
HAL Id: hal-01321532
https://hal.science/hal-01321532

Submitted on 25 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Highly-Smooth Zero-th Order Online Optimization
Vianney Perchet

Francis Bach, Vianney Perchet

To cite this version:
Francis Bach, Vianney Perchet. Highly-Smooth Zero-th Order Online Optimization Vianney Perchet.
Conference on Learning Theory (COLT), Jun 2016, New York, United States. �hal-01321532�

https://hal.science/hal-01321532
https://hal.archives-ouvertes.fr


JMLR: Workshop and Conference Proceedings vol 49:1–27, 2016

Highly-Smooth Zero-th Order Online Optimization

Francis Bach FRANCIS.BACH@ENS.FR
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Abstract

The minimization of convex functions which are only available through partial and noisy infor-

mation is a key methodological problem in many disciplines. In this paper we consider convex

optimization with noisy zero-th order information, that is noisy function evaluations at any desired

point. We focus on problems with high degrees of smoothness, such as logistic regression. We

show that as opposed to gradient-based algorithms, high-order smoothness may be used to improve

estimation rates, with a precise dependence of our upper-bounds on the degree of smoothness. In

particular, we show that for infinitely differentiable functions, we recover the same dependence on

sample size as gradient-based algorithms, with an extra dimension-dependent factor. This is done

for both convex and strongly-convex functions, with finite horizon and anytime algorithms. Finally,

we also recover similar results in the online optimization setting.

Keywords: Online learning, Optimization, Smoothness

1. Introduction

The minimization of convex functions which are only available through partial and noisy informa-

tion is a key methodological problem in many disciplines. When first-order information, such as

gradients, is available, many algorithms and analysis have been proposed (see, e.g., Shalev-Shwartz,

2011, and references therein), taking the form of stochastic gradient descent (Robbins and Monro,

1951), online mirror descent (Lan et al., 2012), dual averaging (Xiao, 2010) or even variants of ellip-

soid methods (Nemirovski and Yudin, 1983; Agarwal et al., 2013). Strong convexity has emerged

as an important property characterizing the performance of these algorithms, with optimal con-

vergence rates of O(1/n) after n iterations for strongly-convex problems, and only O(1/
√
n) for

convex problems.

However, smoothness can typically only improve constants (Lan, 2012), with the stochastic part

of the generalization performance having the same scalings than in the non-smooth case. Apart for

quadratic functions or logistic regression where the rates may be improved (Bach and Moulines,

2013; Shamir, 2013; Hazan et al., 2014), the boundedness of high-order derivatives is typically not

advantageous.

In this paper, we consider situations where only noisy function values are available, originating

from derivative-free optimization (Spall, 2005) and with increased received attention (see, e.g.,

Bubeck and Cesa-Bianchi, 2012, and references therein). This is also the core assumption in the

online learning class of problems known as “bandit” (even though our setup is a bit different, and

we obtain faster rates than in bandit optimization).

c© 2016 F. Bach & V. Perchet.
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Again, strong convexity has emerged as a key property (Hazan and Levy, 2014). Following

Polyak and Tsybakov (1990), Dippon (2003) or Saha and Tewari (2011) (for the traditional con-

cept of smoothness) we show that in the large variety of online settings, high-order smoothness,

namely the boundedness of high-order derivatives, may be used, with the extreme case of infinitely

differentiable functions, for which the rates attain the ones for first-order oracles.

More precisely, throughout this paper, we consider a sequence of convex functions fn : Rd →
R, n ≥ 1 and a convex constraint set K ⊂ R

d with non-empty interior. The objectives are to output

a sequence of a sequence of points {xn}n=0,...,N ∈ K and of queries {yn}n=1,...,N ∈ R
d to a noisy

zero-th order oracle, in order to minimize one of the following criteria:

− Stochastic optimization: All functions fn are equal to f , and the goal is to minimize

f(xN )− inf
x∈K

f(x)

for the final point xN ∈ K .

− Online optimization: The criterion to optimize, usually referred to as the “regret”, is

1

N

N∑

n=1

fn(xn−1)− inf
x∈K

1

N

N∑

n=1

fn(x).

We immediately emphasize here that a bound valid for online optimization immediately trans-

fers into into a bound for stochastic optimization with the choice xN = 1
N

∑N−1
m=0 xm.

− Bandit learning: this setting is similar to the online optimization case, except that the evalua-

tion point must be equal to the query point, i.e., yn+1 = xn for all n.

Formally, the timing of the optimization scheme is the following. The algorithm first outputs x0 ∈
K and queries y1 ∈ R

d. After getting f1(y1) + ε1 ∈ R as a feedback (where ε1 ∈ R is some

noise), it outputs x1 ∈ K and queries y2 ∈ R
d, gets f2(y2) + ε2 ∈ R as feedbacks, etc. Formally,

let Fn−1 be the σ-field generated by {x0, x1, y1, ε1, . . . , xn−1, yn−1, εn−1}. Then xn and yn are

random variables adapted to Fn−1 and εn is adapted to Fn.

For simplicity we assume that the noise is independent in the sense that the distributions of εn
conditionally to Hn are independent but we do not assume that the noise is identically distributed (as

the distribution may depend on yn−1, which is key for online supervised learning). Moreover, we

assume that the noise has bounded variance σ2 that is not necessarily known in advance (improved

bounds would be obtained if we allow dependency of algorithms in that term). Note that martingale

assumptions common in stochastic approximation (Kushner and Yin, 2003) could be used instead

of conditional independence.

Motivating examples for the optimization case are (a) simple additive noise on f , or (b) fn(x) =
Eag(a, x) and εn = g(an, x) − Eag(a, x) for an a random variable, which corresponds to online

supervised learning where an represents the data received at time n.

We shall also consider the case where we essentially query twice the same functions before

outputting a new point xn+1; we stress out here that the two feedbacks are two noisy evaluations

where the noises are independent, as opposed to Agarwal et al. (2010); Duchi et al. (2013). As a

consequence, the classical optimization setup remains identical except that we make 2N queries

2
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Figure 1: Summary of the principal rates of convergence achieved by our algorithms for stochastic

or online optimization. The bounds in the last asymptotic regime are only true when N
is large enough and are only valid for stochastic optimization.

instead of N , thus rates of convergence are independent of this trick. As a consequence, it only

makes a difference in the online optimization setup, where we now need to assume that the same

function is observed twice in a row.

We introduce this two-point setting as it allows us to consider the case where the constraint set is

the whole space R
d. Moreover, the algorithms do not need to perform a projection at each step and

rates of convergence are independent of the maximal value of the loss functions (which should not

appear as the problem in translation invariant). Note that (a) this unconstrained setting is common in

smooth optimization, and (b) that our proof technique can extend to composite optimization where

a non-smooth term is added with its proximal operator (Xiao, 2010; Hu et al., 2009). On the other

hand, when the constraint set is a compact convex subset, of diameter denoted by R > 0, then we

shall use a classical “one-point” algorithm that queries each fn only once.

We shall provide algorithms and explicit rates of convergence for all the following cases

i) Unconstrained (K = R
d) vs. constrained optimization (K is compact convex).

ii) Convex vs. µ-strongly convex mappings.

iii) Stochastic optimization vs. online optimization.

Maybe surprisingly, as shown in Figure 1, rates of convergence are actually independent of the un-

constrained/constrained setting and on the stochastic vs. online case, at least when fn are Lipschitz-

continuous which is a required setup for online optimization. We emphasize here that the asymptotic

dependencies in N and d are exact, i.e., no logarithmic terms are hidden.

Note that we do not consider here the bandit setting that imposes that xn+1 = yn. This can be

deduced from Figure 1 as the rate for strongly convex functions would violate the lower bound of

Shamir (2013) for bandit learning.
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1.1. Smoothness assumption

We shall assume that all mappings in question are defined on R
d and almost surely (β−1)-times

differentiable and that for all ‖v‖2 = 1, and x, y ∈ R
d, then

‖f (β−1)(x)vβ−1 − f (β−1)(y)vβ−1‖2 ≤ Mβ
β ‖x− y‖2, (1)

where we define

f (m)(x)vm =
∑

m1+···+md=m

∂mf

∂m1x1 · · · ∂mdxd
vm1
1 · · · vmd

d

as the m-th term in the Taylor expansion of f . We refer to such functions as β-th order smooth

functions. Note that a stronger assumption is that f is β-times differentiable with a uniform bound

sup
x∈Rd

sup
‖v‖≤1

|f (β)(x)vβ | 6 Mβ
β . (2)

These notions extends the traditional smoothness, which corresponds to β = 2 (Nesterov, 2004).

Notice that this implies that for all x, y (as a consequence of Taylor expansions with integral re-

mainder): ∣∣∣∣f(y)−
∑

|m|≤β−1

1

m!
f (m)(x)(y − x)m

∣∣∣∣ ≤
Mβ

β

β!
‖y − x‖β . (3)

We emphasize the fact that high-order smoothness, in the sense defined above, implies lower order

smoothness only if mappings are defined on a compact set. If a mapping is defined on the whole

space, then it can be second order smooth without being first order smooth, such as any non trivial

quadratic function.

We now mention the following lemma that relates the different degrees of smoothness of f .

Lemma 1 Let f : K → R be a continuous mapping that is β1-smooth and β2-smooth, with the

associate constants Mβ1 and Mβ2 , where β1 < β2. Then f is β-smooth for all β ∈ [β1, β2] and

there exist a sequence of weights αβ , for all β ∈ [β1, β2], independent of Mβ1 and Mβ2 such that

αβM
β
β ≤ 2(αβ1M

β1

β1
)

β2−β
β2−β1 (αβ2M

β2

β2
)

β−β1
β2−β1

In particular,

i) if K is compact then f is bounded (i.e., 0-smooth). As a consequence, β-smoothness imme-

diately entails that f is Lipschitz and 2-smooth.

ii) If f is Lipschitz and β-smooth (for β ≥ 2), then f is 2-smooth.

From now on, we shall assume that all mappings fn are β-smooth, for some β ≥ 2, with a common

associated constant Mβ which is known (which typically holds in many settings, see next exam-

ple). In online unconstrained optimization, we will also impose that fn is Lipschitz (again, this is

automatic when K is compact).

4
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Special case: logistic regression. If f(x) = Ea log(1 + exp(−a⊤x)) for a certain random vec-

tor a ∈ R
d which is uniformly bounded by R, then we consider εn = log(1 + exp(−a⊤n x)) −

Ea log(1 + exp(−a⊤x)) for a sample an. This is online logistic regression, for which the constant

Mβ
β may be chosen to be equal to 1

4(β−1)!Rβ (Kakade et al., 2009), which is such that Mβ ≤ βR.

Note that such a setting should extend to all generalized linear models. Moreover, we use a prop-

erty of logistic regression which is different than self-concordance (Bach, 2010), which bounds the

third derivatives by the second derivative; it would be interesting to see if the two analyses can be

combined.

1.2. Related work

As already mentioned, there is a huge (and actually still increasing) literature on stochastic opti-

mization with zero-th order feeback and/or on convex bandits problem. We also investigate here the

online optimization setup, an “intermediate framework” where the sequence of mappings fn can

evolve adversarially but, as in optimization, the loss might be evaluated at another point than the

query sent to the oracle.

We emphasize these differences between set-ups as the complexity of stochastic zero-th order

optimization and the convex bandit problem have been widely studied recently (Recht et al., 2012;

Shamir, 2013). It has been observed that minimax rates of convergence in bandit problems and

stochastic optimization might differ, which is not the case in our setting for our upper-bounds (one

can therefore conclude that the complexity of convex bandits is not hidden in the evolving sequence

of loss functions, but more importantly on the constraint that the query point is where the loss is

evaluated).

Moreover, it has also been shown by Recht et al. (2012); Shamir (2013) that the slow rates of√
d2/n are minimax optimal for stochastic optimization or convex bandits. The optimal rates of√
1/n have been obtained (Nemirovski and Yudin, 1983; Liang et al., 2014) but without the explicit

dependency in the dimension d; moreover, those techniques cannot be used in online optimization.

The lower bound in
√

d2/n holds even if the mappings are highly regular, as quadratic and strongly-

convex (Shamir, 2013). However, in that case, the optimization error decreases as d2/n; see also

Hazan et al. (2014) for a similar result on logistic regression. This result1 can be interpreted as an

extreme case of our regularity assumptions, i.e., when β = +∞ or M3 = 0. As a consequence,

we somehow interpolate between the well studied extreme problems in online learning with either

smooth or quadratic mappings.

The intermediate framework between smooth and quadratic (or mappings infinitely differen-

tiable) has also been studied by Fabian (1967), Chen (1988) and Polyak and Tsybakov (1990) where

the focus was stochastic optimization with the objective of bounding the error in the argument and

not in function evaluation. Fabian (1967) obtained an algorithm such that the distance to the max-

imum is of the order of N
−β−1

2β which is optimal (Chen, 1988). In the case of strongly-convex

mappings, this has been improved by Polyak and Tsybakov (1990) to N
−β−1

β which is also opti-

mal. Our set-up is more general (as we consider also online learning, function evaluations) and we

recover the aforementioned results as a byproduct of ours, with a novel non-asymptotic analysis

with an explicit dependencies in the dimension and parameters of smoothness and strong convexity.

1. Actually, the quadratic case is very particular as we could show that one can query points arbitrarily away from the

origin to reduce variance.
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2. Smoothing Lemma

Our analysis relies on a novel single stochastic approximation lemma, which combines ideas from

Nemirovski and Yudin (1983); Nesterov (2011) and Polyak and Tsybakov (1990). Let f be a convex

function defined on R
d.

Expectation of random function evaluations around a point. Given positive scalars δ, r > 0,

we consider sampling the value f(x+ rδu) around x, for u uniformly distributed in the unit sphere

for the Euclidean norm. As shown by Nemirovski and Yudin (1983), the expectation of the vector

f(x + rδu)u is equal to d/(δr) times the gradient of a function which is an approximation of f ,

that is, x 7→ E‖v‖261f(x+ δrv), where v is now sampled uniformly from the unit ball. This simple

result is a consequence of Stokes’ theorem2 Thus the expectation of function evaluations at random

points around x is the gradient of a certain function. This is a key property which is used by most

non-asymptotic analyses (Flaxman et al., 2005) of zero-th order optimization.

High-order smoothness and gradient evaluation. As shown by Polyak and Tsybakov (1990) in

one dimension (and then generalized to partial derivatives), if we now sample independently r from

the uniform distribution in [−1, 1], and we consider a function k(r) such that Errk(r) = 1 and

Err
kk(r) = 0 for k odd between 3 and β, then 1

δf(x + δr)k(r) is a good approximation of the

derivative of f at x, with an expectation (with respect to r) which is equal to f ′(x) up to terms of

order δβ−1 if f is β-th order smooth.

In the following lemma, we combine these two ideas (see proof in Appendix A.2):

Lemma 2 Let f : Rd → R a convex function. Define

f̂δ(x) = ErE‖v‖≤1f(x+ rδv)rk(r),

where the expectation is taken with respect to the uniform distribution on the unit ball for v, and

r ∈ R is independent from v, with uniform distribution in [−1, 1], and k(r) is such that Errk(r) = 1
and Err

kk(r) = 0 for k odd between 3 and β. Then, f̂δ is differentiable and for any x ∈ R
d,

f̂ ′
δ(x) =

d

δ
ErE‖u‖2=1

[
f(x+ δru)k(r)u

]
. (4)

Moreover, we have the approximation bounds (the second being valid if f is differentiable):

∣∣f̂δ(x)− f(x)
∣∣ ≤

Mβ
β

β!
δβ

(
Er|k(r)rβ+1|

)
,

‖f̂ ′
δ − f ′(x)‖ ≤

Mβ
β

(β − 1)!
δβ−1

(
Er|k(r)rβ|

)
.

Choice of k(r). Following Polyak and Tsybakov (1990), we consider r uniformly distributed in

[−1, 1]. For β ∈ {1, 2}, we may take k(r) = 3r, for which we have Erk(r) = 1
2

∫ 1
−1 3r

2dr = 1.

Consider orthonormal polynomials pm(·) for the distribution on r, i.e., such that Erpmpm′ = 0
for m 6= m′, Erp

2
m = 1 and p0(·), . . . , ps(·) spans the vector space of polynomials of degree less or

equal than s, for all s ∈ N.

2. Without loss of generality, we may consider rδ = 1 and B the unit ball; then the gradient of x 7→ E‖v‖261f(x+ v)
is 1

vol(B)

∫
B
f ′(x + v)dv = 1

vol(B)

∫
∂B

f ′(x + u)du by Stokes’ theorem and because u a normal vector to the unit

sphere ∂B at u. The factor of d comes from the ratio between the volume of the ball and the surface of the sphere.

6
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Then we may choose k(r) =
∑β

m=0 p
′
m(0)pm(r). Indeed, following Polyak and Tsybakov

(1990), given s ∈ N, let b0, . . . , bs be the coordinates of rs in the chosen basis, i.e., rs =
∑s

j=0 bjpj(r),
then Erk(r)r

s =
∑s

j=0 bjp
′
j(0) = 0 for s 6= 1 and zero for s ∈ {0, 2, . . . , β}. Note that this is

more than we actually need as in Lemma 2, we only need s being odd.

We have, for r uniform in [−1, 1], pm(u) =
√
2m+ 1Lm(u) where Lm is the m-th Legendre

polynomial. For example, we have the following values for β ∈ {1, 2, 3, 4, 5, 6}:

k1(r) = k2(r) = 3r

k3(r) = k4(r) =
15r

4
(5− 7r3)

k5(r) = k6(r) =
195r

64
(99r4 − 126r2 + 35).

Bounds. In this paper, we also need the following bounds, which are shown in Appendix A.3 by

using properties of Legendre polynomials:

Er|k(r)|2 ≤ 3β3

Er|k(r)|2r2 ≤ 8β2

Er|k(r)rβ+1| ≤ 2
√
2β.

Convexity. With respect to the kernel chosen, f̂δ is always convex for β = 2, because rk(r) is

always non-negative. For β ≥ 3, if f is µ-strongly-convex, then f̂δ is µ/2-strongly-convex if δ is

small enough.

Indeed, by definition of f̂δ and by 3-smoothness of f , we obtain that

D2f̂δ(x) = ErE‖v‖≤1D
2f(x+ rδv)rk(r) < µId − δM3

3Er|k(r)|r2Jd,

where Jd is the matrix whose components are all equal to 1. As a consequence, f̂δ is µ/2-strongly-

convex as soon as δ ≤ 16µ/(dβ2M3
3 ). Note however that f̂δ is not convex in general.

3. Unconstrained Optimization

We recall that fn = f in this setting and that we chose to make two queries yn− , yn+ of f before

outputting the next point xn. Of course, stricto sensu, one should replace N by N/2 in our rates

of convergence. For simplicity and consistency in proofs, we chose to keep the formulation as N
stages of 2 queries. Moreover, the two independent noises can be combined into a single one.

We thus consider two-point algorithms of the form

xn = xn−1 − γn
d

2δn

[
f(xn−1 + δnrnun)− f(xn−1 − δnrnun) + εn

]
k(rn)un, (5)

where γn and δn are constants that depend on n, un is uniform in the unit-sphere, and k(rn) satisfies

the conditions of Lemma 2. We emphasize again that the noise is different at the two evaluations

points yn− = xn−1 − δnrnun and yn+ = xn−1 + δnrnun and do not cancel by differencing (the

random variable εn is thus the difference of these two zero-mean independent noises). We define

x̄n−1 =
1
n

∑n−1
k=0 xk as the averaged iterate.

7
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3.1. Convex Mappings

We first consider the case of convex (i.e., not necessarily strongly-convex) mappings. In order to

preserve the flow of the paper, we delay the proof to Appendix C.1.

Proposition 3 (Unconstrained, Convex) Assume f is (a) β-th order smooth with constant Mβ ,

and (b) 2nd-order smooth with constant M2.

Consider the algorithm in Eq. (5), with γn = γ = 1
24d(β−1)/βM2

2β
2N(β+1)/(2β) and δn = δ =

βd1/β

N1/(2β) (M
β
βM2)

−1/(β+1) for n ∈ {1, . . . , N}. Then, Ef(xN−1)− f(x∗) is less than

(d2
N

)(β−1)/(2β)
(
7βM2‖x0 − x∗‖+ 3σ + (Mβ/M2)

2β/(β+1) +
β

N1/β
(Mβ/M2)

−β/(β+1)

)2

.

We can make the following observations about this proposition:

− Dominating term in
(
d2

N

)(β−1)/(2β)
: the second term in the bound above is asymptotically

negligible when N grows and we recover the same scaling as the one-point estimate late in

Section 4, with the same scalings for the step size.

− Recovering the optimal rate of 1√
N

: If β is infinite then one can consider β = log2(N)/2

to recover the optimal rate (up to logarithmic factor) since 2
√
N

β/(β+1) ≥
√
N . Formally,

the rate of convergence would also depend on Mlog2(N)/2 that has to grow slowly; for logistic

regression, this term is also logarithmic.

This rate is also achieved if Mβ = 0, a situation that can occur if f is a polynomial, by taking

δ of the order of a constant and γ of the order of 1/
√
N .

− Anytime version: as shown in Appendix C.1, by using decaying step-sizes, we obtain an

anytime result (i.e., a result valid for all N ∈ N) with an extra factor of log(N + 1).

3.2. Strongly-Convex Mappings

We now consider the case of µ-strongly-convex mappings. We emphasize here that, in the following

proposition, fast rates of convergence are achieved with non-uniform averages, i.e., we introduce

x̂n−1 =
2

n(n+1)

∑n−1
k=0(k + 1)xk. We again delay the proof to Appendix C.2.

Proposition 4 (Unconstrained, Strongly-convex, 2-smooth) Assume f is (a) β-th order smooth

with constant Mβ , and (b) 2nd-order smooth with constant M2.

Consider the algorithm in Eq. (5), with γn = 1
µn and δn =

(
d2β!

Mβ
β µn

)1/(β+1)

, for n ∈ {1, . . . , N}.

Then, Ef(x̂N−1)− f(x∗) is less than

(d2M2
β

nµ

)(β−1)/(β+1)
(
8βMβ‖x0 − x∗‖+ 4σ + 2 + β(M2/Mβ)

2
(M2

β

nµ

)2/(β+1)
)2

.

We emphasize here that the first bound allows to recover the previous bound for the optimization

of a non-strongly-convex mapping f by using the aforementioned scheme to f + µ‖ · ‖2 and let µ
depend on n. The second bound has the optimal dependency in N but a worse dependency in µ.

8
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4. Constrained Optimization

In this setup, where the constraint set K is compact convex and of diameter R, we use a classical

one-point algorithm:

xn = ΠK

(
xn−1 − γn

d

δn

[
f(xn−1 + δnrnun) + εn

]
k(rn)un

)
, (6)

where the parameter γn and δn can evolve with time. In particular, we have yn = xn−1 + δnrnun.

4.1. Convex Mappings

Again, we begin with the case of convex (i.e., non necessarily strongly-convex) mappings. The

proof of the following proposition is delayed to Appendix D.1.

Proposition 5 (Constrained, Convex) Assume f is β-th order smooth with constant Mβ and con-

sider the algorithm in Eq. (6), with γn = Rδn√
β3d

√
n

and δβn = d
√
β(β−1)!√
nMβ

β

, for n ∈ {1, . . . , N}. Then,

Ef(xN )− f(x∗) is less than

25RMβ

(
d2β

N

)β−1
2β

(Cδ1 + σ2 + 1),

where Cδ is a uniform bound of f on the δ-neighborhood of K .

We can make the following observations:

− Anytime algorithm: The algorithm is independent of N , thus it is anytime, i.e., the above

rate holds for all N ∈ N. Notice also that Cδ1 can actually be replaced, asymptotically, by C0;

see the proof in Appendix D.1.

− Upper-bounding Cδ: Since the mapping f is bounded on the compact set K and β-smooth,

it is necessarily M1-Lipchitz. Then Cδ is bounded by C0 +M1δ;

− Concerning the unknown quantities (Cδ and σ2): The step-sizes do not depend on the

unknown quantities Cδ or σ2. However, if they are known, then the dependency on C0 and

σ2 can be slightly improved. Similarly, we assumed that the constant Mβ was known. If it is

not the case, the algorithm still works with the specific choice of δβn = dR
√
β(β − 1)!/

√
n;

the dependency in Mβ would be changed from Mβ into Mβ
β .

4.2. Strongly-Convex Mappings

Similarly to the unconstrained case, we now consider the case of µ-strongly-convex mappings where

rates can be improved. As before, we delay the proof of the following proposition to Appendix D.2.

Proposition 6 (Constrained, Strongly-convex) Assume f is β-th order smooth with constant Mβ .

Consider the algorithm in Eq. (6), with γn = 1/(nµ) and δn =

(
d2ββ!

nµMβ
β

) 1
β+1

for n ∈ {1, . . . , N}.

Then, Ef(xN )− f(x∗) is less than

15β2M
2β
β+1

β

(
d2

µN

)β−1
β+1

(Cδ1 + σ2 + 1) .

9
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We emphasize the fact that the algorithm is again independent of N , thus the result is actually

anytime.

5. Refined Upper and Lower Bounds

In this section, we consider improved bounds in the smooth case (β = 2), as well as asymptotic and

lower bounds for strongly-convex mappings for all β.

As mentioned at the end of Section 2, if β = 2 then f̂δ is always convex. As a consequence, the

analysis of the algorithms can be improved by noting that Eq. (5) and Eq. (6) correspond to an exact

stochastic gradient descent of the approximate mapping f̂δ. We recall that the analysis for β ≥ 3
was based on the fact that Eq. (5) and Eq. (6) correspond to an approximate stochastic gradient

descent of f .

The differences between f ′ and f̂ ′
δ is of the order of δβ−1 while f̂δ is δβ-close to f (disregarding

the other dependencies in the dimension d and smoothing parameter β). As a consequence, when

β = 2, we can replace the error term in δβ−1 when approximating gradients by δβ , as we approx-

imate the value functions. Using this idea, and following the same lines of proof, we obtain the

following proposition (see proof in Appendix D.3).

Proposition 7 (The case β = 2) Assume that f is 2-smooth, then the algorithms described in

Eq. (6) and Eq. (5), with adapted choices of parameters, ensures the following upper-bound on

Ef(xN)− f(x⋆):

– for unconstrained optimization of convex mappings,

2

(
d2

N

) 1
3
(
96M2

2 ‖x0 − x∗‖2 +
σ2

10
+ 18

)
+

2d2

N
,

– for unconstrained optimization of strongly-convex mappings,

4
(
2σ2 + 27

)
√

d2M2
2 log(N)

Nµ
+

(
21d2M2

2 log(N)

Nµ

)3/2

,

– for constrained optimization of convex mappings,

44

(
d2M2

2R
2

N

) 1
3

(Cδ1 + σ2 + 1),

– for constrained optimization of strongly-convex mappings,

66

√
d2M2

2

µN
(C2

δ + σ2 + 1).

We mention here that if we had just plugged the value β = 2 in the general propositions, we would

have got rates of convergence of the order of n−1/4 and (µn)−1/3, instead of n−1/3 and (µn)−1/2,

respectively in the non-strongly and µ-strongly-convex case.

Similarly, we have proved that if f is µ-strongly-convex and δ is small enough, then f̂δ is µ/2-

strongly-convex. As a consequence, the previous arguments hold and we can, asymptotically, obtain

better rates of convergences, as we now show (see proof in Appendix D.4).

10
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Proposition 8 (Asymptotics with strongly-convex mappings)

Assume that f is β-smooth, µ-strongly-convex and globally optimized at x⋆ on K . Then the al-

gorithms described in Eq. (6) and Eq. (5), with adapted choices of parameters, ensure the following

upper-bound on ‖xN − x⋆‖ as soon as N is big enough:

– for unconstrained optimization of strongly-convex mappings,

16M2
β

µ2
(2σ2 + 16)

(
d2 log(N + 1)

N

)β−1
β

+
48β3M4

2

µ2M2
β

(
d2 log(N + 1)

N

)β+1
β

,

– for constrained optimization of strongly-convex mappings,

16β

(
d2

N

)β−1
β

(
2eMβM2

µ

)2 (
3C2

δ + 3σ2 + 1
)
.

We recall that from those upper-bounds , we obtain Ef(xN )− f(x∗) ≤ M2
2
2 E‖xN − x∗‖22.

The proof is delayed to Appendix D.4.

We conclude this section with a lower bound for the optimization of strongly-convex mappings,

brought to our attention by O. Shamir and based on techniques from Shamir (2013). This lower

bounds matches the lower bound of Polyak and Tsybakov (1990), but it is non-asymptotic, quite

simple and one can obtain explicit dependencies in the different parameters. We only sketch it in

one dimension, as it contains all the relevant ideas; details can be found in Shamir (2013).

Consider the two mappings

f1(x) = 2µx2 + αg
(x
θ

)
and f2(x) = x2 − αg

(x
θ

)
, where g(y) =

y

1 + y2
,

and notice that f1(x) = f2(−x), |g(y)| ≤ 1/2 and
∣∣g(β)(y)

∣∣ ≤ 2β+1β! ≤ (2β)β . As a consequence,

it is not difficult to see that ‖f1 − f2‖∞ ≤ α, that f1 and f2 are β-th order smooth with the constant

Mβ ≤ 2α
1
β β
θ and (4µ − 3

2
α
θ2
)-strongly convex, and that fi(0) − f∗

i ≥ α
16µθ2

as soon as α
θ2

≤ 2µ.

Given fixed values for the parameters β and M , the choices of α = T−1/2 and θ = cT−1/2β

where c = 2β
M ensure that α/θ2 ≤ 2µ as soon as T ≥ (2µc2)

− 2β
β−2 and that the mappings f1 and f2

are µ-strongly convex and β-th order smooth with a constant Mβ ≤ M .

Moreover, since ‖f1− f2‖∞ ≤ 1/
√
T , f1 and f2 are undistinguishable with only T queries and

thus any algorithm must suffer, when facing f1 or f2 an error of the order of

min
x

max
{
f1(x)− f∗

1 , f2(x)− f∗
2

}
= f1(0) − f∗

1 ≥ 1

64

M

µβ2
T−β−1

β .

6. Online Optimization

In the online optimization setting, we have to modify algorithms that use non-uniform averaging as

the regret is computed with respect to the Cesaro average of the losses. The online version of the

11
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algorithms are described in Eq. (7) and Eq. (8). The difference with the algorithms of the stochastic

case is simply that f is replaced by fn.

For the two-point algorithm, we recall that it requires that each loss functions can be queried

twice, but we emphasize again that the noise is different for the two evaluations and do not cancel

simply by differencing.

xn = xn−1 − γn
d

2δn

[
fn(xn−1 + δnrnun)− fn(xn−1 − δnrnun) + εn

]
k(rn)un, (7)

where γn and δn depend on n.

The 1-point algorithm evaluates once each loss function and rewrites as

xn = ΠK

(
xn−1 − γn

d

δn

[
fn(xn−1 + δnrnun) + εn

]
k(rn)un

)
, (8)

where the parameters γn and δn can evolve with time.

Proposition 9 Assume each fn is β-order smooth and M1-Lipschitz. Then the online version of

the algorithms described in Eq. (8) and Eq. (7), with adapted choices of parameters, ensures the

following upper-bound on the regret 1
N

∑
E
[
fn(xn−1)− fn(x)

]
:

– for unconstrained online optimization of convex mapppings,

(d2
N

)β−1
2β

(
7βM2‖x0 − x∗‖+ 3σ +

(Mβ

M2

) 2β
β+1

+
β

N1/β

(Mβ

M2

) −β
β+1

)2

.

– for unconstrained online optimization of strongly convex mapppings,

2β2

(
d2M2

β

Nµ

) β
β+2 (

σ2 + 6
)
+ 4β2 d

2M2
1 log(N + 1)

Nµ
,

– for constrained online optimization of convex mapppings,

25RMβ

(
d2β

N

)β−1
2β

(Cδ1 + σ2 + 1),

– for constrained online optimization of strongly convex mapppings,

(d2M2
β

nµ

)β−1
β+1

(
8βMβ‖x0 − x∗‖+ 4σ + 2 + β

(Mβ

M2

)2(M2
β

nµ

) 2
β+1

)2

.

Actually, the proof are identical in the online optimization setting than in stochastic optimiza-

tion. The main difference is that we do not use the convexity of f to lower-bound 1
N

∑
E
[
f(xn−1)−

f(x)
]

by E
[
f(xN )− f(x)

]
.

12
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7. Conclusion

In this paper, we have considered zero-th order online optimization with a special focus on highly-

smooth functions such as for online logistic regression. We considered one-point estimates and

two-point estimates of the gradient (with then two independent noises). For infinitely differentiable

functions, our main result leads to the same dependence on sample size as gradient-based algo-

rithms, with an extra dimension-dependent factor.

The present analysis could be extended in a number of ways: (a) we do not cover the bandit

setting. A simple extension of our results allows us to recover existing bounds for β = 1 (Shamir,

2013) but we are currently unable to obtain high-smoothness improvements for β > 1; (b) while the

two-point analysis considers unconstrained problems, the one-point analysis still requires a compact

set of constraints and queries slightly outside (in a δ band around it), which might be avoided

by using barrier tools like done by Hazan and Levy (2014). Finally, (c) in the strongly-convex

case, the dependence on sample size is optimal in the optimization setting (Polyak and Tsybakov,

1990), however, the optimality of the scaling in dimension, of the plain convex case, and beyond

the optimization setting remains open.
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Appendix A. Proof of technical lemmas

A.1. Proof of Lemma 1

This result is rather classical and we first recall the proof when f is twice continuously differentiable.

By Taylor expansion, for any x, y ∈ R
d and λ > 0, there exists ζ+ ∈ [x, x+λy] and ζ− ∈ [x, x−λy]

such that

f(x+ λy) = f(x) + λ∇f(x)⊤y +
λ2

2
y⊤D2f(ζ+)y

f(x− λy) = f(x)− λ∇f(x)⊤y +
λ2

2
y⊤D2f(ζ−)y,

This implies that

∇f(x)⊤y =
f(x+ λy)− f(x− λy)

λ
+

λ

2
y⊤D2f(ζ−)y −

λ2

2
y⊤D2f(ζ+)y

≤ M0

λ
+ λM2

2 ‖y‖2 ≤ 2
√

M0M2
2 ‖y‖,

and this yields that M1 ≤ 2
√

M0M
2
2 . The general proof is obtained by introducing β different

number λ1, . . . , λβ , writing the β equations

∣∣∣∣f(x+ λiy)−
∑

|m|≤β−1

λm
i

m!
f (m)(x)ym

∣∣∣∣ ≤
λβ
i M

β
β

β!
‖y‖β ,

and inverting the system (which is possible if λi are all distinct).

A.2. Proof of smoothing lemma

The identity in Eq. (4) is a consequence of the result from Nemirovski and Yudin (1983). Using the

smoothness assumption, we have for all x ∈ R
d:

∣∣f̂δ(x)− f(x)
∣∣

≤
∣∣∣∣ErE‖v‖≤1rk(r)

∑

1≤|m|≤β−1

r|m|δ|m|

m!
f (m)(x)vm

∣∣∣∣+
Mβ

β

β!
δβ

(
Er|k(r)rβ+1|

)(
E‖v‖≤1‖v‖β

)

≤
∣∣∣∣

∑

1≤|m|≤β−1

(
Err

|m|+1k(r)
)
δ|m|

m!
f (m)(x)E‖v‖≤1

(
vm

)∣∣∣∣+
Mβ

β

β!
δβ

(
Er|k(r)rβ+1|

)(
E‖v‖≤1‖v‖β

)
.

For |m| odd, then, by symmetry of the uniform distribution on the unit ball, E‖v‖≤1

(
vm

)
= 0.

Therefore, if Err
kk(r) = 0 for k odd and 3 ≤ k ≤ β, we have:

∣∣f̂δ(x)− f(x)
∣∣ ≤

Mβ
β

β!
δβ

(
Er|k(r)rβ+1|

)
.

In order to prove the following result on gradients

‖f̂ ′
δ − f ′(x)‖ ≤

Mβ
β

(β − 1)!
δβ−1

(
Er|k(r)rβ |

)
,
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we first assume that the β + 1-th order derivative tensor is bounded, which will be sufficient by a

density argument. In this case, as shown by Nemirovski (2004, p. 38), for all x, the β-th order tensor

has projections on β − 1 copies of the vector u and a vector v which is less than Mβ
β ‖u‖β−1‖v‖.

This implies that we can apply the function value result to the function g(x) = f ′(x)⊤v, for any u.

This leads to the desired result.

A.3. Bounds on function k(r)

From the explicit parameter expansion of Legendre polynomials, we have, for any α ≥ 0,

L′
2α+1(0) =

(−1)α(α+ 1)

22α

(
2α+ 1

α

)
=

(−1)α(2α+ 1)

22α

(
2α

α

)
.

Moreover, we use the following bound obtained from bounds on Catalan numbers:
(
2α
α

)
≤ 4α√

πα
.

This leads to |L′
2α+1(0)| ≤ 2α+1√

πα
for α > 0, while for α = 0, |L′

2α+1(0)| = 1

Moreover, for β ≥ 3:

Er|k(r)|2 =

⌊(β−1)/2⌋∑

α=0

(4α + 3)|L′
2α+1(0)|2 ≤ 3 +

⌊(β−1)/2⌋∑

α=1

(4α+ 3)
(2α + 1)2

πα

≤ 3 +

⌊(β−1)/2⌋∑

α=1

7α
(3α)2

πα
≤ 3 +

63

π

(β/2)(β/2 + 1)(β + 1)

6

≤ 3 + 21
(β/2)(β/2 + β/3)(β + β/3)

6
= 3 + β3 21× 5× 4

36× 12
≤ 3β3.

This is trivially valid for β = 1 and β = 2.
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Finally, we have for β ≥ 3:

Er|k(r)|2r2 =

⌊(β−1)/2⌋∑

α,α′=0

√
4α+ 3

√
4α′ + 3Er

[
L2α+1(r)L2α′+1(r)r

2
]
L′
2α+1(0)L

′
2α′+1(0)

=

⌊(β−1)/2⌋∑

α,α′=0

√
4α+ 3

√
4α′ + 3L′

2α+1(0)L
′
2α′+1(0)

×Er

[[
(2α+ 2)L2α+2(r) + (2α + 1)L2α(r)

]

4α+ 3

][[
(2α′ + 2)L2α′+2(r) + (2α′ + 1)L2α′(r)

]

4α′ + 3

]

=

⌊(β−1)/2⌋∑

α,α′=0

(√
4α+ 3

√
4α′ + 3

)−1
L′
2α+1(0)L

′
2α′+1(0)

×
[[
(2α + 2)2 + (2α+ 1)2

]
δα=α′ + (2α + 1)2αδα=α′+1 + (2α′ + 1)2α′δα′=α+1

]

=

⌊(β−1)/2⌋∑

α=0

(4α + 3)−1L′
2α+1(0)

2
[
(2α+ 2)2 + (2α+ 1)2

]

+2

⌊(β−1)/2⌋−1∑

α=0

(√
4α+ 3

√
4α + 7

)−1
L′
2α+1(0)L

′
2α+3(0)2α(2α + 1)

=

⌊(β−1)/2⌋∑

α=0

(4α + 3)−1L′
2α+1(0)

2
[
(2α+ 2)2 + (2α+ 1)2

]

−2

⌊(β−1)/2⌋−1∑

α=0

(√
4α+ 3

√
4α + 7

)−1
L′
2α+1(0)

2 (2α + 3)(2α + 2)

4(α + 1)2
2α(2α + 1)

≤ (4α+ 3)−1L′
2α+1(0)

2
[
8α2 + 12α + 5

]∣∣∣∣
α=⌊(β−1)/2⌋

+

⌊(β−1)/2⌋−1∑

α=0

(4α + 3)−1L′
2α+1(0)

2

[
8α2 + 12α + 5− (2α+ 1)4α

]

≤ (4α+ 3)−1
[(2α + 1)2

πα

]][
8α2 + 12α+ 5

]∣∣∣∣
α=⌊(β−1)/2⌋

+
5

3
L′
1(0) +

⌊(β−1)/2⌋−1∑

α=1

(4α+ 3)−1
[(2α + 1)2

πα

]][
8α2 + 12α + 5− (2α + 1)4α

]

≤ (2β)−1
[ β2

π(β − 2)/2

]][
8β2/4 + 12β/2 + 5

]

+
5

3
+

⌊(β−1)/2⌋−1∑

α=1

(4α)−1
[9α2

πα

]
9α

≤
[ β

π(β − 2)

]][
2β2 + 6β + 5

]
+

5

3
+

81

4π

β

2
(β/2 + 1) ≤ 2β2 + 2β2 + 5 + 5/3 +

81

16π
β2 5

3
≤ 8β2
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using the three-term recursion formula for Legendre polynomials.

We will also need the following bounds:

Er|k(r)rβ+1| ≤
√

Er|k(r)2r2β+2| = 2
√
2β,

Er|k(r)|2r2+γ ≤ Er|k(r)|2r2 ≤ 8β2 for any γ ≥ 0.

Appendix B. Analysis of classic Stochastic Gradient Descents algorithms

We recall in this section the classical proofs of stochastic gradient descents (see, e.g. Bubeck, 2015,

and references therein). We first start when the mappings fn are not necessarily µ-strongly convex.

Proposition 10 (SGD non-strongly convex) The stochastic gradient descent

xn = ΠK(xn − γngn) (9)

where gn is a biased estimate of f ′
n(xn−1), i.e., such that E[gn|Fn−1] = f ′

n(xn−1) + ζn, and γn is

non-decreasing achieves the following guarantee

1

N

N∑

n=1

E
[
fn(xn−1)−fn(x)

]
≤ maxn E‖xn − x‖2

2γN
+

1

N

N∑

n=1

Eζ⊤n (xn−1−x)+
1

N

N∑

n=1

γ2nE‖gn‖2 .

In particular, if fn = f and x⋆ is a minimizer of f , we obtain

Ef(xN−1)− f(x⋆) ≤ maxn E‖xn − x‖2
2NγN

+
1

N

N∑

n=1

Eζ⊤n (xn−1 − x) +
1

2N

N∑

n=1

γnE‖gn‖2

Proof We have for any x ∈ K , since projecting reduces distances,

‖xn − x‖2 ≤ ‖xn−1 − x‖2 − 2γngn + γ2n‖gn‖2

E‖xn − x‖2 ≤ E‖xn−1 − x‖2 − 2γnEf
′
n(xn−1)

⊤(xn−1 − x) + 2γnEζ
⊤
n (xn−1 − x) + γ2nE‖gn‖2

≤ E‖xn−1 − x‖2 − 2γnE
[
fn(xn−1)− fn(x)

]
+ 2γnEζ

⊤
n (xn−1 − x) + γ2nE‖gn‖2 .

This leads to

1

N

N∑

n=1

E
[
fn(xn−1)− fn(x)

]
≤ 1

N

N∑

n=1

E‖xn−1 − x‖2 − E‖xn − x‖2
2γn

+
1

N

N∑

n=1

Eζ⊤n (xn−1 − x) +
1

2N

N∑

n=1

γnE‖gn‖2

≤ maxn E‖xn − x‖2
2NγN

+
1

N

N∑

n=1

Eζ⊤n (xn−1 − x) +
1

2N

N∑

n=1

γnE‖gn‖2 .

When the mappings fn are µ-strongly convex, rates are improved as claimed by the following

proposition.
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Proposition 11 (SGD µ-strongly convex) The stochastic gradient descent

xn = ΠK(xn−1 − γngn) (10)

where gn is a biased estimate of f ′
n(xn−1), i.e., such that E[gn|Fn−1] = f ′

n(xn−1) + ζn.

− The choice of γn = 1
µn gives

1

N

N∑

n=1

Efn(xn−1)− Efn(x) +
µ

2
‖xN − x‖2 ≤ 1

N

N∑

n=1

Eζ⊤n (xn−1 − x) +
1

2N

N∑

n=1

E‖gn‖2
µn

(11)

In particular, if fn = f and x⋆ is a minimizer of f , we obtain

Ef(x̄N−1)− f(x⋆) +
µ

2
‖xN − x⋆‖2 ≤ 1

N

N∑

n=1

Eζ⊤n (xn−1 − x) +
1

2N

N∑

n=1

E‖gn‖2
µn

.

− The choice of γn = 2
µ(n+1) gives

Ef(x̂N−1)− f(x⋆)+E‖xn−x‖2µ
2
≤ 2

N(N + 1)

N∑

n=1

Eζ⊤n (xn−1−x)+
1

µ(n+ 1)
E‖gn‖2,

(12)

where x̂N−1 =
2

N(N+1)

∑N
n=1 nxn−1.

Proof We have for any x ∈ K:

‖xn − x‖2 ≤ ‖xn−1 − x‖2 − 2γngn + γ2n‖gn‖2

E‖xn − x‖2 ≤ E‖xn−1 − x‖2 − 2γnEf
′
n(xn−1)

⊤(xn−1 − x) + 2γnEζ
⊤
n (xn−1 − x) + γ2nE‖gn‖2

≤ E‖xn−1 − x‖2 − 2γnE
[
fn(xn−1)− fn(x) + µ‖xn−1 − x‖2

]

+2γnEζ
⊤
n (xn−1 − x) + γ2nE‖gn‖2 .

This leads to

Efn(xn−1)− fn(x) ≤ E‖xn−1 − x‖2( 1

2γn
− µ

2
)− E‖xn − x‖2 1

2γn
+ Eζ⊤n (xn−1 − x) +

γn
2
E‖gn‖2.

First, we consider uniform averaging, induced by the choice of γn = 1
µn . Indeed, it gives

Efn(xn−1)− fn(x) ≤ E‖xn−1 − x‖2 (n− 1)µ

2
− E‖xn − x‖2nµ

2
+ Eζ⊤n (xn−1 − x) +

1

2µn
E‖gn‖2.

Summing over n and averaging gives

1

N

N∑

n=1

Efn(xn−1)− fn(x) + ‖xN − x‖2Nµ

2
≤ 1

N

N∑

n=1

Eζ⊤n (xn−1 − x) +
1

2N

N∑

n=1

E‖gn‖2
µn

.
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We now consider non-uniform averaging when fn = f , induced by the choice of γn = 2
µ(n+1) ,

which gives

Ef(xn−1)−f(x) ≤ E‖xn−1−x‖2 (n− 1)µ

4
−E‖xn−x‖2 (n+ 1)µ

4
+Eζ⊤n (xn−1−x)+

1

µ(n+ 1)
E‖gn‖2

Multiplying by n, summing, averaging and using the convexity of f yield

Ef(x̂N−1)− f(x⋆) + E‖xn − x‖2µ
2
≤ 2

N(N + 1)

N∑

n=1

Eζ⊤n (xn−1 − x) +
1

µ(n+ 1)
E‖gn‖2 .

Appendix C. Proof of Propositions for Unconstrained Optimization

C.1. Proof of Proposition 3

Our iteration is

xn = xn−1 − γn
d

2δn

[
f(xn−1 + δnrnun)− f(xn−1 − δnrnun) + εn

]
k(rn)un.

We consider

gn =
d

2δn

[
f(xn−1 + δnrnun)− f(xn−1 − δnrnun)

]
k(rn)un.

We will need the expansion using the β-th order smoothness as:

f(xn−1 + δnrnun)− f(xn−1 − δnrnun)=
∑

|m|6β−1

1

m!
f (m)(xn−1)

[
(δnrn)

m − (−δnrn)
m
]
+ [A′

n −B′
n],

with |A′
n|, |B′

n| 6
Mβ

β

β! δ
β
nr

β
n . When taking expectations above, we get exactly the term 2δnf

′(xn−1)
⊤un.

Moreover, since f is 2-smooth

∣∣f(xn−1 + δnrnun)− f(xn−1 − δnrnun)| ≤ M2
2 r

2
nδ

2
n + 2|f ′(xn−1)

⊤(δrnun)|
≤ M2

2 r
2
nδ

2
n + 2δnrn|f ′(xn−1)

⊤un|.

We then get:

E(‖gn‖2|Fn−1) ≤ d2σ2

4δ2
Er

[
k(r)2

]
+

d2

4δ2
2M4

2 δ
4
E[r4k(r)2] +

d2

4δ2
8δ2E[r2k(r)2]E

[
|f ′(xn−1)

⊤un|2
∣∣Fn−1

]

≤ 3β3d2σ2

4δ2n
+ 4d2β2M4

2 δ
2
n + 16dβ2

E
[
‖f ′(xn−1)‖2Fn−1

]
using Eunu

⊤
n =

1

d
I ,

≤ 3β3d2σ2

4δ2n
+ 4d2β2M4

2 δ
2
n + 12dM2

2 β
2
[
f(xn−1)− f(x∗)

]
,

where we used that ‖f ′(xn−1)‖2 ≤ 2M2
2

[
f(xn−1)− f(x∗)

]
for x∗ a global optimizer of f .
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Thus,

‖xn − x‖2

= ‖xn−1 − x‖2 − 2γn(xn−1 − x)⊤
[
gn +

d

2δn
εnk(rn)un

]
+ γ2n

∥∥∥gn +
d

2δn
εnk(rn)un

∥∥∥
2

= ‖xn−1 − x‖2 − 2γn(xn−1 − x)⊤
[
gn +

d

2δn
εnk(rn)un

]
+ 2γ2n‖gn‖2 + 2γ2n

∥∥∥ d

2δn
εnk(rn)un

∥∥∥
2
.

By taking conditional expectations, we get, using Edrnk(rn)unu
⊤
n = I , and the fact that the expec-

tation of all powers rαnk(rn), α > 1, lead to zero:

E
[
‖xn − x‖2|Fn−1

]

6 ‖xn−1 − x‖2 − 2γn(xn−1 − x)⊤f ′(xn−1) + 2γnE‖
d

2δn
[A′

n −B′
n]k(rn)un‖‖xn−1 − x‖

+2γ2nE(‖gn‖2|Fn−1) + 2γ2nE
∥∥∥ d

2δn
εnk(rn)un

∥∥∥
2

6 ‖xn−1 − x‖2 − 2γn
[
f(xn−1)− f(x)

]
+ γndE‖

1

δn

Mβ
β

β!
δβnr

β
nk(rn)un‖‖xn−1 − x‖

+2γ2n

[
3β3d2σ2

4δ2n
+ 4d2β2M4

2 δ
2
n + 12dM2

2 β
2
[
f(xn−1)− f(x∗)

]]
+ 2γ2n

( d

2δn

)2
σ2

Ek(rn)
2

6 ‖xn−1 − x‖2 − 2γn
[
f(xn−1)− f(x)

]
+ γndδ

β−1
n

Mβ
β

β!
2β2‖xn−1 − x‖

+2γ2n

[
3β3d2σ2

4δ2n
+ 4d2β2M4

2 δ
2
n + 12dM2

2 β
2
[
f(xn−1)− f(x∗)

]]
+ 6γ2n

( d

2δn

)2
σ2β3.

For simplicity, we assume that γn = γ is constant and less than 1
24dM2

2β
2 , and that δn = δ. We

thus get, with x = x∗:

Ef(xn−1)− f(x∗) 6
1

γ
E‖xn−1 − x∗‖2 −

1

γ
E‖xn − x∗‖2

+2γ

[
3β3d2σ2

4δ2
+ 4d2β2M4

2 δ
2

]
+ 6γ

( d

2δ

)2
σ2β3 + dδβ−1

Mβ
β

β!
2β2

√
E‖xn−1 − x∗‖2.

Thus

N∑

n=1

E
[
f(xn−1)− f(x)

]
+

1

γ
E‖xN − x∗‖2 6

1

γ
‖x0 − x∗‖2 + 3Nγd2σ2δ−2β3 + 8Nγd2β2M4

2 δ
2

+

N∑

n=1

2dδβ−1
Mβ

β

β!
β2

√
E‖xn−1 − x∗‖2,

which we can put as:

N∑

n=1

[
Ef(xn−1)−f(x∗)

]
+
1

γ
E‖xN−x∗‖2 6

1

γ
‖x0−x∗‖2+NC+

N∑

n=1

2dδβ−1
Mβ

β

β!
β2

√
E‖xn−1 − x∗‖2,

22



HIGHLY-SMOOTH OPTIMIZATION

with C = 3γd2σ2δ−2β3 + 8γd2β2M4
2 δ

2. This leads to, with un =
√

E‖xn − x∗‖2:

u2N 6 u20 + γNC +

N∑

n=1

2γdδβ−1
Mβ

β

β!
β2un.

From Lemma 1 of Schmidt et al. (2011), we get:

uN 6
N

2
2γdδβ−1

Mβ
β

β!
β2 +

(
u20 + γNC +

[N
2
2γdδβ−1

Mβ
β

β!
β2

]2
)1/2

6 N2γdδβ−1
Mβ

β

β!
β2 + u0 + (γNC)1/2.

Thus

1

N

N∑

n=1

Ef(xn−1)− f(x∗)

6
1

γN
‖x0 − x∗‖2 + C +D

(
NγD + u0 + (γNC)1/2

)

with D = 2dδβ−1Mβ
β

β! β
2.

By setting γ =
1

24dM2
2 β

2N (β+1)/(2β)
, and δ =

β

N1/(2β)
(Mβ

βM2)
−1/(β+1), we get:

C 6
d2

N (β+1)/(2β)24dM2
2β

2

[
3σ2β3N

1/β

β2
(Mβ

βM2)
2/(β+1) + 8β2M4

2

β2

N1/β
(Mβ

βM2)
−2/(β+1)

]

6
d

N (β−1)/(2β)24β
(Mβ/M2)

2β/(β+1)
[
3σ2 + 8

β3

N2/β
(Mβ/M2)

−4β/(β+1)
]

1

γN
‖x0 − x∗‖2 6

24dβ2

N (β−1)/(2β)
(M2‖x0 − x∗‖)2

D 6 2d
Mβ

β

β!
β2 ββ−1

N (β−1)/(2β)
(Mβ

βM2)
−(β−1)/(β+1)

6 2d
β

N (β−1)/(2β)
(Mβ/M2)

(β−1)/(β+1)Mβ.
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This leads to an overall rate of

1

N

N∑

n=1

Ef(xn−1)− f(x)

6 2D2γN +
2

γN
‖x0 − x∗‖2 + 2C

6 2

(
2d

β

N (β−1)/(2β)
(Mβ/M2)

(β−1)/(β+1)Mβ

)2 1

24dM2
2 β

2N (β+1)/(2β)
N +

48dβ2

N (β−1)/(2β)
(M2‖x0 − x∗‖)2

+
2d

N (β−1)/(2β)24β
(Mβ/M2)

2β/(β+1)
[
3σ2 + 8

β3

N2/β
(Mβ/M2)

−4β/(β+1)
]

6
d

N (β−1)/(2β)

(
48β2(M2‖x0 − x∗‖)2 + 6σ2(Mβ/M2)

2β/(β+1) +
1

3
(Mβ/M2)

4β/(β+1)

)

16d

N (β−1)/(2β)24

β2

N2/β
(Mβ/M2)

−2β/(β+1)

6
d

N (β−1)/(2β)

(
7βM2‖x0 − x∗‖+ 3σ + (Mβ/M2)

2β/(β+1) +
β

N1/β
(Mβ/M2)

−β/(β+1)

)2

,

which is almost the desired bound, except the dependence on d, which is in d instead of d(β−1)/β .

Like in the proof for constrained optimization, we can choose γ and δ with slightly different scalings

in d, that is, γ =
1

24d(β−1)/βM2
2β

2N (β+1)/(2β)
, and δ =

βd1/β

N1/(2β)
(Mβ

βM2)
−1/(β+1). The value of

γ does not satisfy our constraint when d−1/βN (β+1)/(2β) is less than one, which happens only when

the final bound is trivial. Thus, we can safely consider the step-size γ above.

Proof for anytime algorithm By setting γn =
1

24dM2
2 β

2n(β+1)/(2β)
, and δn =

β

n1/(2β)
(Mβ

βM2)
−1/(β+1),

as a function of n, we obtain an anytime algorithm. In order to analyze it, we can simply recycle the

proof techniques of Bach and Moulines (2011) (in particular Abel’s summation formula). All sums

of the forms
∑N

n=1 n
−δ may then be bounded thrtough N1−δ

1−δ for δ ∈ (0, 1) and less than 1
δ−1 for

δ > 1, with
∑N

n=1
1
n ≤ log(N + 1). The term γ2nδ

−2
n leads to an extra factor of log(N + 1) while

all other factors only lead to extra constant factors which are less than 4. The final bound is thus the

same as before up to logarithmic terms

C.2. Proof of Proposition 4

The proof technique is the same as for Proposition 3 in Appendix C.1. The first line that differs is

the following, where µ-strong convexity is used:

E
[
‖xn − x∗‖2|Fn−1

]

6 (1− µγn)‖xn−1 − x∗‖2 − 2γn
[
f(xn−1)− f(x∗)

]
+ γndδ

β−1
n

Mβ
β

β!
2β2‖xn−1 − x‖

+2γ2n

[
3β3d2σ2

4δ2n
+ 4d2β2M4

2 δ
2
n + 12dM2

2 β
2
[
f(xn−1)− f(x∗)

]]
+ 6γ2n

( d

2δn

)2
σ2β3.
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If we assume that γn is less than 1
24dM2

2β
2 , then we get

Ef(xn−1)− f(x∗) 6 (
1

γn
− µ)E‖xn−1 − x∗‖2 −

1

γn
E‖xn − x∗‖2 (13)

+2γn

[
3β3d2σ2

2δ2n
+ 4d2β2M4

2 δ
2
n

]
+ dδβ−1

n

Mβ
β

β!
2β2

√
E‖xn−1 − x∗‖2.

In order to bound
√

E‖xn−1 − x∗‖2, we use the same proof technique than in Appendix C.1, with-

out using strong convexity and from the equation:

E‖xn − x∗‖2 6 E‖xn−1 − x∗‖2

+2γ2n

[
3β3d2σ2

2δ2n
+ 4d2β2M4

2 δ
2
n

]
+ γndδ

β−1
n

Mβ
β

β!
2β2

√
E‖xn−1 − x∗‖2,

which leads to

E‖xn − x∗‖2 6 E‖x0 − x∗‖2

+2

n∑

k=1

γ2k

[
3β3d2σ2

4δ2k
+ 4d2β2M4

2 δ
2
k

]
+

n∑

k=1

γkδ
β−1
k d

Mβ
β

β!
2β2

√
E‖xk−1 − x∗‖2

6 E‖x0 − x∗‖2

+B +

n∑

k=1

γkδ
β−1
k d

Mβ
β

β!
2β2

√
E‖xk−1 − x∗‖2,

with B = 2
∑n

k=1 γ
2
k

[
3β3d2σ2

4δ2k
+ 4d2β2M4

2 δ
2
k

]
.

Thus, with un =
√

E‖xn − x∗‖2, we have:

u2n 6 u20 +B +
n∑

k=1

γkδ
β−1
k d

Mβ
β

β!
2β2uk

From Lemma 1 of Schmidt et al. (2011), we get:

un 6

n∑

k=1

γkδ
β−1
k d

Mβ
β

β!
2β2 + u0 +B1/2.

We now choose γn = 1
nµ , which is less than 1

24dM2
2 β

2 only for certain values of n (if this is

not satisfied, the bound is trivial anyway, so this restriction does not impact the result). We select

δn =

(
d2β!

Mβ
β µn

)1/(β+1)

.

Then, we may follow the previous proof and sum Eq. (13), with telescoping elements and the

same formulas (except the leading terms in nµ, leading to the following bound:

1

N

N∑

n=1

Ef(xn−1)− f(x)

6
(d2M2

β

nµ

)(β−1)/(β+1)
(
8βMβ‖x0 − x∗‖+ 4σ + 2 + β(M2/Mβ)

2
(M2

β

nµ

)2/(β+1)
)2

.
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Appendix D. Proof of Propositions in Constrained Optimization

D.1. Proof of Proposition 5

We recall that the gradient estimate is gn = d
δn

(
f(xn−1 + δnrnun) + εn

)
k(rn)un, so that

Egn = f̂ ′
δn(xn−1) = f ′

n(xn−1) + ζn, with ‖ζn‖ ≤ 2
√
2

Mβ
β β

(β − 1)!
δβ−1
n .

and the variance of gn is bounded as

E‖gn‖2 ≤ 6β3 d
2

δ2n
(C2

δn + σ2) ≤ 6β3 d
2

δ2n
(C2

δ1 + σ2)

Using Proposition 10, along with the specific choices of

γn =
Rδn√
β3d

√
n

and δβn =
d
√
β(β − 1)!
√
nMβ

β

,

lead to

1

N

N∑

n=1

E
[
fn(xn−1)− fn(x)

]
≤ R2

2γNN
+ 3β3d2

1

N

N∑

n=1

γn
δ2n

(C2
δn + σ2) + 2

√
2

Mβ
β

(β − 1)!
βR

1

N

N∑

n=1

δβ−1
n

≤ R2

2γNN
+

4RMβ

N

N∑

n=1

(
d
√
β√
n

)β−1
β

(3C2
δn + 3σ2 + 2

√
2)

≤ 25RMβ

(
d2β

N

)β−1
2β

(C2
δ1 + σ2 + 1) .

D.2. Proof of Proposition 6

Using the same bounds on the biais and variance of gn than in the proof of Proposition 5 along with

the results of Proposition 11 give

1

N

N∑

n=1

E
[
fn(xn−1)− fn(x)

]
+

µ

2
E‖xN − x‖2 ≤ 3β3 d

2

µ

1

N

N∑

n=1

1

nδ2n
(C2

δn + σ2)

+
2
√
2βMβ

β

(β − 1)!
R

1

N

N∑

n=1

δβ−1
n

The specific choice of δβ+1
n = βd2β!

nµMβ
β

ensures that the upper bound is smaller than

15β2M
2β
β+1

β

(
d2

µN

)β−1
β+1

(Cδ1 + σ2 + 1) .
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D.3. Proof of Proposition 7

Proposition 7 is another consequence of Propositions 10 and 11. Indeed, for β = 2, the mapping

f̂δ is convex, hence we can consider the algorithms as stochastic gradient descents on f̂δ, with an

unbiased estimate of the gradient. Then it suffices to approximate f̂δ(x) by f(x)± 2
√
2β

Mβ
β

β! δ
β , to

choose parameters so that error terms balance and to conclude.

D.4. Proof of Proposition 8

Once again, the proof uses the same standard arguments than the proof of Proposition 11. More

precisely, we consider here constant step size δn = δ, where δ is small enough so that f̂δ is µ′-
strongly convex (where µ′ ≤ µ and, as we will see, it will be implied by N being big enough) and

we apply Proposition 11 to f̂δ, this allows us to bound E‖xN − x♯‖2, where x♯ is a minimizer of f̂δ
Finally, we conclude using the smoothness and the strong convexity of f that imply that

‖x♯ − x⋆‖ ≤ 1

µ′ ‖f
′(x♯)‖ ≤ 1

µ′ ‖f
′(x♯)− f ′

δ(x
♯)‖ ≤ 1

µ′
Mβ

β

(β − 1)!
δβ−12

√
2β.

As a consequence the triangle inequality

E‖xN − x⋆‖2 ≤ 2E‖xN − x♯‖2 + 2‖x♯ − x⋆‖2

and the combined above majorations of E‖xN − x♯‖2 and 2‖x♯ − x⋆‖2 give the result.

We emphasize agains that the fact that fδ is µ′-strongly convex is ensured by N being large

enough (and the larger N , the bigger µ′ ≤ µ can be chosen).
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