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Vibrations of non-uniform and functionally graded (FG) beams with various boundary conditions and varying cross-sections are investigated using 
the Euler–Bernoulli theory and Haar matrices. It is assumed that the cross-section and material properties vary along the beam in the axial 
direction. The system of the governing equations is transformed with the aid of a set of simplest wavelets. To validate the present results, the 
non-homogeneity of the beams is discussed in detail and the calculated frequencies are compared with those of the existing literature. The results 
show that the Haar wavelet approach is capable of calculating frequencies for the beams with different shapes, rigidity, mass density, small or 
large translational and rotational boundary coefficients. The advantage of the novel approach consists in its simplicity, accuracy and swiftness.
1. Introduction

In contemporary engineering conditions, the requirements
for structural materials and their properties are becoming more
stringent. This is particularly true for the materials which are
used in constructional elements or assembly units and are
utilized in extremely severe environment or adverse exploitation.
Nevertheless, traditional means for improving characteristics and
performance of natural materials are depleted. Therefore, an
increasing interest in composite materials and the materials
with gradients in composition is evident. The tendency is also
provoked by economical aspects: extraction and processing of
natural resources is limited and expensive.

FG materials withstand high temperatures and resist corro-
sion. On account of comparatively good fracture toughness, FG
materials are less exposed to delamination or cracking in compar-
ison to uniform or homogeneous beams; therefore, FG materials
have been under important consideration among engineers in re-
cent decades. A detailed overview of the advanced materials, their
development, elemental composition, microstructure, properties,
design and application are described in [1] by Byrd. A more com-
prehensive research on thermoelastic behaviour of FG structures
was first conducted by Chakraborty et al. in 2003 yet. Static, free
vibrations andwavepropagationwere investigatedby the beamel-
ement approachwhich required an exact solution of the static part
of the governing differential equations [2]. Aydogdu and Taskin
studied free vibrations of simply supported FG beams with the
aid of classical beam theory, parabolic and exponential shear de-
formation beam theories. The governing equations were found by
the Navier type solution [3]. A unified approach for analysing both
static and dynamic behaviour of FG beams was proposed by Li
extending the Timoshenko beam theory [4]. A fundamental fre-
quency analysis using different higher-order beam theories was
carried out by Simsek [5]. In 2010, Alshorbagy et al. suggested FEM
for calculating dynamic characteristics of FG beams with material
graduation in axially or transversally through the thickness based
on the power law [6]. The same method was applied by Shahna
et al. for stability analysis of FG tapered Timoshenko beam [7].
Xiang and Yang studied forced vibrations of a three-layer lami-
nated FG Timoshenko beamwith arbitrary end supports and vary-
ing thickness due to the applied heat [8]. Recently Simsek and
Kocatürk studied dynamic behaviour of FG simply-supported
beams under a concentrated moving harmonic load. The approach
was based on Lagrange’s equations [9]. Bending and vibration of
cylindrical beams with arbitrary radial non-homogeneity were in-
vestigated by Huang and Li [10]. A dynamic system with a mov-
ing mass was broadly studied by Simsek in [11,12], and Khalili
et al. [13]. A new approach for calculating free vibration of FG
beams with non-uniform cross-section area and varying physical
properties along its longitude was proposed by Huang and Li [14]
last year. The approach was based on the Fredholm integration
equation.

The analytical method for studying free vibrations of FG beams
was provided by Sina et al. [15] andMahi et al. [16] only a few years
ago. The equation of deflection was derived applying Hamilton’s
principle. The Galerkin method was employed to analyse free
vibration of sandwich beams with FG core in [17].
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Despite the variety of methods and approaches for analytical
and computational analysis of non-uniform and FG beams, no
simple and fast solutions applicable for both free and forced
vibrations in such beams with different boundary conditions and
varying cross-section area were proposed. Only few solutions are
found for the studies on the axially FG beams. Hereof, the purpose
of the present work is to introduce the Haar wavelet approach for
calculating natural frequencies in non-uniform and FG beams. The
paper is organized in five sections. Section 2 describes integration
of Haar wavelets. In Section 3, the problem and the solution are
stated. Various numerical examples can be found in Section 4. The
main conclusions are drawn in Section 5.

2. Integration of Haar wavelets

The Haar wavelet is one of the simplest wavelets which is
discontinuous and resembles a step function. In other words, the
Haar wavelets belong to the special class of discrete orthonormal
wavelets. The other wavelets generated from the same mother
wavelet form a basis whose elements are orthonormal to each
other and are normalized to unit length. This property allows
each wavelet coefficient to be computed independently of other
wavelets. The Haar wavelet family for ξ ∈ [0, 1] is defined as
follows:

hi(ξ) =

1 for ξ ∈ [ξ (1), ξ (2)
],

−1 for ξ ∈ [ξ (2), ξ (3)
],

0 elsewhere.
(1)

In (1), notations

ξ (1)
=

k
m

, ξ (2)
=

k + 0.5
m

, ξ (3)
=

k + 1
m

(2)

are introduced. Integer m = 2j (j = 0, 1, . . . , J) is the factor
of scale; k = 0, 1, . . . ,m − 1 is the factor of delay. Integer
J determines the maximal level of resolution. Index i in (1) is
calculated as i = m + k + 1; the minimal value for i is one (if
j = 0, then m = 1, k = 0); the maximal value of i is 2M , which is
2J+1. If index i is equal to one, the corresponding scaling function
is h1(ξ) = 1 if ξ ∈ [0, 1], and h1(ξ) = 0 elsewhere.

In [18], the Haar coefficient matrix H(2M×2M)(i, l) = hi(ξl) is
introduced; the collocation points are defined as:

ξl =
l − 0.5
2M

, l = 1, 2, . . . , 2M. (3)

For further studies, the integrals of the wavelets

pα,i(ξ) =

∫ ξ

0
pαi−1,i(ξ)dξ (4)

are required. In (4), p0,i(ξ) = hi(ξ). These integrals are calculated
analytically [19]. In case i = 1, the integral of the wavelet is
pα,1(ξ) = ξα/α!, and in case i > 1 is

pα,i(ξ) =



0 for ξ < ξ (1),
1
α!


ξ −

k
m

α

for ξ ∈ [ξ (1), ξ (2)
],

1
α!

[
ξ −

k
m

α

− 2(ξ − ξ (2))α
]

for ξ ∈ [ξ (2), ξ (3)
],

1
α!

[
ξ −

k
m

α

− 2(ξ − ξ (2))α + (ξ − ξ (3))α
]

for ξ > ξ (3).

(5)

Values pα,i(0) and pα,i(1) should be calculated in order to satisfy
the boundary conditions. Evaluating integrals (5) in the collocation
points, the following form could be obtained

P (α)(i, l) = pα,i(ξl), (6)
where P (α) is a 2M×2M matrix. It should be noted that calculations
of matrices H(i, l) and P (α)(i, l) must be carried out only once.
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3. Problem statement and method of solution

Consider an axially graded Euler–Bernoulli beamwith a variable
cross-section of length L. In the present study, it is assumed
that the material properties and cross-section of the beam vary
continuously along the length. Introducing the quantities:

ξ =
x
L
, k4 =

ρ0A0ω
2L4

E0I0
, (7)

the equation of motion for transverse vibrations is given by

d2

dξ 2

[
E(ξ)I(ξ)

d2W (ξ)

dξ 2

]
− k4m(ξ)W (ξ) = 0, ξ ∈ [0, 1], (8)

where W (ξ) is the transverse deflection, m(ξ) = ρ(ξ)A(ξ) is
the mass at position ξ , E(ξ)I(ξ) = D(ξ) is the bending stiffness;
ρ(ξ) is the mass density of the beam material, E(ξ) is the Young’s
modulus, A(ξ) is the cross-section area and I(ξ) is the moment of
inertia at ξ . In (7), k is the dimensionless natural frequency, and
ρ0, A0, E0, I0 denote the values of ρ, A, E, I at ξ = 0, respectively.
In the present study, it is assumed that functions E(ξ) and I(ξ)have
derivatives up to the second order. From (8), it yields that

d4W (ξ)

dξ 4
E(ξ)I(ξ) + 2

d3W (ξ)

dξ 3

[
dE(ξ)

dξ
I(ξ) +

dI(ξ)

dξ
E(ξ)

]
+

d2W (ξ)

dξ 2

[
d2E(ξ)

dξ 2
I(ξ) + 2

dE(ξ)

dξ
dI(ξ)

dξ
+

d2I(ξ)

dξ 2
E(ξ)

]
− k4W (ξ)ρ(ξ)A(ξ) = 0, ξ ∈ [0, 1]. (9)

For a general case, the solution of (9) is not available. According
to [18,19], a highest-order derivative is expanded into the Haar
series instead of solving the differential equation. Therefore, it is
assumed that the fourth derivative of the solution (9) is sought in
the following form:

W IV (ξ) =

2M−
i=1

aihi(ξ), (10)

where ai are unknown wavelet coefficients. Integrating (10) four
times and taking into account (4) and (5), we obtain

W ′′′(ξ) =

2M−
i=1

aip1,i(ξ) + W ′′′(0),

W ′′(ξ) =

2M−
i=1

aip2,i(ξ) + W ′′′(0)ξ + W ′′(0),

W ′(ξ) =

2M−
i=1

aip3,i(ξ) +
1
2
W ′′′(0)ξ 2

+ W ′′(0)ξ + W ′(0),

W (ξ) =

2M−
i=1

aip4,i(ξ) +
1
6
W ′′′(0)ξ 3

+
1
2
W ′′(0)ξ 2

+ W ′(0)ξ + W (0).

(11)

In (11), quantities W (0),W ′(0),W ′′(0),W ′′′(0) can be evaluated
from the boundary conditions. In the present work, the following
boundary conditions are considered:

(i) Cantilever beams (CF)
In this case, one end ξ = 0 is clamped, while the other end

ξ = 1 is free. The boundary conditions for the beam are W (0) =



W ′(0) = 0,W ′′(1) = W ′′′(1) = 0 and the system is derived from
(11) as follows:

2M−
i=1

aip1,i(1) + W ′′′(0) = 0,

2M−
i=1

aip2,i(1) + W ′′′(0) + W ′′(0) = 0.

(12)

Evaluating the system,W ′′(0) andW ′′′(0) are obtained

W ′′(0) =

2M−
i=1

aiq1,i,

W ′′′(0) = −

2M−
i=1

aip1,i(1),

(13)

where q1,i = p1,i(1) − p2,i(1). In this case, the mode shape W is
described by the following equation:

W (ξ) =

2M−
i=1

ai

[
p4,i(ξ) −

1
6
p1,i(1)ξ 3

+
1
2
q1,iξ 2

]
. (14)

(ii) Simply supported beams (SS)
In the case of simply supported beam, the boundary conditions

areW (0) = W ′′(0) = 0,W (1) = W ′′(1) = 0 and the system is

2M−
i=1

aip2,i(1) + W ′′′(0) = 0,

2M−
i=1

aip4,i(1) +
1
6
W ′′′(0) + W ′(0) = 0.

(15)

From (15) we get

W ′′′(0) = −

2M−
i=1

aip2,i(1),

W ′(0) =
1
6

2M−
i=1

aiq2,i,

W (ξ) =

2M−
i=1

ai

[
p4,i(ξ) −

1
6
p2,i(1)ξ 3

+
1
6
q2,iξ

]
,

(16)

where q2,i = p2,i(1) − 6p4,i(1).
(iii) Clamped beams (CC)
Satisfying the boundary conditions, W (0) = W ′(0) = 0,W (1)

= W ′(1) = 0 for the clamped–clamped beams one could get

W ′′′(0) = 6
2M−
i=1

aiq3,i,

W ′′(0) =

2M−
i=1

aiq4,i,

W (ξ) =

2M−
i=1

ai

[
p4,i(ξ) + q3,iξ 3

+
1
2
q4,iξ 2

]
,

(17)

where q3,i = 2p4,i(1) − p3,i(1) and q4,i = 2p3,i(1) − 6p4,i(1).
(iiii) Clamped–pinned (CP) beams
As a representative, it is assumed that one end ξ = 0

is clamped or fixed and the other end ξ = 1 is pinned or
simply supported. Thus, the corresponding boundary conditions
are W (0) = W ′(0) = 0,W (1) = W ′′(1) = 0. In this case from
(11) one could get

W ′′′(0) =

2M−
i=1

aiq5,i,

W ′′(0) =

2M−
i=1

aiq6,i,

W (ξ) =

2M−
i=1

ai

[
p4,i(ξ) +

1
6
q5,iξ 3

+
1
2
q6,iξ 2

]
,

(18)

where q5,i = 3p4,i(1) −
3
2p2,i(1) and q6,i = −q5,i − p2,i(1).

For the illustration of the method, consider a case of the
cantilever beam. Next the notation is introduced as follows:

a(:)H(:, l) =

2M−
i=1

aihi(ξl). (19)

Substituting (10), (11) and (13) into (9), taking into account (19)
and discretizing the results by taking ξ → ξl, the governing system
is derived

a(:)

H(:, l)U1(l) + 2


P (1)(:, l) − P (1)(:, 1)E(l)


U2(l)

+

P (2)(:, l) − P (1)(:, 1)ξlE(l) + q1(:)ξ 2

l E(l)

U3(l)

− k4
[
P (4)(:, l) −

1
6
P (1)(:, 1)ξ 3

l E(l) +
1
2
q1(:)ξ 2

l E(l)
]
U4(l)


,

l = 1, . . . , 2M, (20)

where

U1(l) = E(ξl)I(ξl),

U2(l) = E ′(ξl)I(ξl) + E(ξl)I ′(ξl),

U3(l) = E ′′(ξl)I(ξl) + 2E ′(ξl)I ′(ξl) + E(ξl)I ′′(ξl),
U4(l) = ρ(ξl)A(ξl)

(21)

and E(l) is a unit row vector. The system (20) is linear and
homogeneous with regard to ai and contains frequency parameter
ω. For deriving a nontrivial solution, the determinant of system
(20) must be zero. According to this requirement, the values for
ω are evaluated.

4. Numerical examples

4.1. A comparison of the results for uniform homogeneous beams

Consider a homogeneous cantilever with a uniform cross-
section. In this case, D = EI and m = ρA are constants. The
comparisons of the exact [20] and calculated dimensionless natural
frequencies (DNF) k for different levels of resolution J are presented
in Table 1. It is seen in the table that high accuracy is obtained using
a small number of grid points.

4.2. Beams with non-uniform cross-section and elastic end con-
straints

The suggested approach of the Haar wavelets was applied to
the wedge beam with a rectangular cross-section and clamped-
free ends. Due to the shape, the breadth and the height of the beam
were described by the formulae:

h(ξ) = h0 [1 + (αh − 1)ξ ] , b(ξ) = b0 [1 + (αb − 1)ξ ] , (22)

where αb stands for the ratio between the breadths at the
beginning and at the end of the beam; αh is the ratio between
the heights respectively. In Table 2, the first dimensionless natural
3



Table 1
The first four DNF kn for uniform cantilever beams.

n Exact [20] J = 2 J = 3 J = 4 J = 5 J = 6

1 1.8751 1.8783 1.8759 1.8753 1.8752 1.8751
2 4.6941 4.7342 4.7040 4.6966 4.6948 4.6943
3 7.8548 7.9991 7.8899 7.8635 7.8570 7.8553
4 10.9956 11.3505 11.0804 11.0165 11.0008 10.9969

Table 2
The first DNF k2 for the wedge and cone cantilever.

α Wedge beam Cone beam
[21] Present [21] Present

0.1 4.63074 4.6305 7.20500 7.2055
0.4 3.93428 3.9343 5.00906 5.0088
0.6 3.73708 3.7373 4.31879 4.3189
0.7 3.66675 3.6670 4.06694 4.0671
0.9 3.55870 3.5589 3.67371 3.6739

Table 3
The first two DNF k2 for a beam with translational constraints and krr = krl = 0.

ktl = ktr n = 1 n = 2
[21] Present [21] Present

0.001 0.21656 0.2166 0.31795 0.3180
0.01 0.38510 0.3851 0.5639 0.5654
0.1 0.68462 0.6846 1.00528 1.0053
1 1.21404 1.2140 1.78509 1.7851
10 2.10096 2.1009 3.13023 3.1303
100 3.07241 3.0723 5.06670 5.0668
1000 3.37553 3.3754 6.56963 6.5697

frequencies k2 for the wedge beam with αb = 1, αh = α and the
cone beamwith αb = αh = α are presented. The results calculated
by Hsu et al. [21] are given in columns two and four. The level of
resolution was taken as J = 5. According to the results, the Haar
wavelets approach works accurately with insignificant errors in
the cases of simple wedge beam models.

Next, consider a non-uniform beam with elastic end constants.
The boundary conditions in the presence of translational and
rotational spring constants at ξ = 0 are presented as [21]:

d
dξ

[
I(ξ)

d2w(ξ)

dξ 2

]
+ ktlw(ξ) = 0, (23)

I(ξ)
d2w(ξ)

dξ 2
− krl

dw(ξ)

dξ
= 0. (24)

In (23) and (24), the non-dimensional translational and
rotational spring coefficients kt and kr are

ktl =
KTLL3

EI0
, krl =

KRLL
EI0

. (25)

The boundary conditions on the right end ξ = 1 are defined
analogically. The first two natural frequencies with αb = αh =

1.4, fixed rotational spring constraints krr = krl = 0 and
varying translational spring constraints are presented in Table 3.
The results are compared with Hsu’s [21] calculations.

It is important to note that the provided method of Haar
wavelets is capable of calculating different frequencies for both
small and large translational coefficients. The results are precise,
however, an attempt to improve the accuracywas done on account
of resolution. The model and conditions were remained the same
as in the previous example, but the resolution was increased from
five to seven.

As it can be seen from Table 4, the accuracy of calculations
grows with the growth of resolution. However, according to
Lepik [19], it is so only to a certain extend of the resolution.
4

Table 4
The third DNF k2 for the beamwith translational constraints and krr = krl = 0 with
different resolutions.

ktl = ktr [21] Present
J = 5

Present
J = 6

Present
J = 7

0.001 5.19178 5.1927 5.1920 5.1918
0.01 5.19196 5.1929 5.1922 5.1920
0.1 5.19381 5.1948 5.1940 5.1939
1 5.21223 5.2132 5.2125 5.2123
10 5.39376 5.3948 5.3940 5.3938
100 6.71152 6.7125 6.7118 6.7116
1000 9.28876 9.2894 9.2889 9.2888

Table 5
The first DNF k2 for the beam with varying translational and fixed rotational end
constraints (J = 5).

ktl = ktr krr = 0.5, krl = 1 krr = 1, krl = 0.5

0.001 0.2115 0.2115
0.01 0.3760 0.3760
0.1 0.6682 0.6684
1 1.1803 1.1828
10 2.0210 2.0345
100 2.9628 2.9852

Table 6
The first three DNF k2 for the beam with parabolic-taper width and linear-taper
height (J = 5).

α n = 1 n = 2 n = 3
Present [22] Present [22] Present [22]

0.1 5.8383 5.8382 16.6901 16.696 34.8190 34.854
0.3 4.7574 4.7577 17.5988 17.600 41.6669 41.660
0.5 4.2101 4.2100 18.9250 18.922 47.9306 47.907
0.8 3.7303 3.7301 20.8437 20.838 56.4426 56.453

Table 7
The first DNF of the cantilever with parabolic thickness (rectangular and circular
cross-section) versus the dimensionless coordinate of the fixed end (J = 5).

ξ1 Cross-section
Rectangular Circular
[23] Present [23] Present

−0.7 1.050 1.0474 1.011 1.0028
−0.5 1.936 1.9363 2.238 2.2357
−0.3 3.070 3.0704 3.940 3.9394
0.0 5.576 5.5774 7.886 7.8857
0.3 10.17 10.1784 15.31 15.3134
0.5 16.27 16.2805 25.26 25.2880
0.7 30.47 30.4827 48.49 48.4945

The Haar wavelet approach was also applied to the beams with
varying translational and fixed rotational end constraints (krr =

0.5, krl = 1) with αb = 2 and αh = 1 (Table 5).
The study on the frequencies proves that there is slight

dependence between the rotational constraints and the cross-
section area. The influence can be observed with the growth of the
translational constraint value.

Now consider a truncated at α tapered beam [22] with
parabolic-taper width b(ξ) = b0

√
ξ and linear-taper height

h(ξ) = h0ξ . The first threeDNF for boundary conditions (on the left
end krl = ktl = 0 and on the right end krr → ∞, ktr → ∞) with
J = 5 are presented in Table 6. The calculated results correspond
well to the previous works. Finally, examine the Haar wavelet
approach on the cantilever with parabolic thickness versus the
dimensionless coordinate of the fixed end (h = h0(1−ξ 2)) and the
cantilever with circular cross-section and parabolic thickness. The
results of the calculations and comparison are provided in Table 7.
The calculated results correspond to the previous research.



Table 8
The first DNF of axially graded beam versus the gradient parameter (J = 5).

β S–S C–C C–P
Present [14] Present [14] Present [14]

−10 11.4481 11.4532 24.0269 24.0576 16.3837 16.4775
−3 11.2422 11.2443 23.9384 23.9456 16.0307 16.0219
0 10.8660 10.8663 24.3749 24.3752 15.8729 15.8734
3 10.3670 10.3669 24.9371 24.9375 15.7171 15.7171
10 9.9366 9.9358 24.8080 24.7949 15.4930 15.4956

Table 9
The first DNF of the axially graded tapered cantileverwith variable Young’smodulus
and mass density (J = 5).

γ β

−0.2 −0.1 0.0 0.1 0.2

−0.2 2.6468 2.6051 2.5691 2.5378 2.5102
−0.1 3.0553 3.0103 2.9716 2.9378 2.9082
0.0 3.6085 3.5589 3.5162 3.4789 3.4460
0.1 4.4492 4.3922 4.3430 4.2999 4.2618
0.2 6.0214 5.9518 5.8909 5.8372 5.7893

4.3. Uniform beams with variable flexural rigidity and mass density

Consider a uniform beamwith axial non-homogeneity. Assume
that bending stiffness and mass density vary according to the
following equation:

Q (ξ) =

Q0


1 −

eβξ
− 1

eβ − 1


+ Q1

eβξ
− 1

eβ − 1
, β ≠ 0,

Q0(1 − ξ) + Q1ξ, β = 0.
(26)

In (26), Q0 and Q1 stand for the corresponding material properties
at the ends ξ = 0, ξ = 1 respectively, and β is the gradient.
The material is chosen to consist of aluminium and zirconia as
follows [14]

Al: E0 = 70 GPa, ρ0 = 2702 kg/m3,

ZrO2: E1 = 200 GPa, ρ1 = 5700 kg/m3.
(27)

The first natural frequencies for the functionally graded beams
with different boundary conditions are calculated and presented in
Table 8.

4.4. Beams with non-uniform cross-section, variable flexural rigidity
and mass density

Next, consider a functionally graded beam with non-uniform
cross-section. Assume that the cross-section of the beam has
constant width and linearly varying height, i.e. A/A0 = 1 +

βξ, I/I0 = (1 + βξ)3. The Young’s modulus and the mass density
are considered as trigonometric functions:

E(ξ) = E0 [1 + γ cos(πξ)] , ρ(ξ) = ρ0 [1 + δ cos(πξ)] , (28)

where |γ | < 1 and |δ| < 1 are parameters. In Table 9, the
calculated first natural frequencies for δ = 4γ and different
values of β are presented. The natural frequencies of the tapered
cantilever are sensitive to parameter γ .

4.5. Non-homogeneous beams with variable flexural rigidity, mass
density and elastic end constraints

Here we consider the cases of axially FG beams with unusual
boundary conditions. Let the flexural rigidity and mass density of
the beam vary in the following form:

D(ξ) = D0 [1 + α cos(πξ)] , ρ(ξ) = ρ0 [1 + β cos(πξ)] , (29)
Table 10
The first DNF for beams the with variable flexural rigidity, mass density and elastic
end constraints (J = 5, krr = ktr = 1).

α = β krl = ktl
1.0 2.0 3.0 4.0 5.0

−0.2 1.4408 2.0732 2.5756 3.0206 3.4420
−0.15 1.4120 2.0309 2.5191 2.9473 3.3462
0.15 1.2950 1.8632 2.3030 2.6794 3.0176
0.2 1.2818 1.8446 2.2795 2.6510 2.9842

Table 11
The first DNF for beams with variable flexural rigidity, elastic end constraints and
intermediate rigid support (J = 5, krr = ktr = krl = ktl = 1).

α = β γ

0.1 0.3 0.5 0.7 0.9

−0.2 1.8902 2.8150 4.0124 3.9385 3.2176
−0.15 1.9120 2.8620 4.0277 3.8784 3.1657
0.15 2.0578 3.1553 4.0527 3.5405 2.8874
0.2 2.0851 3.2077 4.0475 3.4879 2.8455

where |α| < 1 and |β| < 1 are parameters. The conditions insure
that D(ξ) and ρ(ξ) are positive. The ends of the beam are fixed by
elastic spring supports. The boundary conditions in the presence
of rotational and translational spring constants are given by Eqs.
(23)–(25). In Table 10, the first natural frequencies are presented
for the case of fixed translational and rotational spring constants
at the right end (krr = ktr = 1) and variable constants at the left
end.

4.6. Non-homogeneous beams with variable flexural rigidity, mass
density, elastic end constraints and intermediate rigid support

Finally, the present method can also be applied for beams with
additional intermediate constraints. Let us consider an axially FG
beam with variable flexural rigidity and mass density varying
according to the Eq. (29). The beamhas rotational and translational
flexible ends and an additional rigid support at ξ = γ . In the
presence of the rigid support, the condition is

W (γ ) = 0. (30)

According to (18), the Eq. (30) takes the form:

W (γ ) =

2M−
i=1

ai

[
p4,i(γ ) +

1
6
q5,iγ 3

+
1
2
q6,iγ 2

]
. (31)

In Table 11, the calculated first natural frequencies for the fixed
translational and rotational spring constants krr = ktr = krl =

ktl = 1, varying α = β and different values of γ are presented.
It can be seen in Table 11 that in the case of symmetric boundary
conditions, the natural frequencies at the right end and left end
are not the same. This is explained by non-symmetric FG material
distribution in the beam.

5. Conclusions

The Haar wavelet approach was presented to solve free vi-
brations of non-uniform Euler–Bernoulli beams with continuously
varying flexural rigidity and mass density. A numerical method
was developed for general nonlinear functions. The obtained re-
sults were compared with those given in [14,21–23]. The benefits
of the Haar wavelet approach are its simplicity and sparse matri-
ces of presentation. The computational time is therefore compar-
atively small. High accuracy is obtained even with a small number
of grid points. Themethod is easily applicable for systemswith dis-
continuities and works effectively in the case of non-linearity.
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