neighborhood of K. In this case all small translates of K are also equilibria. The motion

of K with initial position equal to the equilibrium and translating with constant small

speed are solutions that escape from the equilibrium. Those solutions prove instability.

Remark 1.14. i. In §10, §11, we extend Duffin’s results to external charge distributions

with infinite self energy. In particular the classic example of external point charges.

ii. The conductor case is a limiting case of the dielectric case but instability is not neces-

sarily inherited by limits. For example, the equilibrium x = 0 with

V ǫ(x) = ǫ x2 + x3, resp. V ǫ(x) = ǫx3 + x4

is stable (resp. unstable) for ǫ > 0 and unstable (resp. stable) when ǫ = 0.

The dielectric case is presented first. The case of conductors begins in §8.

2. Rigid body dynamics and the euclidean group

This section recalls some of the elements of Euler’s brilliant geometrization of rigid

body dynamics. The compact set K ⊂ R3 is called the body. It is endowed with a finite

positive Borel measure µ with µ(A) =
∫
A
dµ giving the mass in A. The total mass if equal

to µ(R3).

2.1. Motions and the euclidean group. A motion is a differentiable curve [a, b] ∋

t 7→ γ(t) ∈ Euc(3), where Euc(3) denotes the Euclidean group of orientation preserving

isometric affine transformations. The position of K at time t for this motion is γ(t)K.

The point k ∈ K moves on the path γ(t)k. The velocity at time t of the point γ(t)k is

d(γ(t)k)/dt.

2.2. Tangent space TI(Euc(3)). For v ∈ R3 denote by M(v) ∈ Euc(3) the translation

operatorM(v)x := x+v. The map v 7→ M(v) is a group isomorphism of R3 onto the three

dimensional translation subgroup of Euc(3). The one parameter subgroup t 7→M(tv) has

tangent vector at t = 0 that we identify with v. In this way the set of such v ∈ R3 is

identified with a three dimensional subspace of the tangent space TI(Euc(3)). Similarly,

for ω ∈ R3 \ 0 define an antisymmetric real linear transformation Aω ∈ Hom(R3) by

Aωx := ω ∧ x. Then t 7→ etAω is a one parameter subgroup of Euc(3). Its infinitesimal
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generator is Aω that we associate to ω. The map ω 7→ Aω yields a second three dimensional

subspace of TI(Euc(3)). These two subspaces generate the tangent space that we therefore

identify with the set of pairs (v, ω).

2.3. A mass density on K defines a Riemannian metric on Euc(3). The total

kinetic energy at time t

Kinetic Energy =
1

2

∫

K

∥∥∥
dγ(t)k

dt

∥∥∥
2

dµ(k)

=
1

2

∫

K

(
γ(t)k

)′
·
(
γ(t)k

)′
dµ(k) :=

1

2
gγ(t)

(
γ′(t), γ′(t)

)
.

This defines a candidate scalar product gγ(t) on the tangent space Tγ(t)(Euc(3)).

Replacing γ(t)k by Eγ(t)k, for any E ∈ Euc(3), does not change the value of g in the

above formula. The candidate metric is left invariant.

There are degenerate cases where this does not define a Riemannian metric. If the

support of µ is contained in a line, then rotations about the line have zero kinetic energy

so the candidate metric is not positive definite. The next result shows that this is the

only exception.

Proposition 2.1. If the support of µ is not contained in a straight line then for all

β ∈ Euc(3), gβ is strictly positive definite on the tangent space Tβ(Euc(3)).

Proof. By left invariance, gβ is strictly positive for all β if and only if gI is strictly

positive on TI(Euc(3)). Therefore it suffices to prove that if gI is not strictly positive,

then the support of µ is contained in a line.

Suppose that Γ ∈ TI \ 0 and gI(Γ,Γ) = 0. If Γ is associated to (v, ω), then γ(t) =

M(t)eAωt is a curve with γ(0) = I, γ′(0) = Γ, and γ′(0)k = v + ω ∧ k. Therefore

gI(Γ,Γ) = 0 holds if and only if

(2.1)

∫ (
v + ω ∧ k

)
·
(
v + ω ∧ k

)
dµ(k) = 0 .

If ω = 0 then Γ 6= 0 ⇒ v 6= 0 so the integrand is strictly positive. Therefore (2.1) cannot

hold since 0 ≤ µ is not identically equal to zero.

For ω 6= 0, decompose v = v‖ + v⊥, v‖ = ‖ω‖−2(v, ω)ω. The Pythagorean Theorem

yields ‖v + ω ∧ k‖2 = ‖v‖‖
2 + ‖v⊥ + ω ∧ k‖2 ≥ ‖v‖‖

2. Thus (2.1) can only hold when

v‖ = 0. In that case, write v⊥ = −ω ∧ ζ for a unique ζ ⊥ ω. Then (2.1) reads
∫ ∥∥ω ∧ (k − ζ)

∥∥2 dµ(k) = 0 .

Therefore (k − ζ) ‖ ω for all k ∈ suppµ. Equivalently, for all k ∈ supp µ, k ∈ {ζ + Rω}.

This proves that supp µ is a subset of the line ζ + Rω. �
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Remark 2.2. i. In the degenerate case, the natural configuration space is the quotient of

Euc(3) by the subgroup that leaves the points of supp µ fixed. We leave to the reader the

straight forward modifications needed to treat that degenerate case.

ii. The principle of stationary action implies that the motion of the rigid body K in the

absence of external forces follows geodesics of the Riemannian manifold
{
Euc(3), g

}
.

Definition 2.3. A C1 curve ζ(t) in a Riemannian manifold (R, g) is parametrized

proportional to arclength when gζ(t)(ζ
′(t) , ζ ′(t)) = constant > 0.

Proposition 2.4. i. For any body K and mass measure µ satisfying the hypothesis of

Proposition 2.1, the translation subgroup of Euc(3) is isometric to R3 with the scalar

product equal to µ(R3)/2 times the standard Euclidean scalar product.

ii. The translation subgroup is totally geodesic. Moreover, for any v ∈ R3 \ 0 the curve

t 7→ M(tv) is a geodesic of Euc(3) parametrized proportional to arclength.

Proof. i. For v ∈ R3 denote by M(v) ∈ Euc(3) the operator translation by v. The map

v 7→ M(v) is then a group isomorphism from R3 to the translation subgroup of Euc(3).

It is an immediate consequence of the definition of the Riemannian metric on Euc(3) that

this map preserves the Riemannian metrics so is an isometry.

ii. The curve t 7→ tv is a geodesic in R3 parametrized proportional to arclength with the

metric from i. It image by the isometry M is therefore a geodesic of Euc(3) parametrized

proportional to arclength. �

Example 2.5. Assertion ii is equivalent to the fact that the motion of the body K given

by t 7→ M(tv)K = K + tv is a solution of the equation of motion of rigid bodies in the

absence of external forces. This is needed in the proof of instability in Case II of the

dichotomy.

3. Potential energy of a dielectric in an electrostatic field

Denote by Ḣ1(R3) the homogeneous Sobolev space of distributions such that their

first-order derivatives belong to L2(R3) and by Ḣ−1(R3) its dual space.

Hypothesis 3.1. Suppose that K is a compact connected lipschitzian body and that α ∈

L∞(K) is a symmetric non negative matrix valued function on K. Suppose that α is

strictly positive on a non empty open subset K0 ⊂ K. The function α is called the

polarizability. Suppose that ρ, q ∈ Ḣ−1(R3) with supp q ⊂ K and K ∩ supp ρ = Ø. The

distribution ρ describes the external charges while q describes the charges fixed to K.

Notation. Denote by n the unit outward normal to K and by ν the unit outward normal

to the complement Ω := R3 \K as in the figure below.
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K

n

ν

Ω

The electric field in the presence of the dielectric is the unique E ∈ L2(R3) such that

(3.1) curlE = 0, − divE = ρ+ q + div p, p := αE .

The vector valued function p is called the polarization of the dielectric. The curl free

condition is equivalent to E = ∇ψ for a unique ψ ∈ Ḣ1(R3). That potential ψ is the

unique Ḣ1(R3) solution of

− div (ǫ∇ψ) = ρ+ q , ǫ : = I + α ≥ I .

The relation E = ∇ψ shows that −ψ is the electrostatic potential energy. The quantity ǫ

is called the dielectric permittivity. The solution ψ is the unique minimizer in Ḣ1(R3)

of the functional

ψ 7→
1

2

∫

R3

ǫ∇ψ · ∇ψ dy −

∫

R3

ψ(ρ+ q) dy .

Define the external field as the unique Eext ∈ L2(R3) so that

curlEext = 0 , and, − divEext = ρ .

It is the field that would be present in the absence of K with its charges q. Equivalently

(3.2) Eext = ∇φext , φext ∈ Ḣ1(R3) , −∆φext = ρ . .

Proposition 3.2. The function ψ is given by the formula

(3.3) ψ = φext − (div ǫ∇)−1
(
q + div αEext

)
.

Proof. Subtracting the equation for Eext from that determining E yields

curl (E − Eext) = 0 , − div(E −Eext) = q + divαE .

In the last, write E = E − Eext + Eext to find

curl (E − Eext) = 0 , − div ǫ (E − Eext) = q + divαEext .

Writing E − Eext = ∇ ζ , yields

− div ǫ∇ ζ = q + divαEext , ζ =
(
− div ǫ∇

)−1(
q + divαEext

)
,

proving formula (3.3). �
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Remark 3.3. i. The field E −Eext is uniquely determined by the values of q and αEext.

ii. If two external charge distributions yield the same external field on K, then the fields

E−Eext are identical. Therefore the fields on K are identical. Therefore, the polarizations

αE are identical.

Definition 3.4. The potential energy of the dielectric in equilibrium is defined as

(3.4) J := −
1

2

∫

R3

(ρ+ q)ψ dy =
1

2

∫

R3

ǫ(y)∇yψ(y) · ∇yψ(y) dy .

It is a strictly positive number when ρ 6= 0.

The motivation of this definition is the thought experiment of bringing in the charges

ρ, q from infinity so at time t ∈ [0, 1] the charge distributions is tρ, tq. At time t the

electrostatic potential energy is −tψ so the work performed in the interval [t, t + dt] is

equal to

−

∫

R3

(
t ψ
) (

(ρ+ q)dt
)
dy = − t dt

∫

R3

ψ(ρ+ q) dy .

Integrating from t = 0 to t = 1 yields the value of the definition.

4. The dynamic equations

The potential energy J of Definition 3.4 depends on the position of K parametrized

by Euc(3). The dynamics for the motion on Euc(3) is determined by the principle of

stationary action,

0 = δ

∫ t2

t1

(
Kinetic energy − Potential energy

)
dt .

This is a special case of the following. Suppose that (R, g) is an n-dimensional Riemannian

manifold. Suppose that J ∈ C1(R;R). A motion ζ ∈ C2
(
[t1, t2];R)

)
must satisfy

(4.1) 0 = δ

∫ t2

t1

1

2
g
(
ζ ′(t), ζ ′(t)

)
− J(ζ(t)) dt .

among competing motions that have the same values as ζ at t = t1 and t = t2. In our

example, n = 6 = dim(Euc(3)). The next result recalls familiar facts.

Proposition 4.1. i. In local coordinates ζα on R the dynamics is defined by the action

principal

(4.2) δ

∫ t2

t1

(
1

2

n∑

α,β=1

gα,β(ζ1(t), . . . , ζn(t))
dζα(t)

dt

dζβ(t)

dt
− J(ζ(t))

)
dt = 0 ,

with gα,β = gβ,α strictly positive definite.
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ii. To be a solution of the equations of motion is equivalent to the Euler-Lagrange system

of ordinary differential equations in local coordinates,

(4.3)
d

dt

∑

β

gα,β(ζ(t))
d

dt
ζβ(t) = −

∂J(ζ(t))

∂ζα
, for all α .

iii. A point ζ is an equilibrium if and only if it is a critical point of J .

iv. The stability and instability criteria of Theorems 1.10 and 1.11 apply in this more

general situation.

The next result is needed in the proofs of the main Theorems 7.1 and 11.5.

Proposition 4.2. Suppose that ]a, b[7→ ζ(t) ∈ R is a geodesic of (R, g) parametrized

proportional to arclength and J ∈ C1(R;R). If the values ζ(t) are all stationary points of

J, then ζ satisfies the dynamic equation (4.3).

Proof. It is a classical result in Riemannian geometry that geodesics parametrized pro-

portional to arclength satisfy the stationarity principal (4.2) with J taken to be zero.

Therefore in local coordinates

(4.4)
d

dt

∑

β

gα,β(ζ(t))
d

dt
ζβ(t) = 0 , for all α .

On the other hand the fact that the values ζ(t) are stationary is equivalent to∇ζJ
∣∣
ζ(t)

= 0.

This shows that the right hand side of (4.3) vanishes. Equation (4.3) is satisfied since

both sides vanishes. �

5. Forces and torques on a charged dielectric body

The forces and torques on a dielectric body can be computed by adding forces and

torques on particles or by the principle of virtual work. For completeness we verify that

the two methods yield the same answer. The more elementary is to compute the forces

on the charges q and dipole charges div p. Summing yields

(5.1) Total Force =

∫

R3

E(y)
(
q(y) + div p(y)

)
dy .

Treating the torques analogously yields

(5.2) Total Torque =

∫

R3

y ∧ E(y)
(
q(y) + div p(y)

)
dy .

In the equations (5.1) and (5.2), the electric field E is defined by (3.1).

Proposition 5.1. i. If ρ ∈ H−1/2(R3) ∩ E ′(R3) (where E ′(R3) denotes the space of

distributions with compact support), denote by Eρ ∈ Ḣ1/2(R3) the solution of −divEρ = ρ,
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curlEρ = 0. Then ∫

R3

Eρ(y) ρ(y) dy = 0 .

ii. If for j = 1, 2, ρj ∈ H−1/2(R3) ∩ E ′(R3) and Eρj ∈ Ḣ1/2(R3) are the solutions with

sources ρj, then ∫

R3

Eρ2(y) ρ1(y) dy = −

∫

R3

Eρ1(y) ρ2(y) dy .

Remark 5.2. 1. The integrals represent the pairing H1/2×H−1/2 7→ C that is the unique

extension of C∞
0 (R3)× C∞

0 (R3) ∋ φ, ψ 7→
∫
φψ dy.

2. The first assertion shows that a charge distribution cannot exert a net force on itself.

If it did the center of mass would accelerate under its own force.

3. Instead of the minimal smoothness ρ ∈ H−1/2(R3) ∩ E ′(R3), the simpler hypothesis

ρ ∈ L2(R3) ∩ E ′(R3) yields Eρ ∈ Ḣ1(R3) and Proposition 5.1 remains true.

Proof. i. By continuity and density it suffices to consider ρ ∈ C∞
0 (R3) in which case the

pairing is an absolutely convergent integral

−

∫

R3

ρ(x)
x− y

4π|x− y|3
ρ(y) dx dy .

The integrand satisfies F (x, y) = −F (y, x) implying that its integral vanishes.

ii. The field of ρ1 + ρ2 is equal to Eρ1 + Eρ2 . Part i. shows that

0 =

∫

R3

Eρ1(y) ρ1(y) dy =

∫

R3

Eρ2(y) ρ2(y) dy =

∫

R3

(
Eρ1(y)+Eρ2(y)

) (
ρ1(y)+ ρ2(y)

)
dy .

Write the last as a sum of four terms. Two of them vanish by the first two equalities.

This proves ii. �

5.1. Formulas for the force. Denote by ρ(x, ·) := ρ(y−x) the external charge translated

by x. Denote by K(x) := x+K the dielectric body translated by x. Denote by ψ(x, ·) the

potential in the translated geometry. Denote by J(x) the electrostatic potential energy.

They are well defined for x small. The principal of virtual work asserts that the

component of the force on K in the x1 direction is equal to − ∂J/∂x1 evaluated at x = 0.

The force is equal to −∇xJ .

The potential ψ(x, y) ∈ Ḣ1(R3
y) is the unique solution of

(5.3) −divy
(
ǫ(y − x)∇yψ

)
= ρ(y) + q(y − x) in R

3 .

To compute ∇ J(x) we reverse roles. Instead of fixing ρ and translating K we fix K

and translate ρ by −x. Define ψ̃(x, y) and ρ̃(x, y) by

(5.4) ψ̃(x, y) := ψ(x, x+ y), and ρ̃(x, y) := ρ(x+ y) .
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The function ψ̃(x, ·) ∈ Ḣ1(R3
y) is the solution of

(5.5) − divy

(
ǫ(y)∇yψ̃

)
= ρ̃(x, y) + q(y) in R

3 .

The dependence on x appears only in the source term.

Definition 5.3. Define

O :=
{
x ∈ R

3 : K(x) ∩ supp ρ = Ø
}
.

The assumption that K ∩ supp ρ = Ø implies that the set O contains a neighborhood of

the origin 0.

Proposition 5.4. If ρ ∈ L2(R3)∩E ′(R3), the map O ∋ x 7→ ψ̃(x, ·) is a C1 function with

values in Ḣ1(R3). The derivative ∂ψ̃/∂xk is the unique Ḣ1(R3) solution of

(5.6) − divy

(
ǫ(y)∇y

∂ψ̃

∂xk

)
=

∂ρ̃

∂xk
in R

3 .

The energy J is also continuously differentiable with

(5.7) −
∂J(x)

∂xk
= −

∫

R3

∂ρ̃(x, y)

∂xk
ψ̃(x, y) dy =

∫

R3

ρ̃(x, y)
∂ψ(x, y)

∂yk
dy .

When ρ ∈ H1(R3) ∩ E ′(R3), these expressions are equal to the kth component of (5.1).

Proof. Since ρ is in L2(R3) the right hand side of (5.5) is a continuously differentiable

function of x with values in Ḣ1(R3). The differentiability of ψ follows. Formula (5.6)

follows upon differentiating (5.5) with respect to x.

By definition

(5.8) J(x) =
1

2

∫

R3

(ρ̃+ q) ψ̃ dy .

Differentiating (5.8) with respect to xk yields

(5.9) 2
∂J(x)

∂xk
=

∫

R3

(
∂ρ̃(x, y)

∂xk
ψ̃(x, y) + (ρ̃+ q)

∂ψ̃(x, y)

∂xk

)
dy .

Multiplying equation (5.5) by ∂ψ̃/∂xk and integrating by parts in y yields
∫

R3

ǫ∇yψ̃ · ∇y
∂ψ̃

∂xk
dy =

∫

R3

(ρ̃+ q)
∂ψ̃

∂xk
dy .

Multiplying (5.6) by ψ̃ gives
∫

R3

ǫ∇yψ̃ · ∇y
∂ψ̃

∂xk
dy =

∫

R3

∂ρ̃

∂xk
ψ̃ dy .
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Therefore the two summands on the right hand side of (5.9) are equal. This yields the

first expression on the right of (5.7). Use ∂ρ̃/∂x = ∂ρ̃/∂y then integrate by parts to find

the second expression on the right of (5.7).

With x fixed the kth component of the force is equal to− ∂J/∂xk. The second expression

in (5.7) shows that is equal to the kth component of

−

∫

R3

ρ(x, y) E(x, y) dy .

The electric field is equal to

E := −∇yψ(x, y) =

∫

R3

x− y

4π|x− y|3
(
ρ(x, y) + q(x, y) + div p(x, y)

)
dy .

Since E ∈ L2 one has div αE ∈ H−1. This makes the pairing with ρ ∈ H1 continuous.

The symmetry of Proposition 5.1 implies that
∫

R3

E(x, y)
(
ρ(x, y) + q(x, y) + div p(x, y)

)
dy = 0 ,

so

−

∫

R3

ρ(x, y) E(x, y) dy =

∫

R3

E(x, y)
(
q(x, y) + div p(x, y)

)
dy

yielding formula (5.1). �

5.2. Formulas for the torque. Consider rotations of the body K. Denote by

R(t) := etA with t ∈ R, A = −AT .

The potential ψ ≡ ψ(y, R) ∈ Ḣ1(R3
y), is the unique solution of

(5.10) − divy ǫ(R
−1y)∇yψ = ρ(y) + q(R−1y) in R

3 .

Rotate equation (5.10) to fix the body. Introduce ψ̃(y, R) := ψ(Ry,R) and ρ̃(y, R) :=

ρ(Ry) to find

(5.11) −divy ǫ(y)∇yψ̃ = ρ(Ry) + q(y) = ρ̃(y) + q(y) in R
3 .

The energy in the electric field is

(5.12)

J(R) =
1

2

∫

R3

ǫ(R−1y) ∇yψ(y, R) · ∇yψ(y, R) dy

=
1

2

∫

R3

ǫ(y) ∇yψ̃(y, R) · ∇yψ̃(y, R) dy .

Denote by ′ the derivative with respect to t so

J ′(t) =
d

dt

(
J (R(t))

)
and ψ̃′(y, t) =

d

dt

(
ψ̃ (y, R(t))

)
.
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Lemma 5.5. i. For ρ ∈ L2(R3) ∩ E ′(R3), the derivative J ′(0) is given by

(5.13) J ′(0) =

∫

R3

Ay · ∇yρ(y) ψ(y) dy =

∫

R3

Ay ·E(y) ρ(y) dy .

ii Furthermore, if there exists ω ∈ R3 such that Av = ω ∧ v, then

(5.14) J ′(0) = ω ·

∫

R3

y ∧ E(y) ρ(y) dy .

By definition the integral
∫
y∧E(y)ρ(y) dy is called the torque exerted by the forces with

density E(y)ρ(y).

Proof. i. Differentiating (5.11) with respect to t yields

(5.15) −divy ǫ(y)∇y ψ̃
′ = R′(t)y · ∇ρ̃(y) in R

3 .

Multiplying (5.15) by ψ̃ leads to
∫

R3

ǫ(y)∇yψ̃
′ · ∇yψ̃ dy =

∫

R3

ψ̃ R′(t)y · ∇ρ̃(y) dy .

Differentiating (5.12) gives

J ′(t) =

∫

R3

ǫ(y)∇yψ̃
′ · ∇yψ̃ dy .

Comparing the last two formulas yields the middle term of (5.13) since for t = 0, R(0) = I,

R′(0) = A, and ψ̃ = ψ.

By rotation invariance of Lebesgue measure,

d

dt

∫

R3

ρ
(
R(t)y

)
ψ
(
R(t)y

)
dy = 0 .

Differentiate under the integral and set t = 0 to find
∫

R3

Ay · ∇yρ(y) ψ(y) dy = −

∫

R3

Ay · ∇yψ(y) ρ(y) dy =

∫

R3

Ay · E(y) ρ(y) dy

proving the last expression in (5.13).

ii. If A is of the form y 7→ ω ∧ y with ω ∈ R3, then

Ay · Eρ = (ω ∧ y) · Eρ = ω ·
(
y ∧ Eρ

)
.

Inserting this in (5.13) yields Equation (5.14). �

Formula (5.14) for the torque is not the same as (5.2). The proof of equality in Example

5.8 relies on Newton’s third law that we discuss next.

It is physically obvious that a charge distribution cannot exert a torque on itself. Oth-

erwise it would set itself into rotary motion, violating conservation of angular momentum.

The next equivalent result asserts that the torque exerted by the distribution ρ1 on the

charges ρ2 is equal to minus the torque exerted by ρ2 on ρ1.
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Proposition 5.6. Suppose that ρj ∈ H−1/2(R3) ∩ E ′(R3) for j = 1, 2 and Eρj are their

fields. Then the torque of the forces with density Eρ1 ρ2 is equal to minus the torque of

the forces with density Eρ2 ρ1.

Proof. The torque of the forces with density Eρ1ρ2 is equal to

c

∫

R3

∫

R3

y ∧
ρ2(y)ρ1(x)(y − x)

|y − x|3
dx dy .

The integral sign is a shorthand for the pairing of ρ2 ∈ H−1/2 ∩ E ′ and y ∧ Eρ1 ∈ H
1/2
loc ,

and

Eρ1 = c

∫

R3

ρ1(x)(y − x)

|y − x|3
dy ∈ H1/2(R3) .

The torque with density Eρ2ρ1 is

c

∫

R3

∫

R3

y ∧
ρ1(y)ρ2(x)(y − x)

|y − x|3
dx dy

Changing the variable y to x and x to y shows this is equal to

− c

∫

R3

∫

R3

x ∧
ρ1(x)ρ2(y)(y − x)

|y − x|3
dx dy

The sum of the two is equal to

c

∫

R3

∫

R3

(y − x) ∧
ρ2(y)ρ1(x) (y − x)

|y − x|3
dx dy .

The sum vanishes because (y − x) ∧ (y − x) = 0. �

Example 5.7. If ρ ∈ H−1/2(R3) ∩ E ′(R3) and Eρ is the corresponding electric field then

Eρ ∈ Ḣ1/2(R3) and the torque of the force field ρEρ makes sense and vanishes. This

follows from applying the proposition with ρ1 = ρ2. This proves that the torque exerted by

a charge distribution on itself vanishes.

Example 5.8. To prove formula (5.2) reason as follows. The field of the dielectric in the

presence of the external charges ρ and the fixed charges q on K is the electric field of the

compactly supported charge distribution ρ+ q + div p. Proposition 5.6 implies that∫

R3

y ∧ E(ρ+ q + div p) dy = 0 .

This together with the formula from part ii of Lemma 5.5 yield formula (5.2).

Remark 5.9. i. A necessary condition for an equilibrium is that the energy J is stationary

under infinitesimal rotations, equivalently J ′(0) = 0 for all antisymmetric A.

ii. The condition J ′(0) = 0 for all anti-symmetric matrix A holds if and only if M =∫
R3 y⊗∇yρ(y)ψ(y) dy is a symmetric matrix, where y⊗∇yρ(y) is the linear transformation

w 7→ y
(
w · ∇yρ(y)

)
.
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6. The laplacian of the potential energy of a dielectric

This section first recalls Duffin’s Theorem that the potential energy J(x), as a function

of the translation vector x ∈ R3, satisfies ∆J ≤ 0. Our first main result is a proof that at

points x where ∆J(x) = 0, the electric field must be constant on a neighborhood of the

dielectric.

Lemma 6.1. If ρ ∈ H1(Ω) ∩ E ′(Ω), then for all x ∈ O,

(6.1) ∆J(x) =

3∑

k=1

∫

R3

ǫ(y)∇y
∂ψ̃

∂xk
· ∇y

∂ψ̃

∂xk
dy −

∫

R3

ρ̃2 dy .

Proof. Differentiate (5.7) with respect to xk and use ∇xρ̃ = ∇yρ̃ to find

∂2J

∂x2k
=

∫

R3

(
∂ψ̃

∂xk

∂ρ̃

∂xk
+ ψ̃

∂2ρ̃

∂y2k

)
dy .

Multiplying (5.6) by ∂ψ̃/∂xk yields

(6.2)

∫

R3

ǫ(y)∇y
∂ψ̃

∂xk
· ∇y

∂ψ̃

∂xk
dy =

∫

R3

∂ψ̃

∂xk

∂ρ̃

∂xk
dy =

∫

R3

∂ψ̃

∂xk

∂ρ̃

∂yk
dy .

Since ρ̃ is compactly supported in R3, two integrations by parts yield
∫

R3

ψ̃
∂2ρ̃

∂y2k
dy = −

∫

R3

∂ψ̃

∂yk

∂ρ̃

∂yk
dy =

∫

R3

ρ̃
∂2ψ̃

∂y2k
dy .

Therefore

(6.3)
∂2J

∂x2k
=

∫

R3

ǫ(y)∇y
∂ψ̃

∂xk
· ∇y

∂ψ̃

∂xk
dy +

∫

R3

ρ̃
∂2ψ̃

∂y2k
dy .

Summing (6.3) with respect to k yields

(6.4) ∆xJ(x) =

3∑

k=1

∫

R3

ǫ(y)∇y
∂ψ̃

∂xk
· ∇y

∂ψ̃

∂xk
dy +

∫

R3

ρ̃∆yψ̃ dy .

Since the support of ρ̃ is disjoint from the dielectric body K and the fixed charges q are

attached to K, Poisson’s equation (5.5), restricted to the support of ρ̃ is

−∆yψ̃ = ρ̃ in R
3 \K . so,

∫

R3

ρ̃∆yψ̃ dy = −

∫

R3

ρ̃2 dy .

This completes the proof of Lemma 6.1. �

Part i of the next Theorem is due to Duffin [4] (see also [3], [5]).

Theorem 6.2. i. Suppose ρ ∈ H1(R3) ∩ E ′(Ω), then

(6.5) ∆J(x) ≤ 0 on O .



19

ii. Furthermore if ρ is not identically equal to zero, ǫ is strictly larger than I on an open

set K0, and x ∈ O with ∆J(x) = 0, then there is a neighborhood of K and a vector

v ∈ R3 so that the external field Eext from (3.2) is equal to v on the neighborhood. In

addition J is an affine function on a neighborhood of x.

The proof of i uses the complementary minimization principal from the next lemma.

Lemma 6.3. If ζ ∈ Ḣ1(R3) satisfies − div ǫ∇ ζ = f then

(6.6)

∫

R3

ǫ∇ζ · ∇ζ dy = min
τ∈T

∫

R3

ǫ−1 τ · τ dy ,

where

T =
{
τ ∈ L2(R3;R3) : − divyτ = f on R

3
}
.

The minimum is uniquely attained at τ = ǫ∇ζ ∈ T .

Proof of Lemma 6.3. The test function ǫ∇ζ achieves equality in (6.6) so the minimum

is smaller or equal to the left hand side. The existence of a minimizer is easy. If τ is such

a minimizer, the Euler-Lagrange equation asserts that
∫

R3

ǫ−1 τ · w dy = 0 for all w ∈ L2 with divw = 0 .

This is equivalent to curl ǫ−1τ = 0 in the sense of distributions. In this case, explicit

solution in Fourier shows that there is a unique χ ∈ Ḣ1(R3) with ∇χ = ǫ−1τ . Then

−div ǫ∇χ = f so χ = ζ by uniqueness. This proves that the minimum is achieved at

and only at τ = ǫ∇ζ . �

Proof of Theorem 6.2. Step I. Proof of (6.5) The complementary energy minimiza-

tion principle yields
∫

R3

ǫ∇y
∂ψ̃

∂xk
· ∇y

∂ψ̃

∂xk
dy = min

τ∈T

∫

R3

ǫ−1 τ · τ dy ,

where

T =

{
τ ∈ L2(R3;R3) : − divyτ =

∂ρ̃

∂xk
on R

3

}
.

Fix k. Take a test field τ = ∇ywk with wk equal to the solution of

−∆ywk =
∂ρ̃

∂xk
on R

3 .

This yields the first of the following inequalities.

(6.7)

∫

R3

ǫ∇y
∂ψ̃

∂xk
· ∇y

∂ψ̃

∂xk
dy ≤

∫

R3

ǫ−1 ∇ywk · ∇ywk dy ≤

∫

R3

|∇ywk|
2 dy .
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The second holds because ǫ ≥ I. However,

wk = (−∆)−1 ∂ρ̃

∂yk
so,

∑

k

∂wk

∂yk
= (−∆)−1∆ρ̃ = −ρ̃ .

Therefore
∑

k

∫

R3

|∇ywk|
2 dy =

∑

k

∫

R3

wk (−∆wk) dy =
∑

k

∫

R3

wk
∂ρ̃

∂yk
dy

= −

∫

R3

∑

k

∂wk

∂yk
ρ̃ dy =

∫

R3

|ρ̃|2 dy .

Combined with (6.7), this yields

(6.8)
∑

k

∫

R3

ǫ∇y
∂ψ̃

∂xk
· ∇y

∂ψ̃

∂xk
dy ≤

∫

R3

|ρ̃|2 dy .

The inequalities (6.8) and (6.1) imply (6.5).

Step II. When ∆J = 0 the external field is constant on a neighborhood of K.

Consider a point x̄ for which equality holds in (6.8), that is ∆xJ(x̄) = 0. Both inequalities

in (6.7) must be equalities. When the first inequality in (6.7) is an equality, one has

(6.9) ∇ywk(x, ·) = ǫ∇y
∂ψ̃(x, ·)

∂xk
in R

3
y ,

because there is a unique minimizer for the complementary minimum principal. Let

K0 := {x : ǫ(x) > I} a non empty open set by hypothesis. Equality in the second

inequality in (6.7) implies that on K0 where ǫ > I,

∇ywk(x, ·)
∣∣
K0

= 0.

Since K is connected, it belongs to a single connected component ω of R3\supp ρ̃(x, · ).

The function wk(x, ·) is harmonic on R3 \ supp ρ̃(x, · ) ⊃ ω. That harmonic function is

ω

K in here

Support of rho

constant on K0 so by analytic continuation, wk(x, ·)|ω is constant. Equation (6.9) then

implies that ∂ψ̃(x, ·)/∂xk|ω is constant. There is a constant vk so that

(6.10) wk(x, y) =
∂ψ̃(x, y)

∂xk
= vk , for y ∈ ω .
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By definition both ρ̃, and wk depend only on x+ y. Therefore

wk(x, y) = vk for x+ y − x ∈ ω .

Define the function φ̃ as the unique solution of

(6.11) −∆yφ̃ = ρ̃ in R
3 .

Compare to (6.12) to find

wk(x, y) =
∂φ̃

∂xk
(x, y) .

Therefore ∇xφ̃(x, y) = (v1, v2, v3) on a neighborhood of K.

The solution φ̃(x, y) is a function of (x+ y), as is ρ̃. Thus, there exist a vector v ∈ R3

and a constant c ∈ R such that, for x, y on a neighborhood of x×K in R
3
x × R

3
y,

φ̃(x, y) = v · (x+ y) + c .

The external electric field is constant on a neighborhood of K.

Step III. When ∆J = 0, J is affine. Since the gradient of wk, vanishes wherever

ǫ 6= I, so wk(x, y) is also a solution of

−divy (ǫ(y)∇ywk) = −∆ywk =
∂ρ̃

∂xk
in R

3
y .

By uniqueness, for any x sufficiently close to x̄,

(6.12) wk(x, y) =
∂ψ̃

∂xk
(x, y) in R

3
y .

For x in a small neighborhood of x̄, ψ̃ and φ̃ have the same gradient with respect to x

so

ψ̃(x, y) = φ̃(x, y) + φ0(y) .

Compute J(x)

(6.13) 2 J(x) =

∫

R3

(ρ̃+ q) ψ̃ dy =

∫

R3

(
qφ0 + ρ̃φ̃+ qφ̃+ ρ̃φ0

)
dy .

In the right hand side of (6.13) the first term is independent of x. The second term is

independent of x by translation invariance of Lebesgue measure. The third term is affine

in x since φ̃ = v · (x + y) + c on the support of q. The fourth term is, by integration by

parts,∫

R3

ρ̃ φ0 dy = −

∫

R3

∆yφ̃ φ0 dy = −

∫

R3

φ̃∆yφ0 dy = a v · x+ b , a, b ∈ R

since φ̃ = v · (x+ y) + c in a neighborhood of K and

∆yφ0 = ∆yψ̃ − ∆yφ̃ = 0 on R
3 \K .

Thus J(x) is an affine function for x close to x̄. �
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Remark 6.4. This result does not assume that x is an equilibrium. If x is an equilibrium,

then ∇ J(x) = 0. Then J is affine with gradient vanishing at a point so J is constant on

a neighborhood of x. This argument does not use the fact that the torques vanish at an

equilibrium. If the torques do vanish, it does not imply the absence of torques after small

rotation.

7. Instability of a dielectric body

We now prove our first main instability result using part ii of Theorem 6.2.

Theorem 7.1. Suppose that K a connected dielectric body with strictly positive polariz-

ability on an open set. If K(x) is an equilibrium position in the field of external charges

ρ ∈ H1(R3) ∩ E ′(R3) with K(x) ∩ supp ρ = Ø, then the equilibrium is unstable.

Remark 7.2. The renormalization technique of §10 shows that the conclusion is true for

ρ ∈ E ′(R3) with K(x) ∩ supp ρ = Ø, see Remark 11.6.

Proof. Dichotomy I. When ∆J(x) < 0 the hessian with respect to x of the potential

energy has a negative eigenvalue. The minimum eigenvalue of the hessian on the config-

uration space Euc(3) is smaller so is also negative. Theorem 1.11 with Proposition 4.1.iv

imply instability.

Dichotomy II. In the opposite case ∆J(x) = 0, denote by ρ, q, p, E values of the exter-

nal charge, fixed charges, polarization, and electric field for the dielectric K(x). Theorem

6.2 implies that the electric field Eρ is equal to a constant vector v on a neighborhood of

K(x).

Choose 0 < δ < dist(K(x) , supp ρ) so that Eρ is constant on
{
x ∈ R

3 : dist(x,K(x)) <

δ
}
. We show that for h ∈ R3 with ‖h‖ < δ, the position K(x+h) is also an equilibrium of

the dielectric. This is equivalent to showing that the position K(x) with its fixed charges

q is an equilibrium in the presence of the external charge distribution ρ(·−h). To do that

we verify that the forces and torques vanishing for the charge distribution ρ(· − h).

Fix h and consider the two external charge distributions ρ and ρ̃ := ρ(· − h) with fixed

dielectric K(x) and fixed charges q. Since the two external charge distributions generate

electric fields that are identical on a neighborhood of K(x), part ii of Remark 3.3 implies

that the polarizations p and p̃ are identical. Since the electric fields are equal to v on a

neighborhood of K(x) formulas (5.1) and (5.2) show that

Force = v

∫
q + div p dx, Torque =

∫
y ∧ v(q + div p) dx .

The values of q, p are equal to q, p are independent of h so the force and torque are also

independent of h. Since they vanish for the external charge distribution ρ they also vanish

for ρ̃. Therefore, all small translates of K are equilibria.
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Part ii of Proposition 2.4 implies that t 7→ M(vt) is a geodesic of Euc(3) parametrized

proportional to arclength. We have just shown that each point on this trajectory is an

equilibrium, that is a stationary point of J . Proposition 4.2 implies that the dynamic

equations (4.3) are satisfied.

The motions M(tv)K(x) with v arbitrarily small start as close to the equilibrium as

one likes in the sense of Cauchy data. Indeed the positions coincide and the velocity of

the equilibrium vanishes while the velocity ofM(tv)K(x) is arbitrarily small. The motion

moves steadily away to a distance ∼ δ proving instability. �

8. Field and energy of a charged perfect conductor

This section presents the analysis for the case of a perfect conductor body K.

8.1. Field and energy of a conductor. Suppose that ρ ∈ H−1(R3) ∩ E ′(R3). with

K ∩ supp ρ = Ø. Suppose that K has net charge equal to σ, possibly zero, that is free to

move on the perfect conductor.

In this section, the potential is now the unique ψ ∈ Ḣ1(R3) satisfying

(8.1) −∆ψ = ρ , ψ|K = constant, σ = −

∫

∂Ω

n · ∇ψ dS .

The electric field E vanishes on K and is equal to ∇ψ on Ω. Therefore divE = −ρ +

(E · n) dS with the values of E computed from Ω. There a surface charge density equal

to −n · ∇ψ dS. The solution is C∞(Ω \ supp ρ) and in the flux integral, the trace of ∇ψ

is taken from the interior of Ω. If K were not connected the condition on ψ|K would be

replaced by constant values on each connected component of K.

Definition 8.1. Define v(x) to be the capacitory potential of K that is the solution

∆v = 0 on Ω , v = 1 on K , v = O(1/|x|) as |x| → ∞ .

The capacity Cap(K) is defined by

Cap(K) = −

∫

∂Ω

∂v

∂ν
dΣ .

The external field Eext and potential φext are defined in (3.2). The potential ψ is

uniquely determined by the values of the external potential φext on a neighborhood of K.

Proposition 8.2. Denote by −ψ the electrostatic potential of the conductor K with charge

σ and external source ρ. With φext from (3.2), define ζ by ζ |K = −φext|K, and ζ |Ω equal

to the solution of the Dirichlet problem

∆ζ = 0 on Ω , ζ
∣∣
∂Ω

= −φext

∣∣
∂Ω
, ζ = O(1/|x|) as |x| → ∞ .
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Then,

(8.2) ψ = φext + ζ + c v , c =
1

Cap(K)

(
σ +

∫

∂Ω

∂φext

∂ν
dΣ

)
.

Proof. For any value of c one has ψ ∈ Ḣ1(R3), ∆ψ = ρ on Ω, and ψ|K constant. The

charge on K is equal

c Cap(K) −

∫

∂Ω

∂φext

∂ν
dΣ .

Setting this equal to σ determines c and yields (8.2). �

When ρ ∈ H−1(R3) ∩ E ′(R3) and K is connected, the solution ψ is characterized as

minimizing ∫

R3

(
1

2
|∇ψ|2 + ρψ

)
dy −

σ

|∂K|

∫

∂K

ψ dΣ

over the set of ψ ∈ Ḣ1(R3) whose restriction to K is constant. In the case of several

conductors Kj with charges σj the set of candidate functions would be the elements of

ψ ∈ Ḣ1(R3) with ψ|Kj
constant for each j. The boundary term in the minimization would

be replaced by
∑

j

σj
|∂Kj |

∫

∂Kj

ψ dΣ .

Definition 8.3. For ρ ∈ E ′(Ω)∩ Ḣ−1(R3) with supp ρ∩K = Ø, the energy in the electric

field of the equilibrium charge distribution on the perfect conductor K carrying charge σ

is defined as

(8.3) J =
1

2

∫

R3

|∇ψ|2 dy =
1

2

∫

Ω

|∇ψ|2 dy = −
1

2

∫

Ω

ρψ dy −
1

2
ψ|K σ .

It is a strictly positive number when ρ 6= 0.

The physical motivation of this definition is to compute the work performed in assem-

bling the charge distributions tρ, tσ for 0 ≤ t ≤ 1. The work in the interval dt carries

charge ρ dt and σdt from infinity in the potential −tψ for a net work equal to

−

∫ (
t ψ ρ dt+ t ψ|K σ dt

)
dy .

Integrating
∫ 1

0
dt yields the formula on the right of (8.3). The energy is exactly equal to

the energy
∫
|E|2 dy/2 in the electric field. In contrast, the total energy for a dielectric is

larger than
∫
|E|2 dx.

Lemma 8.4. Suppose that 0 6= ρ ∈ Ḣ−1(R3) ∩ E ′(Ω). Then, J is equal to

(8.4) J =
1

2

∫

R3

∫

R3

ρ(y)
1

4π|x− y|
ρ(x) dx dy +

∫

∂Ω

∂ψ(y)

∂ν
φext(y) dS(y) + ψ

∣∣
∂Ω

σ .
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Proof. Begin with the identities

(8.5)

2 J = −

∫

R3

ψ ∆ψ dy =

∫

R3

ψ(y)
(
ρ(y) dy +

∂ψ(y)

∂ν
dS(y)

)

=

∫

R3

∫

R3

(
ρ(y) dy +

∂ψ(y)

∂ν
dS(y)

) 1

4π|x− y|

(
ρ(x) dx +

∂ψ(x)

∂ν
dS(x)

)
,

where dS is the surface measure on ∂Ω. Expanding the last expression in (8.5) yields

(8.6)

∫

R3

∫

R3

ρ(y)
1

4π|x− y|
ρ(x) dx dy + 2

∫

R3

∫

R3

∂ψ(y)

∂ν

1

4π|x− y|
ρ(x) dx dS(y)

+

∫

∂Ω

∫

∂Ω

∂ψ(y)

∂ν

1

4π|x− y|

∂ψ(x)

∂ν
dS(y) dS(x) .

In the middle term, integrating dx first yields

(8.7) 2

∫

R3

∫

R3

∂ψ(y)

∂ν

1

4π|x− y|
ρ(x) dx dS(y) = 2

∫

∂Ω

∂ψ(y)

∂ν
φext(y) dS(y) .

For the last term in (8.6) use
∫

R3

1

4π|x− y|

(
ρ(y)dy +

∂ψ(y)

∂ν
dS(y)

)
= ψ(x) ,

to find
∫

∂Ω

1

4π|x− y|

∂ψ(y)

∂ν
dS(y) = ψ(x) −

∫

R3

1

4π|x− y|
ρ(y)dy = ψ(x) − φext(x) .

Therefore
∫

∂Ω

∫

∂Ω

∂ψ(y)

∂ν

1

4π|x− y|

∂ψ(x)

∂ν
dS(y) dS(x) =

∫

∂Ω

∂ψ(y)

∂ν

(
ψ(y)− φext(y)

)
dS(y) .

Since ψ is constant on the boundary one has
∫

∂Ω

∂ψ(y)

∂ν
ψ(y) dS(y) = ψ

∣∣
∂Ω

∫

∂Ω

∂ψ(y)

∂ν
dS(y) = ψ

∣∣
∂Ω

σ ,

so

(8.8)

∫

∂Ω

∫

∂Ω

∂ψ(y)

∂ν

1

4π|x− y|

∂ψ(x)

∂ν
dS(y) dS(x) = ψ

∣∣
∂Ω

σ −

∫

∂Ω

∂ψ(y)

∂ν
φext(y) dS(y).

Combining (8.6), (8.7), and (8.8) completes the proof of (8.4). �

9. Perturbation theory for a perfect conductor

The forces exerted on the body K are given by the derivatives of the function J . To

compute those it suffices to consider the variations of the potential ψ(x, y), defined by

(8.1), for the displaced bodies K(x) = x+K. The functions ψ(x, y) for different values of



26 GRÉGOIRE ALLAIRE AND JEFFREY RAUCH

x are defined on different sets. To compute the derivatives, transform to a fixed reference

domain. Define ψ̃ and ρ̃(x, y) by

(9.1) ψ̃(x, y) := ψ(x, x+ y), and ρ̃(x, y) := ρ(x+ y) .

The function ψ̃ is characterized as the solution of the boundary value problem on the

fixed domain Ω,

(9.2) −∆y ψ̃ = ρ̃ on Ω , ψ̃
∣∣
K

= constant , σ =

∫

∂Ω

∂ψ̃

∂ν
dS(y) .

Proposition 9.1. i. ψ̃(x, y) is a smooth function on the set of x, y so that x ∈ O and

x+ y /∈ supp ρ.

ii. If ρ ∈ L2(R3) ∩ E ′(R3) the derivative ∂ψ̃/∂xk is determined as the unique Ḣ1(R3)

solution to

(9.3) −∆y
∂ψ̃

∂xk
=

∂ρ̃

∂xk
on Ω,

∂ψ̃

∂xk

∣∣∣∣
K

= constant ,

∫

∂Ω

∂

∂ν

( ∂ψ̃
∂xk

)
dS(y) = 0 .

Proof. i. Begin with the identity ψ = φext+w. Equivalently ψ̃(x, y) = φext(x+y)+w̃(x, y)

where w̃(x, y) ∈ Ḣ1(R3) is the unique solution of

(9.4) −∆y w̃ = 0 on Ω, w̃
∣∣
K
= −φext(x+ y) + constant,

∫

∂Ω

∂w̃(x, y)

∂ν
dS(y) = σ .

The source term φext(x + y) is a smooth function of x on a neighborhood of K for all

x ∈ O. The smoothness of w̃ and therefore of ψ̃ follows.

ii. For x ∈ O consider equation (9.2). Since ρ ∈ L2(R3), the map x 7→ ρ̃(x, ·) is

a differentiable function of x ∈ O with values in Ḣ−1(R3) ∩ E ′(Ω). Therefore the map

x 7→ ψ̃(x, ·) is differentiable with values in Ḣ1(R3). Differentiating (9.2) with respect to

xk yields the boundary value problem (9.3). �

Proposition 9.2. If ρ ∈ L2(R3) ∩ E ′(R3) and x ∈ O then

(9.5)
∂J(x)

∂xj
= 2

∫

Ω

∂ρ̃(x, y)

∂xj
ψ̃(x, y) dy .

Equivalently,

(9.6)
∂J(x)

∂xj
=

∫

∂Ω

|∇yψ̃(x, y)|
2 ν · ej dy = −2

∫

Ω

ρ̃ ∂y1ψ̃ dy .

Remark 9.3. i. Formula (9.5) is convenient for the computation of the second order

derivatives of J .

ii. The first term on the right of (9.6), is in the standard form of a shape derivative

satisfying the Hadamard structure theorem [7], namely written as a boundary integral

depending linearly on the normal component of the displacement field. In this case the

displacement field is a translation in the ej direction.
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Proof. Prove the case j = 1. Start with

(9.7) J(x) =

∫

Ω

ρ̃ ψ̃ dy + σ ψ̃
∣∣
K
.

The definition of J yields

(9.8) J(x) =

∫

Ω(x)

∣∣∇yψ(x, y)
∣∣2 dy =

∫

Ω

∣∣∇yψ̃(x, y)
∣∣2 dy .

Differentiating (9.8) with respect to x1 yields

∂J

∂x1
= 2

∫

Ω

∇yψ̃(x, y) · ∂x1
∇yψ̃(x, y) dy .

Integration by parts in y yields

∂J

∂x1
= −2

∫

Ω

∆yψ̃(x, y) ∂x1
ψ̃(x, y) dy + 2

∫

∂Ω

∂ψ̃

∂ν
∂x1

ψ̃ dS(y) .

Since ∂x1
ψ̃ is constant on K one finds

∂J

∂x1
= −2

∫

Ω

∆yψ̃(x, y) ∂x1
ψ̃(x, y) dy + 2σ

∂ψ̃

∂x1

∣∣∣∣
K

.

Using (9.2) yields

∂J

∂x1
− 2σ

∂ψ̃

∂x1

∣∣∣∣
K

= 2

∫

Ω

ρ̃ ∂x1
ψ̃(x, y) dy = 2

∫

Ω

(
∂x1

(
ρ̃ ψ̃(x, y)

)
− (∂x1

ρ̃) ψ̃
)
dy .

Therefore (9.7) implies

∂J

∂x1
− 2σ

∂ψ̃

∂x1

∣∣∣∣
K

= 2∂x1

∫

Ω

(
ρ̃ ψ̃(x, y)

)
dy − 2

∫

Ω

(∂x1
ρ̃) ψ̃ dy

= 2
∂(J − σψ̃|K)

∂x1
− 2

∫

Ω

(∂x1
ρ̃) ψ̃ dy .

From the definitions,

∂(ψ̃|K)

∂x1
=

∂ψ̃

∂x1

∣∣∣∣
K

,

completing the proof of (9.5).

To obtain (9.6) from (9.5), first remark that ∂x1
ρ̃ = ∂y1 ρ̃ and integrate by parts to get

(9.9)
∂J

∂x1
= − 2

∫

Ω

ρ̃ ∂y1ψ̃ dy + 2

∫

∂Ω

ρ̃ ψ̃ ν · e1 dS(y) = −2

∫

Ω

ρ̃ ∂y1ψ̃ dy ,

where the boundary integral vanishes since ρ̃ = 0 on K. This proves the last expression

in (9.6). Using (9.2) and another integration by parts yields

(9.10)
∂J

∂x1
= 2

∫

Ω

∆yψ̃ ∂y1ψ̃ dy = − 2

∫

Ω

∇yψ̃ · ∇y∂y1ψ̃ dy + 2

∫

∂Ω

∂νψ̃ ∂y1ψ̃ dS(y).
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Since ψ̃ is constant on ∂Ω, we have ∂y1ψ̃ = ν · e1∂νψ̃ and (∂νψ̃)
2 = |∇yψ̃|

2 on ∂Ω. Thus,

(9.10) becomes

∂J

∂x1
= −

∫

Ω

∂y1 |∇yψ̃|
2 dy + 2

∫

∂Ω

ν · e1 |∇yψ̃|
2 dS(y) .

The first integral on the right vanishes. This yields the middle expression in (9.6). �

10. Renormalized potential energy for ρ with infinite self energy

The analysis up to here and the earlier work of Duffin is all in the context of charge

distributions of finite energy that is ρ ∈ Ḣ−1(R3). This has the unfortunate consequence of

not permitting the classic example of an external point charge, This section explains how

to treat external charges that are arbitrary compactly supported distributions ρ ∈ E ′(R3).

A similar set of remarks works for the case of dielectrics too.

The first summand in (8.4) has the interpretation as the self energy of the charge

distribution ρ. We are interested in forces on the body K. When K moves the first

summand does not change. The forces are determined by the changes in the second

summand. Keeping only the two last terms in formula (8.4) for J(x) yields the following

definition of the renormalized energy G(x).

Definition 10.1. For x ∈ O we introduce the renormalized potential energy

(10.1) G(x) :=

∫

∂Ω(x)

∂ψ(x, y)

∂ν
φext(y) dS(y) + ψ

∣∣
∂Ω(x)

σ ,

where ψ is the solution to (8.1) and φext = −∆−1ρ is the solution of (3.2) in the sense of

distributions. The potential φext need not belong to Ḣ1(R3).

Lemma 8.4 shows that for ρ ∈ Ḣ−1(R3) ∩ E ′(R3), J(x)−G(x) is equal to the (finite) self

energy of ρ and is independent of x ∈ O.

Proposition 10.2. i. If x ∈ O then φext = −∆−1ρ is a smooth function in a neighborhood

of K(x). Its values in this neighborhood determine the value of G(x) ∈ R for x on a

neighborhood of x.

ii. If ω ⊂ Ω(x) is an open set and 0 < r < dist (ω,K(x)) then the map ρ 7→ G is

continuous from E ′(ω) → C∞(Br(x)).

iii. If ρ ∈ E ′(R3) and ρǫ ∈ C∞
0 (R3) is a smooth sequence converging to ρ in the sense

of distributions with dist
{
supp ρ , R3 \ supp ρǫ

}
→ 0, then the forces computed from the

potential energy J ǫ, associated to ρǫ, are equal to those computed from Gǫ and converge,

as ǫ→ 0, to the forces computed from G for ρ.
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Proof. i. Since ρ vanishes on a neighborhood of K(x), one has
∫

∂Ω(x)

∂φext(y)

∂ν
dS(y) = −

∫

K(x)

∆yφext(y) dy = 0 .

Decompose ψ = φext + w where w(x, y) ∈ Ḣ1(R3
y) is the unique solution of

(10.2)

−∆y w = 0 on Ω(x) , w = −φext + constant on K(x) ,

σ =

∫

∂Ω(x)

∂w(x, y)

∂ν
dS(y) , w = O(1/|x|) |x| → ∞ .

The function w is determined by the values of φext in a neighborhood of K(x). Since

ψ = w + φext, formula (10.1), shows that G(x) also depends only on the values of φext in

a neighborhood of K(x).

ii. For x ∈ Br the support of ρ is at finite distance from K(x) so the map ρ 7→ φext

is continuous with values in the functions smooth on an open set containing ∪x∈Br
K(x).

The formulas determining ψ(x, y) and G complete the proof.

iii. Immediate consequence of the continuity result of part ii. �

11. Renormalized conductor energy G satisfies ∆G ≤ 0

Theorem 11.1. For any ρ ∈ E ′(Ω), the function G(x) satisfies

∆xG(x) ≤ 0 for x ∈ O .

Furthermore if K is connected, ρ ∈ E ′(Ω) is not identically equal to zero, and x ∈ O

satisfies ∆xG(x) = 0, then the electric field is constant on a neighborhood of K and G

is an affine function on a neighborhood of x.

Example 11.2. 1. If x ∈ O is an equilibrium at which ∆xG(x) = 0, then Theorem

11.1 states that G is affine on a neighborhood of x and, because it is an equilibrium,

∇xG(x) = 0, so G is constant on a neighborhood of x.

2. Consider spherically symmetric external charges ρ surrounding a charge free region.

The external potential φext is constant in the charge free region. Since the energy G is

determined by the value of φext on a neighborhood of K it follows that for a perfect con-

ductor in the charge free region, the potential G(x) is independent of x. The renormalized

energy is also independent of rotations.

3. Consider a perfectly conducting ellipsoid of revolution. Suppose that the external field

is equal to (1, 0, 0) on a neighborhood of the conductor. Then by translation invariance of

the external field, the renormalized potential energy G(x) is independent of x for x small.

If the long axis of the ellipsoid is nearly parallel to (1, 0, 0), then the induced surface

charges will create a non trivial dipole moment and corresponding non vanishing torque.

At an equilibrium position, the torque vanishes. In this case the torque also vanishes for
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K(x) by translational symmetry of the field near K. Therefore t 7→ M(tv)K is a motion

for v ∈ R3. Taking |v| ≪ 1 proves instability.

The proof of Theorem 11.1 uses a formula for the the laplacian ∆J that requires additional

regularity of ρ.

Lemma 11.3. If ρ ∈ H1(Ω) ∩ E ′(Ω) then, for all x ∈ O,

(11.1) ∆xJ(x) = 2

∫

Ω

|∇y∇xψ̃|
2 dy − 2

∫

Ω

ρ̃2 dy , |∇y∇xψ̃|
2 :=

∑

j,k

∣∣∣
∂2ψ̃

∂yj ∂xk

∣∣∣
2

.

Proof of Lemma 11.3. Differentiating (9.5) with respect to xj with j = k yields

(11.2)
∂2J

∂x2k
= 2

∫

Ω

∂

∂xk

(
ψ̃

∂ρ̃

∂yk

)
dy ,

since ∇xρ̃ = ∇yρ̃. Compute

∂

∂xk

(
ψ̃

∂ρ̃

∂yk

)
=

∂ψ̃

∂xk

∂ρ̃

∂yk
+ ψ̃

∂2ρ̃

∂xk∂yk
=

∂ψ̃

∂xk

∂ρ̃

∂yk
+ ψ̃

∂2ρ̃

∂y2k
.

Since ρ̃ is compactly supported in Ω, integration by parts yields
∫

Ω

ψ̃
∂2ρ̃

∂y2k
dy = −

∫

Ω

∂ψ̃

∂yk

∂ρ̃

∂yk
dy =

∫

Ω

ρ̃
∂2ψ̃

∂y2k
dy .

Therefore

(11.3)
∂2J

∂x2k
= 2

∫

Ω

∂ρ̃

∂yk

∂ψ̃

∂xk
dy + 2

∫

Ω

ρ̃
∂2ψ̃

∂y2k
dy .

To compute the first integrand, multiply the Poisson equation from (9.3) by ∂ψ̃/∂xk and

use ∂ρ̃/∂xk = ∂ρ̃/∂yk to find
∫

Ω

∂ρ̃

∂yk

∂ψ̃

∂xk
dy =

∫

Ω

(
−∆y

∂ψ̃

∂xk

) ∂ψ̃

∂xk
dy

=

∫

Ω

∣∣∣∇y
∂ψ̃

∂xk

∣∣∣
2

dy −

∫

∂Ω

(
∇y

∂ψ̃

∂xk

)
· ν

∂ψ̃

∂xk
dS(y) .

Since ∂ψ̃/∂xk is constant on the boundary one has
∫

∂Ω

(
∇y

∂ψ̃

∂xk

)
· ν

∂ψ̃

∂xk
dS(y) =

∂ψ̃

∂xk

∣∣∣∣
K

∫

∂Ω

(
∇y

∂ψ̃

∂xk

)
· ν dS(y) = 0

where the last condition from (9.3) is used for the last equality. Therefore

(11.4)

∫

Ω

∂ρ̃

∂yk

∂ψ̃

∂xk
dy =

∫

Ω

∣∣∣∇y
∂ψ̃

∂xk

∣∣∣
2

dy .
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Summing (11.3) with respect to k and using Poisson’s equation (9.2) yields

∆xJ(x) =
3∑

k=1

2

∫

Ω

∣∣∣∇y
∂ψ̃

∂xk

∣∣∣
2

dy + 2

∫

Ω

ρ̃∆yψ̃ dy = 2

∫

Ω

|∇y∇xψ̃|
2 dy − 2

∫

Ω

ρ̃2 dy .

This completes the proof of Lemma 11.3. �

Lemma 11.4. The conclusion of Theorem 11.1 holds for ρ ∈ H1(Ω) ∩ E ′(Ω).

Proof. For smooth ρ, one hasG(x) = J(x)+C where C is an additive constant. Therefore

∆G = ∆J . The first step proves ∆J ≤ 0. The second step analyses the case of equality,

∆J = 0.

Step I. Proof that ∆J ≤ 0. In view of (11.1) the Laplacian of J appears as the

difference of two positive terms. We prove that the first one is smaller or equal to the

second. Following an idea of [4], the first term is given by the complementary energy

minimization principle,

∫

Ω

∣∣∣∣∣∇y
∂ψ̃

∂xk

∣∣∣∣∣

2

dy = min
τ∈T

∫

Ω

|τ |2 dy ,

where

T =

{
τ ∈ L2(Ω;R3) : −divyτ =

∂ρ̃

∂xk
in Ω, and,

∫

∂Ω

τ · ν dS(y) = 0

}
.

Take a test vector field τ = ∇ywk with wk ∈ Ḣ1(R3) defined by

−∆ywk =
∂ρ̃

∂xk
in R

3 .

Then
∫
∂Ω
τ · ν dS(y) = 0 since ∆ywk = 0 in K. It yields

(11.5)

∫

Ω

∣∣∣∣∣∇y
∂ψ̃

∂xk

∣∣∣∣∣

2

dy ≤

∫

Ω

|∇ywk|
2 dy ≤

∫

R3

|∇ywk|
2 dy .

But

wk = (−∆)−1 ∂ρ̃

∂yk
,

so
∑

k

∂wk

∂yk
= (−∆y)

−1∆yρ̃ = −ρ̃ .

An integration by parts yields

∑

k

∫

R3

|∇ywk|
2 dy =

∑

k

∫

R3

wk
∂ρ̃

∂yk
dy =

∫

R3

|ρ̃|2 dy .
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Therefore

(11.6)
∑

k

∫

Ω

∣∣∣∣∣∇y
∂ψ̃

∂xk

∣∣∣∣∣

2

dy ≤

∫

Ω

|ρ̃|2 dy ,

equivalent to ∆xJ(x) ≤ 0.

Step II. When ∆J = 0 the external electric field is constant on a neighbor-

hood of K. In case of equality ∆xJ(x̄) = 0 at a point x̄. This is equivalent to equality

in (11.6) which, in turn, is equivalent to a pair of equalities in (11.5). When the first

inequality in (11.5) is an equality one has

∇ywk(x, ·) = ∇y
∂ψ̃(x, ·)

∂xk
in Ω .

Equality in the second inequality in (11.5) implies that

∇ywk(x, ·) = 0 in K .

In particular the second equality implies that wk(x, ·) satisfies the boundary conditions

wk(x, ·)|K = constant ,

∫

∂Ω

∂wk(x, ·)

∂ν
dS(y) = 0 .

Thus, by uniqueness of the solution of (9.3),

(11.7) wk(x, ·) =
∂ψ̃(x, ·)

∂xk
on Ω .

Since K is connected, it belongs to a single connected component ω of R3\supp ρ̃(x, · ).

We know that wk(x, ·) is constant inside K and harmonic outside the support of ρ̃(x, ·)

and thus in ω ∪K. Therefore, by analytic continuation there is a constant vk so that

wk(x, y) = vk for y ∈ ω .

Define the function φ̃ ∈ Ḣ1(R3) as the unique solution of

(11.8) −∆yφ̃ = ρ̃ in R
3 , so, wk(x, y) =

∂φ̃

∂xk
(x, y) =

∂φ̃

∂yk
(x, y) in R

3 .

The solution φ̃(x, y) is a function of x + y. By (11.8), ∇yφ̃(x, y) = v for y ∈ ω. Thus,

there exists a constant c1 ∈ R such that

φ̃(x, y) = v · y + c1 for y ∈ ω .

Therefore

(11.9) φ̃(x, y) = v · (x+ y − x) + c1 = v · (x+ y) + c2 , for x+ y − x ∈ ω.

Therefore,

(11.10) Ek = −
∂φ̃

∂yk
= −wk(x, y) = − vk for y + x− x ∈ ω .
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In case of equality, the external electric field is constant on a neighborhood of K.

Step III. When ∆J = 0, J is affine. For x sufficiently close to x̄, wk satisfies

−∆ywk =
∂ρ̃

∂xk
in Ω , wk(x, ·)|K = constant ,

∫

∂Ω

∂wk(x, ·)

∂ν
dS(y) = 0 .

By uniqueness of the solution of (9.3), for x sufficiently close to x̄,

(11.11) wk(x, · ) =
∂ψ̃

∂xk
(x, · ) on Ω .

Comparing (11.11) and (11.8) shows that there exists a function φ0(y), which does not

depend on x, such that, for any x in a small neighborhood of x̄,

(11.12) ψ̃(x, y) = φ̃(x, y) + φ0(y) for any y ∈ Ω .

Compute

(11.13) J(x) =

∫

Ω

ρ̃ ψ̃ dy + σ ψ̃
∣∣
K

=

∫

Ω

(
ρ̃ φ̃+ ρ̃ φ0

)
dy + σ ψ̃

∣∣
K
.

In the right hand side of (11.13) the first term is independent of x, by invariance by

translation of the integral. The third term is affine in x because ψ̃ is constant with

respect to y on K and, by virtue of (11.12) and (11.9) is affine in x on ∂K. The second

term is, by integration by parts,
∫

Ω

ρ̃ φ0 dy = −

∫

Ω

∆yφ̃ φ0 dy = −

∫

∂K

∂νφ̃ φ0 +

∫

∂K

∂νφ0 φ̃−

∫

Ω

φ̃∆yφ0 dy = a · x+ b ,

since φ̃ is affine in x in a neighborhood of K and

∆yφ0 = ∆yψ̃ − ∆yφ̃ = 0 in Ω .

Therefore, J(x) = a′ · x+ b′ for x close to x̄. �

Proof of Theorem 11.1. The values of G(x) depend only on the values of ψ on a

neighborhood of K(x). Given ρ choose 0 < ǫ < dist (supp ρ,K(x)). Choose ζǫ ∈ C∞(R3)

so that ζǫ(y) = 1 for dist(y, supp ρ) > ǫ and ζǫ(y) = 0 for dist(y, supp ρ) < ǫ/2. Denote

by ψ the electrostatic potential of ρ and ψǫ := ζ ψ that of ρǫ = −∆ψǫ. Then the charges

ρǫ are smooth and supported in an ǫ-neighborhood of supp ρ.

The Lemma 11.4 implies that the corresponding ∆Gǫ(x) ≤ 0 on a neighborhood of x.

Since ψ and ψǫ are equal on a neighborhood of K(x), part i of Proposition 10.2 implies

that Gǫ(x) is equal to G(x) on a neighborhood of x. The proof is complete. �

Theorem 11.5. Suppose that K a connected perfectly conducting body. If K(x) is an

equilibrium position in the field of external charges ρ ∈ E ′(R3) with K(x) ∩ supp ρ = Ø,

then the equilibrium is unstable.

The proof, entirely analogous to the proof of Theorem 7.1, is omitted.
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Remark 11.6. A renormalized energy G in the case of dielectrics is defined by expressing

ψ = φext + ζ as in Proposition 3.2 and the energy as

J = −
1

2

∫

R3

(ρ+ q)
(
φext + ζ

)
dy := −

1

2

∫

R3

ρ φext dy + G .

Analogues of Proposition 10.2 and its Corollary are true for this renormalized energy. A

regularization argument as in the proof of Theorem 11.1 extends Theorem 7.1 to external

charges ρ ∈ E ′(R3) with K(x) ∩ supp ρ = Ø.

Acknowledgments. G.A. is a member of the DEFI project at INRIA Saclay Ile-de-

France.
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