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GEOV1: LAI, FAPAR Essential Climate Variables and FCOVER global time series 1 

capitalizing over existing products. Part1: Principles of development and production. 2 
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ABSTRACT 11 

Essential Climate variables such as LAI or FAPAR are required for the monitoring, 12 
understanding and modeling of land surfaces at the global scale. While several products were 13 
already developed from the current medium resolution sensors, the few validation exercises 14 
currently achieved highlighted significant discrepancies and inconsistencies. The objective of 15 
this study is to develop improved global estimates of LAI, FAPAR and FCOVER variables by 16 
capitalizing on the development and validation of already existing products. In a first step, the 17 
performances of the MODIS, CYCLOPES, GLOBCARBON and JRC-FAPAR products were 18 

reviewed. The MODIS and CYCLOPES products were then selected since they provide 19 
higher level of consistency. These products were fused to generate the improved LAI, FAPAR 20 
and FCOVER values that were later scaled to closely match their expected range of variation. 21 
Finally, neural networks were trained to estimate these fused and scaled products from SPOT-22 
VEGETATION top of canopy directionally normalized reflectance values. The resulting 23 
GEOV1 products are associated to quality control flags as well as quantitative estimates of 24 

uncertainties. Performances of the GEOV1 products are finally evaluated in a companion 25 
paper. The GEOV1 products are freely available to the community at www.geoland2.eu from 26 
1999 up to present, globally at 1/112° spatial sampling grid at the dekadal time step.  27 

 28 

1 Introduction  29 

The importance of continuously monitoring the Earth’s surface was recently recognized by 30 
GCOS (Global Climate Observing System) (GCOS 2006). Essential Climate Variables (ECV) 31 
related to land surfaces such as LAI (Leaf Area Index) and  (Fraction of Absorbed 32 
Photosynthetic Active Radiation) may be derived from observations in the reflective solar 33 

domain. These vegetation biophysical variables play a key role in several surface processes, 34 
including photosynthesis, respiration and transpiration. LAI is defined as half the total 35 
developed area of green elements per unit horizontal ground area (Chen and Black 1992).  36 
FAPAR is defined as the fraction of radiation absorbed by the green vegetation elements in the 37 
400 - 700 nm spectral domain under specified illumination conditions. FAPAR is one of the 38 
main inputs in light use efficiency models (McCallum et al. 2009). In addition to LAI and 39 

FAPAR, FCOVER, the fraction of green vegetation as seen from nadir, is requested by some 40 

http://www.geoland2.eu/


V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Baret, F. (Auteur de correspondance), Weiss, M., Lacaze, R. ., Camacho, F. ., Makhmara, H. .,

M
an

u
sc

ri
t 

d
’a

u
te

u
r 

/ 
A

u
th

o
r 

m
an

u
sc

ri
p
t 

M
an

u
sc

ri
t 

d
’a

u
te

u
r 

/ 
A

u
th

o
r 

m
an

u
sc

ri
p
t 

M
an

u
sc

ri
t 

d
’a

u
te

u
r 

/ 
A

u
th

o
r 

m
an

u
sc

ri
p
t 

 
Version définitive du manuscrit publiée dans / Final version of the manuscript published in :  
Remote Sensing of Environment (2013), Vol. 137, p. 299-309, DOI: 10.1016/j.rse.2012.12.027 
Journal homepage: www.elsevier.com/locate/rse

 

2  

users for vegetation monitoring (Lacaze et al. 2009) as well as for partitioning contributions 41 
between soil an vegetation within specific models for Numerical Weather Prediction, regional 42 
and global climate modeling, and global change monitoring (Avissar and Pielke 1989). 43 
FCOVER is independent from the illumination conditions as opposed to FAPAR while 44 
showing sensitivity to vegetation amount intermediate between FAPAR and LAI. 45 

Table 1. The currently LAI, FAPAR and FCOVER products available globally at 46 
approximately 1 km spatial sampling distance.  47 

Products Sensors 

L
A

I 

F
A

P
A

R
 

F
C

O
V

E
R

R
 

Spatial 

sampling 

distance 

at 

equator 

Temporal 

sampling 

(days) 

Time period Reference 

MODIS C5 MODIS    1 km 8 2000-present (Yang et al. 2006b) 

CYCLOPES V3.1 VEGETATION    1 km 10 1999-2007 (Baret  et al. 2007) 

GLOBCARBON VEGETATION    1 km 30 1999-2007 (Deng et al. 2006) 

JRC-FAPAR SEAWIFS(1)    2.17 km 1 1997-2006 (Gobron et al. 2006) 

(1)
 JRC-FAPAR may be derived from several sensors including SEAWIFS, MERIS, MODIS 48 

and VEGETATION but produced globally over a long time period only from SEAWIFS. 49 

Few global LAI, FAPAR and  FCOVER products have already been generated from 50 
VEGETATION, SEAWIFS, MODIS and MERIS sensors with a spatial sampling distance 51 
close to 1km. Improved atmospheric correction, radiometric calibration and model 52 

formulation have incrementally enhanced the retrieval accuracy of the successive 53 
reprocessing. Recent validation activities have shown however that significant discrepancies 54 
were existing between these global products as well as with ground measurements (Garrigues 55 

et al. 2008; McCallum et al. 2010; Weiss et al. 2007), calling thus for the development of new 56 

products that would reconcile these differences.  57 

The FP7 Geoland2 project (http://www.gmes-geoland.info) intends to implement the 58 
GMES (Global Monitoring for Environment and Security) Land Monitoring Core Service that 59 
corresponds to the European contribution to GEOSS (Group of Earth Observation System of 60 
Systems). An operational system is developed to provide biophysical products that meet the 61 

users’ needs (Lacaze et al. 2009) for monitoring natural ecosystems and managed lands. The 62 
main requirements correspond to 1 km spatial sampling, 10 days (dekadal) frequency with 63 
products generated in near real time (less than one week), for a time period as long as possible 64 

(Ganguly et al. 2008b), and associated with quantitative uncertainties. These requirements are 65 
partly answering the recently updated GCOS ones for LAI and FAPAR ECVs with 250m 66 
spatial resolution relaxed to 2 km for near term products, 2-weekly temporal frequency and 67 
accuracy better than max(20%, 0.5) for LAI, max(10%, 0.05) for FAPAR and a stability better 68 

than max(10%,0.25) for LAI and max(3%, 0.02) for FAPAR (GCOS-138). The resulting 69 
products will thus eventually contribute to fulfill one of the GCOS task dedicated to the 70 

operationalization of the generation of and LAI Essential Climate Variables. 71 

The objective of this paper is to describe the first version of Geoland2 LAI, and FCOVER 72 
products called GEOV1. The principles used to derive the products will first be presented. 73 
Then, the algorithm development will be described. A companion paper (Camacho et al. 74 
2012) will finally report the validation results derived according to the CEOS/LPV guidelines 75 

(Baret  et al. 2009; Morisette et al. 2006). 76 
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2 ALGORITHM DEVELOPMENT  77 

2.1 General principles  78 

Since significant efforts have already been made to develop and validate biophysical products 79 
as stated in the introduction, it is thus proposed to capitalize on the existing products and 80 
associated validation results for the development of the GEOV1 products. Previous works 81 
(Verger et al. 2008) have demonstrated the capacity of learning machines such as neural 82 
networks to estimate biophysical products including LAI from several sensors. This property 83 
will be exploited here, allowing to use several sensors in order to build a long time series of 84 

products. The algorithm is made of three main steps as sketched in Figure 1:  85 

1-Generation of the training dataset: already existing products are first combined to provide 86 

the ‘best estimates’ of the biophysical variables that will constitute the training dataset.  87 

2-Neural network calibration: a neural network is trained to estimate these ‘best estimates’ 88 
from the input reflectance values as observed by specific sensors and the associated 89 

geometrical configuration. Quality flags and quantitative uncertainties are also derived. 90 

3-Application of the network: once the network is calibrated, it is run to provide estimates of 91 
the biophysical variables for each of the sensors considered, along with the quality flags and 92 

quantitative uncertainties. 93 

Note that it would have been possible to follow more formally the scheme proposed by 94 
(Verger et al. 2008) and later developed in (Verger et al. 2011). However this would need to 95 
use concurrently and in real time two (or more) sensors. This was not compatible with the 96 

available processing capacity for GEOV1. Further, the use of a single product in the learning 97 
database as proposed in (Verger et al. 2011) such as MODIS collection 5 would not allow 98 
improvement of the biases sometimes observed, but would mainly decrease the frequency of 99 
missing data and smooth the temporal series. Finally, the proposed GEOV1 algorithm is 100 
designed to work with no prior information on the vegetation type since Verger et al. (2008) 101 
showed that a single training across all biomes was performing similarly as multiple specific 102 
training for each biome type. 103 
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 104 

Figure 1. Schematic description of the principle used to develop the GEOV1 product. 105 

2.2 Generation of training dataset 106 

The way the training dataset is generated from already existing products is sketched in Figure 107 

1, top box. Four main steps are identified: (1) selection of the most relevant products, (2) 108 
setting the products on consistent spatial and temporal supports, (3) fusing the products and 109 
(4) eventually scaling the fused products. Details of each of these steps are given in the 110 

following. 111 

2.2.1 Selection of products 112 

The available candidate global products listed in Table 1 are first evaluated to select the most 113 

relevant ones. For this purpose, the results from previous validation exercises are used here.  114 

The validation exercise achieved by Garrigues et al. (2008) for LAI products was showing few 115 
missing values for the GLOBCARBON LAI product, in relation to its monthly temporal 116 

resolution. However, many artifacts were observed, including unexpected outliers and shifts 117 
in the phenology due to its coarse temporal resolution and low sampling frequency. Garrigues 118 

et al. (2008) and Weiss et al. (2007) demonstrated that CYCLOPES was providing very 119 
smooth temporal course while showing a saturation for LAI values larger than 4.  For MODIS 120 
collection 5 LAI products, only few local validation activities were reported (De Kauwe et al. 121 
2011; Kraus 2008; Sprintsin et al. 2009) while Yuan et al.(2011) presents some results of a 122 

global validation exercise focusing on the evaluation of a smoothed version of MODIS LAI to 123 
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reduce the spatial and temporal inconsistencies observed at the local spatial or temporal 124 
scales. Ganguly et al. (2008a) validated an adaptation of MODIS LAI products for AVHRR 125 
data, showing fair consistency with CYCLOPES LAI product over the sites considered. 126 
However, Verger et al. (2011) demonstrated that MODIS was showing more shaky temporal 127 

LAI profiles as compared to the CYCLOPES ones. 128 

Among the global FAPAR products available, MODIS and GLOBCARBON correspond 129 
roughly to the same definition, i.e. black-sky values at the time of the satellite overpass, i.e. 130 
around 10:35 for MODIS aboard Terra and 10:30 for VEGETATION. However, if JRC-131 
FAPAR corresponds also to black-sky FAPAR at the time of the satellite overpass, SEAWIFS 132 
is crossing the equator around 12:20, i.e. for significantly smaller sun zenith angles as 133 
compared to MODIS and VEGETATION. The CYCLOPES  FAPAR product corresponds to 134 
black-sky FAPAR at 10:00 illumination conditions which is a close approximation of the daily 135 

integrated black-sky FAPAR value (Baret et al. 2005; Baret  et al. 2007). Therefore, MODIS 136 
aboard Terra, GLOBCARBON and CYCLOPES FAPAR products share very similar 137 
definitions, while JRC-FAPAR derived from SEAWIFS is expected to show lower values 138 
because of the smaller sun zenith angles experienced close to solar noon. Further, it is limited 139 
to sun zenith angles lower than 50° which may pose a problem for the higher latitudes and/or 140 
part of the season. Comparison between MODIS collection 5 and CYCLOPES FAPAR 141 
products was showing a good agreement, with however some overestimation of MODIS for 142 
the low FAPAR values (McCallum et al. 2010). GLOCARBON and JRC-FAPAR were found 143 
much lower in magnitude, while a good consistency in spatial and temporal trends were found 144 
between CYCLOPES and JRC-FAPAR (McCallum et al. 2010). GLOBCARBON products 145 

were showing the largest discrepancies with all the other products.  146 

The MODIS and CYCLOPES FAPAR products were therefore selected ensuring a good 147 
consistency between LAI and  FAPAR values since both MODIS and CYCLOPES provide 148 
concurrently  LAI and  FAPAR products. However, CYCLOPES and MODIS products are 149 
based on different assumptions and inversion techniques. CYCLOPES considers canopies as a 150 
turbid medium for all the biome types, while allowing pixels to be a mixture of pure bare soil 151 
and pure vegetation patches, i.e. including some possible clumping at the landscape level. The 152 
inversion of the radiative transfer model is achieved using a neural network. Conversely, 153 
MODIS algorithm is biome dependent and assumes some clumping at the plant level for some 154 
biomes including savanna and forests. The retrieval of LAI is achieved using a look-up-table 155 

inversion technique. 156 

Apart from CYCLOPES FCOVER products, no other global  FCOVER product is currently 157 
available apart from the SAF-LAND products covering the METEOSAT disk (Camacho-de 158 

Coca et al. 2006). However, several studies have pointed out that NDVI could be a good 159 
proxy for  FCOVER (Baret et al. 1995; Carlson and Ripley 1997; Gutman 1991). Camacho-de 160 

Coca et al. (2006) compared several regional  FCOVER products over Africa and showed that 161 
the CYCLOPES  FCOVER product was very consistent with other products although a 162 
significant and systematic bias was observed. This was also confirmed by Verger et al. 163 
(2009). It is therefore proposed to select the CYCLOPES FCOVER original product while 164 

rescaling it to provide values more consistent with ground measurements as detailed later. 165 

2.2.2 Spatial and temporal sampling for the training dataset 166 

The training dataset is generated over a sample of sites representative of the global 167 
distribution of vegetation types and conditions. For this purpose, the BELMANIP2 set of sites 168 

was used. It corresponds to 420 sites located in relatively flat and homogeneous areas (at a 169 
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kilometric resolution over 10 x 10 km² domains). BELMANIP2 differs from the original 170 
BELMANIP set of sites (Baret et al. 2006) by improving the global representativeness and 171 
homogeneity. Figure 2 shows the distribution of sites and their coordinates are available at 172 
WWW1. Years 2003 and 2004 were selected to represent the whole seasonality as well as 173 

significant inter-annual variability. 174 

 175 

Figure 2. The 420 BELMANIP2 sites used to sample vegetation types and conditions. 176 

The same spatial and temporal supports are required to allow combining several products 177 

together. The MODIS LAI and FAPAR products selected were thus re-projected onto the 178 
cylindrical projection system with 1/112° sampling grid used as a reference for the 179 
VEGETATION, CYCLOPES and GEOV1 products. Because of the point spread function of 180 
the several products considered as well as the possible geometrical uncertainties on pixel 181 
localization, a 3x3 pixels spatial support was used. Note that the algorithm is trained over 3x3 182 
pixels although it will ultimately apply to single pixels. This scale discrepancy is acceptable 183 

because of the homogeneity of the BELMANIP2 sites.  184 

The temporal sampling used to fuse MODIS and CYCLOPES products will be that of the 185 
CYCLOPES original products, i.e. dekadal (10 days). It will allow using directly the 186 

normalized reflectance values derived from VEGETATION based on the CYCLOPES 187 
preprocessing algorithm (Baret  et al. 2007) that will also constitute the GEOV1 temporal 188 
sampling. The values to be fused at a given GEOV1 dekad were computed as follows: for 189 

CYCLOPES, the product values corresponding to the GEOV1 dekad are considered; for 190 
MODIS 8 days products, all the values available within ±10 days around the GEOV1 dekad 191 
are first gathered resulting in a maximum of 27 values (3 MODIS dates times 9 pixels). Note 192 
that the CYCLOPES 30 days temporal resolution (with Gaussian weighing) is still larger than 193 

that of the 16 days (2 times 8 days) of the MODIS selected values. However, widening the 194 
temporal window for MODIS resulted in artifacts on the seasonality. Then the 3x3 aggregated 195 
values for each GEOV1 dekad are computed only if at least 5 valid individual values (over the 196 
9 for CYCLOPES and 27 for MODIS) are available. Valid pixels are defined by the main and 197 
main + saturation QC (Quality Control) for MODIS, and valid input reflectance QC for 198 

CYCLOPES. For MODIS, because of the relatively large variability observed over time and 199 

space, values were further filtered using the difference %70%90 ff LAILAI  between the 200 

f=90% and f=70% percentiles (f) computed over the valid LAI values: when 2.0  201 
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corresponding to an unexpectedly large scattering of the data over homogeneous sites and 202 
during a short time period, the cases were rejected. Finally, for the GEOV1 dates fulfilling the 203 
above criterions both for CYCLOPES and MODIS products, the LAI and  FAPAR values 204 
corresponding to the 70% percentile was computed for CYCLOPES and MODIS. This allows 205 
minimizing the influence of possible residual cloud contamination and atmospheric effects 206 
that negatively biased the product values (Chen et al. 2006). However, because of the 207 
homogeneity of the sites and the short time period considered, the values once filtered as 208 
described above, should be closely distributed around the median, i.e. LAI or  FAPAR values at 209 

50% and 70% frequencies should be very close together for a given date and site. 210 

2.2.3 Fusing the products 211 

No fusion process was applied for FCOVER since GEOV1 will derive only from 212 

CYCLOPES FCOVER products. Conversely, for LAI and FAPAR, MODIS and CYCLOPES 213 
products were fused to benefit from their complementarities. An optimal fusion scheme would 214 

be a weighted average between the two products, with weights, FAPARw  and LAIw  respectively 215 

for FAPAR and LAI, being driven by the uncertainties associated to each product: 216 

)1(

)1(

LAICYCLAIMODfused

FAPARCYCFAPARMODfused

wLAIwLAILAI

wFAPARwFAPARFAPAR
  [1] 217 

Where the subscripts ‘fused’ ‘MOD’, ‘CYC’ correspond respectively to the fused, MODIS and 218 
CYCLOPES products. However, the uncertainties attached to the CYCLOPES and MODIS 219 
products only refer to the theoretical performances, and model assumptions as well as the 220 
structure of the uncertainties were not accounted for. Uncertainties may be also derived from 221 

the comparison with ground measurements as already achieved for MODIS and CYCLOPES. 222 
However, these ground measurements are not very numerous (Camacho et al. 2012; Garrigues 223 

et al. 2008). Further, it is not advisable to use the validation data to calibrate an algorithm in 224 
order to preserve the required independency between the calibration and the validation 225 
processes. For these reasons, the weight used in the fusion between MODIS and CYCLOPES 226 

were based on heuristic arguments. 227 

Garrigues et al. (2008) and Weiss et al. (2007) reported that CYCLOPES LAI was showing 228 
some saturation for LAI values around 4. Conversely, MODIS LAI and FAPAR values were 229 
generally higher than expected for the very low vegetation amounts (Figure 4). Further, the 230 

MODIS algorithm assigns zero values for LAI and FAPAR over pixels classified as bare, 231 
which may pose problems in case of misclassification. It was thus proposed to fuse the 232 

products by reducing the contribution of MODIS products for low LAI and FAPAR values and 233 
enhancing the MODIS contribution for the larger LAI and FAPAR values as sketched in 234 

Figure 3 with  )
4

,1min( CYC
FAPARLAI

LAI
ww . The weight, w, is driven by LAICYC (Figure 3) 235 

since LAICYC appears more stable as compared to MODIS LAI (Verger et al. 2011). The 236 

threshold of LAICYC=4 corresponds to the value when LAICYC starts to saturate. The parallel 237 
processing applied to both LAI and FAPAR (equation 1) is expected to keep a good 238 

consistency between these two variables. 239 
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 240 

Figure 3. Variation of the weight (w) as a function of the LAICYC value. 241 

2.2.4 Scaling the fused products 242 

The fused FAPAR products showed that the maximum values (at 99% percentile) are around 243 
0.90 (Figure 4b, dashed black line) although the maximum values are expected to be close to 244 
0.94 (Baret and Guyot 1991) corresponding to full cover dense vegetation with albedo in the 245 

PAR domain close to 0.06. Therefore, the fused values were scaled according to: 246 

fusedscaled FAPARFAPAR
90.0

94.0
 [2] 247 

The highest FCOVERCYC value was approximated by the 99% percentile value, i.e. 248 
FCOVERCYC(99%)=0.69  (Figure 4c). This is in agreement with results obtained by Verger 249 
(2008) showing that CYCLOPES FCOVER product was underestimating actual values, 250 

although being strongly linearly correlated with other regional products including the SAF-251 
Land one. It is thus proposed to correct for this systematic underestimation by applying a 252 
scaling factor. This factor was computed considering the highest FCOVERCYC values 253 
observed that should correspond to full coverage (FCOVER=1). The ‘scaled’ FCOVER 254 
product, FCOVERscaled used later to train the neural network will thus be computed according 255 

to:   256 

CYCscaled FCOVERFCOVER
69.0

1
 [3] 257 
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 258 

Figure 4. Cumulated frequency of CYCLOPES (green solid line), MODIS (red solid 259 

line) fused (dashed black line for FAPAR) and scaled (black solid line) LAI (a), FAPAR 260 
(b) and FCOVER (c) products as observed over the 420 BELMANIP2 sites during years 261 
2003-2004. 262 

Note that oppositely to FCOVER and FAPAR products, no specific theoretical upper limit 263 
exists for LAI since values larger than 10 are often reported at least at the local scale (Scurlock 264 
et al. 2001).  Regarding the theoretical lower bound (LAI=FAPAR=FCOVER=0) 265 
corresponding to bare soil, the cumulated frequencies displayed in (Figure 4b) do not show 266 
particular problems for the fused product. However MODIS products show an offset of 0.25 267 
for LAI (Figure 4a) and 0.18 (Figure 4b) for FAPAR values, confirming the previous 268 
observations of McCallum et al. (2010). This bias was corrected by the fusion process used 269 
for deriving GEOV1 where CYCLOPES LAI and FAPAR products contribute the most for 270 

these low vegetation amounts.  271 

2.3 Training the neural networks 272 

The inputs and outputs of the training data set and the neural network architecture and 273 

learning process are described in this section. 274 

2.3.1 Inputs 275 

The inputs of the neural network correspond to the bidirectional reflectance factor (BRF) as 276 

measured by VEGETATION aboard SPOT. They correspond to directionally normalized top 277 
of canopy reflectance in the red, NIR and SWIR bands as derived from the CYCLOPES L3a 278 
products. The preprocessing steps include cloud screening, atmospheric correction based on a 279 
climatology of aerosols, and BRDF normalization using a robust fit of Roujean’s model 280 

(Hagolle et al. 2004; Roujean et al. 1992). Details about the processing from L0 (raw signal) 281 
to L3a can be found in (Baret  et al. 2007). However, the original CYCLOPES L3a products 282 
were reprocessed to benefit from updated radiometric calibration coefficients for the 283 

VEGETATION sensors. The blue band was not considered here since it brings only little 284 
extra information on the surface as compared to the red, NIR and SWIR bands, while being 285 
very sensitive to errors in the atmospheric correction (Bacour et al. 2006). To match the 286 
spatial support used for the ‘best estimates’ described earlier, the median was computed over 287 
the valid pixels within the 3x3=9 potential ones. The median for each band was preferred 288 

here, since the use of the 70% percentile for each band would result in possible spectral 289 
inconsistencies because the sensitivity of reflectance to canopy variables is different between 290 
bands. Note however that the CYCLOPES L3a products show a good stability over the 291 
BELMANIP2 sites which are relatively homogeneous as earlier demonstrated by Verger et al. 292 

(2008).  293 
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In addition to the BRF in the red, NIR and SWIR bands, the algorithm used the cosine of the 294 

median value of the sun zenith angle ( s) corresponding to the valid observations during the 295 
30 days window over which the directionally normalized top of canopy reflectance values 296 
were composited. 297 

2.3.2 Outputs 298 

The outputs correspond to the targeted LAI, FAPAR and FCOVER variables. To further verify 299 
that the resulting ‘best estimates’ were consistent, they were plotted against NDVI=(BRFNIR-300 
BRFRed)/(BRFNIR+BRFRed) values computed from the CYCLOPES BRF products in the red 301 
(BRFRed) and in the near infrared (BRFNIR). Cases with NDVI<0.05 were rejected since these 302 
values are not expected over bare soil or vegetation pixels (results derived from NDVI values 303 
computed for VEGETATION sensor bands based on a large data base of soil reflectance 304 
available at WWW2 and described in Liu et al. (2002). Then, for each class of NDVI values 305 
(20 classes over the [0, 1] domain of variation), the cases with FAPAR or LAI values lower 306 
(respectively higher) than the 5% percentile (respectively 95%) were rejected. This allowed to 307 
further improve the consistency of outputs with input reflectance values through NDVI as 308 
attested by Figure 5. Relatively few cases were observed for LAI in between 3 and 4. This is 309 
explained by the fact that forests that are the more likely to show such median to high LAI 310 
values (Weiss et al. 2007) represent only 25% of the global land surfaces. Further, many 311 
forest sites are frequently covered by clouds in addition to snow cover and poor illumination 312 
conditions that are frequently observed in winter for the high northern latitudes. Although this 313 
situation is not ideal, the neural networks should be able to interpolate efficiently between the 314 

cases available on both sides of this area.  315 

 316 

Figure 5. Relationships between NDVI and both FAPAR (a) and LAI (b) ‘best estimates’. 317 
The red points correspond to the cases rejected that are outside the [5% 95%] percentile 318 

range. 319 

The consistency of the output variables was further evaluated. As expected, the relationship 320 
between LAI and FAPAR was keeping very consistent as compared to the original 321 

CYCLOPES and MODIS products (Figure 6). The same consistency is observed between LAI 322 
and FCOVER as well as between FAPAR and FCOVER (results not presented for the sake of 323 

brevity). 324 
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 325 

Figure 6. Relationship between LAI and FAPAR for CYCLOPES (CYCV31 a), MODIS 326 

(MODC5 b) and ‘best estimates’ (c) as observed over the 420 BELMANIP2 sites during 327 

2003-2004 period (14200 points). 328 

2.3.3 Neural network architecture and learning process 329 

The previously described dataset is finally made of 14200 cases where consistent top of 330 
canopy directionally normalized reflectance values are paired with ‘best estimates’ of LAI, 331 
FAPAR and FCOVER values. This represents roughly 47% of the total 30200 data potentially 332 
existing over the 420 sites during the 2003-2004 period (72 dekads). The available data was 333 
randomly split into a training data set made of 90% of the data available, and a test data set 334 
(10% of the data) used for testing the hyper-specialization of the training process and 335 
evaluating the theoretical performances. The large fraction of data used for the training 336 
process allows getting a better representativeness of surface types and conditions considering 337 
the limited time period (2 years) and sites considered (420 sites) and the large fraction of 338 
missing data. The inputs and outputs are normalized to prevent possible numerical problems 339 
during the training process. Normalization is achieved by scaling between -1 and +1 the range 340 

of variation of input and output values according to: 341 

12
minmax

min

xx

xx
xnorm  [4] 342 

where x represents either the inputs or outputs, xmin and xmax are respectively the minimum and 343 

maximum values of x and xnorm  is the corresponding normalized value. 344 

A back-propagation network architecture has been used since it proves very efficient in 345 

similar problems (Baret  et al. 2007; Verger et al. 2010a). It is made of one hidden layer of 5 346 

tangent-sigmoidal neurones, and one output layer made of a single linear neurone. This 347 
architecture includes 31 coefficients to be adjusted (25 synaptic weights and 6 biases) 348 
providing more than 400 cases per coefficient to be adjusted. The Levenberg–Marquardt 349 

optimization algorithm (Ngia and Sjoberg 2000) is used for adjusting the synaptic weights and 350 
neuron bias to get the best agreement between the output simulated by the network and the 351 

corresponding value of canopy biophysical variable in the training dataset. The initial values 352 
of the weights and biases were set to a random value between -1.0 and +1.0. Three networks 353 
were trained in parallel for each targeted variable with variation in the initial values. The one 354 

providing the best performances over the test dataset was selected. Results obtained during 355 

the training process showed that the three parallel networks were performing very similarly, 356 
indicating a robust training process. A dedicated neural network for each variable was 357 

preferred here to using a unique network for estimating concurrently the three output variables 358 
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because the associated architecture is simpler, leading to an easier training process while still 359 
providing very good consistency between LAI, FAPAR and FCOVER estimated variables, 360 

similarly to what is observed on the training dataset (Figure 6).  361 

 362 

Figure 7. Structure of the neural network used to derive LAI, FAPAR  and FCOVER (the ‘Var’ 363 
box) from VEGETATION input reflectance in red (B2), NIR (B3) and SWIR as well as 364 
illumination geometry (cos( s)). 365 

The theoretical performances were evaluated over the test dataset. It shows that the training 366 
was very efficient for the three variables. The dispersion around the 1:1 line is very small and 367 
no bias is observed over the whole range of variation of the three variables (Figure 8). Note 368 
that LAI shows less accurate estimates for 3<LAI<4 because of the slightly lower number of 369 

data available for this LAI range as seen in Figure 5.  370 

 371 

372 
Figure 8. Comparison between the ‘best estimates’ of LAI (a), FAPAR (b) and FCOVER (c) 373 
products and the values estimated from the trained neural networks (called NNT estimates). The 374 
solid thick line corresponds to the median value. Dark, medium and light gray areas correspond 375 
respectively to [25% 75%] [10% 90%] and [1% 99%] of the estimated cases for each class of 376 
actual values (20 classes are considered, from 0 to the maximum of actual values). The data 377 
correspond to the test data set (n=1420).  378 

Further evaluation was achieved to check the specific performances of the network for the 379 
main great vegetation types. Results show (Figure 9) that no biases are observed in the 380 

estimated LAI, except a slight underestimation (LAIest-LAItrain≈0.1). The positive and negative 381 
residuals are always well balanced. The residuals are increasing in absolute value from the 382 
low LAIs (Non Forest) up to the largest one (EBF). In case of EBF, most of the variability is 383 

imputed to remaining cloud contamination. 384 
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 385 

Figure 9. Difference between the LAI estimated from the NNT (LAIest) and the ‘best estimates’ 386 
LAI value used for the training (LAItrain) for the four main vegetation types : Evergreen 387 

Broadleaf Forest (EBF), Needle leaf Forest (ENF), Deciduous Broadleaf Forest (DBF) and Non-388 
Forest. The red line, blue box and black whiskers represent respectively 50%, [25%,75%] and 389 

[5%-95%] percentiles. Outliers are indicated by stars.  390 

2.4 Associated uncertainties and quality assessment  391 

All the quality control flags associated to the top of canopy reflectance values are available 392 
along with the products. They describe the nature of the surface (land/sea), the presence of 393 
snow, the possible contamination by clouds or cloud shadow, the aerosol characteristics used 394 
for the atmospheric correction, and the possible saturation of the radiometric signal. Two 395 
additional qualitative assessment criterions more directly dedicated to the biophysical 396 
products are provided along with a quantitative estimation of the associated uncertainties. The 397 

way they are computed is described here after. 398 

2.4.1 Input out of range 399 

Since the algorithm is based on a learning machine approach, it is important to verify whether 400 
the inputs of a given observation keeps within the range of variation of the training dataset 401 
called here the definition domain. If this condition is not fulfilled, the network will run in 402 

extrapolation mode, with no warranty about the realism of the outputs. The definition domain 403 
is limited by the convex hull formed in the BRF feature space by the cases used in the training 404 
process (Figure 10). For the sake of simplicity and ease of implementation, the 3D feature 405 
space formed by B2, B3 and SWIR bands was gridded by dividing the range of variation of 406 

each band (Figure 10 and Table 2) into 10 equally spaced classes. The ensemble of cells 407 
containing data used for the training form the definition domain. When the input BRF values 408 
are outside the definition domain, i.e. outside cells containing data used for the training, an 409 
‘input out of range’ flag is raised. Note that the sun zenith angle was not included in the 410 
description of the definition domain. This would have induced increased complexity for 411 

marginal gain since the definition domains corresponding to several sun zenith angles are 412 

largely overlapping. 413 
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 414 

Figure 10. Definition domain for input VEGETATION Top of canopy directionally normalized 415 
BRF values in B2, B3 and SWIR bands. Axes are scaled between 1 to 10, corresponding to the 10 416 
classes of reflectance values ranging between the minimum value (class 1) and the maximum 417 
value (class 10). The cells containing data from the training dataset are represented in black. 418 
They form the definition domain. 419 

Table 2. Range of variation of BRF values (Minimum and maximum) observed in the training 420 
dataset and used to compute the definition domain. 421 

 Min Max 

B2 0.000 0.429 

B3 0.036 0.547 

SWIR 0.000 0.648 

2.4.2 Output out of range 422 

The physical limits for the three variables are described in Table 3. However, for LAI, the 423 
upper limit is not a physical limit, but a value just slightly higher than the maximum value 424 
that can be reached by the MODIS and CYCLOPES original products. Because of the several 425 
sources of uncertainties associated to the inputs, the algorithm calibration process including 426 
uncertainties attached to the original MODIS and CYCLOPES products, a tolerance is set for 427 
the extreme values: when the neural network provides biophysical variable estimates outside 428 
their definition range the value will be always set to the closest bound of the range, i.e. either 429 
the minimum or the maximum values (Table 3). The product uncertainty value will be also set 430 

to its maximum value. However, The output status flag is thus raised only when the output is 431 
outside the output range enlarged by the tolerance values [P

tol
min , P

tol
max ] as defined in Table 432 

3.  433 

Table 3. Minimum, Maximum, Resolution and Tolerance values used to raise the output 434 
out of range flag. 435 

 Min Max Resol. Tolmin Tolmax 

LAI 0 7.0 0.01 -0.2 7.20 

FAPAR 0 1.0 0.01 -0.05 1.05 

FCOVER 0 1.0 0.01 -0.05 1.05 

2.4.3 Product uncertainties 436 

The uncertainties associated to each biophysical variable are computed over the training 437 
dataset: for each case in the training dataset, a RMSE value is computed over the biophysical 438 
variables that have their corresponding  input BRF values within the uncertainty domain 439 
(Figure 11). Further, the sun zenith angles selected have also to be within ±5° around the 440 

direction of the case considered. Uncertainties on reflectance are derived from Baret  et al. 441 
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(2007): the standard deviation, , is computed for each waveband according to the uncertainty 442 

model reported in Table 4:  443 

=a+b∙BRF [5] 444 

Where a and b are coefficients. 445 

 446 

Figure 11. Scheme showing how the uncertainties attached to the products were 447 
computed 448 

Table 4. Values of the uncertainty model used for the input BRFs. From Baret et al. 449 
(2007).  450 

 B2 B3 SWIR 

a 0.005 0.003 0.005 

b 0.05 0.03 0.03 

A neural network is then trained to relate these computed RMSE values to the corresponding 451 
input variables. This learning process is similar to what was previously achieved for the 452 
product estimation itself and the network has the same architecture as the one used for the 453 
derivation of the products (Figure 7). The same normalization as used for the variables is also 454 
applied for the inputs and outputs of the neural network dedicated to uncertainties. Results 455 

(Figure 12) show that the model of uncertainties is relatively robust for LAI, FAPAR and 456 

FCOVER, with however some degradation of performances for the larger values of the 457 

biophysical variables. 458 
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 459 

Figure 12. Theoretical performances of the neural network model used to describe RMSE values 460 
for LAI (a) FAPAR (b) and FCOVER (c) from input reflectance values and geometry of 461 
observation. 462 

3 Operational production and dissemination  463 

The GEOV1 processing line was derived from the CYCLOPES V3.1 processing line which 464 
has been used to generate the 1999-2007 time series of CYCLOPES products (WWW3). It 465 
has been adapted to consider the specificities of the GEOV1 products in terms of algorithm, 466 
and output format requested by the users. It has also been consolidated to fit the software 467 
conventions (general coding rules, computer platform issues, filename and directory 468 
conventions) defined by the operational processing center. At different stages of the 469 
development process, reviews have been carried out to check that the several input 470 

specifications were answered in the design of the processing line. Further, a rigorous 471 
methodology of validation based upon unit and integration tests, as well as scientific analysis 472 

of the output using tools including visual control and statistical metrics has been applied. 473 

Before its integration in the operational processing center, the processing line has been run to 474 
generate 2 years (2003–2004) of GEOV1 demonstration products used to perform the 475 
validation exercise presented in Camacho et al. (2012). They have also been supplied to 476 
Geoland2 users who checked the consistency with their requirements before starting the 477 

operational production of real time and the whole 12 years time series processing of 478 
observations. The processing line has been optimized to ensure operational management with 479 
permanent quality control while benefiting from the variable computation resources available 480 

for parallel processing. 481 

The GEOV1 products are generated in multi-band hdf5 format (the variable, its uncertainty, 482 
the quality flag, the number of input observations, the land-sea mask) and in tiles of 10°x10° 483 
covering the land surfaces of the whole globe. They are available in open access through the 484 
Geoland2 web platform (WWW4) where users can browse the catalogue, order the products 485 

after registration, and subscribe to receive the products. The GEOV1 products are also 486 

disseminated via the Eumetcast system to African and South American users. 487 

4 CONCLUSION 488 

The GEOV1 LAI, FAPAR and FCOVER products capitalize on the efforts undertaken this last 489 
decade in the development and validation of biophysical products from medium resolution 490 

observations. The pragmatic approach used here is based on the fusion of CYCLOPES and 491 
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MODIS products that were demonstrated to perform the best. However, their deficiencies 492 
observed respectively for low LAI values for MODIS and high LAI values for CYCLOPES 493 
have been corrected in the fusion process. Further, the resulting FAPAR and FCOVER 494 
products have been scaled to reach the theoretical upper limit expected for high vegetation 495 
amounts. Finally, one of the main advantage of the GEOV1 algorithm is that it did not 496 
explicitly use a biome classification that introduces some spatial inconsistencies and 497 
sometimes temporal inconsistencies (when class assignment change unexpectedly) as outlined 498 

by Yang et al. (2006a) for MODIS. 499 

The approach undertaken here was not calibrated using ground validation measurements, 500 
preserving the required independency between calibration and validation processes. However, 501 
this led to use a more pragmatic approach based on heuristic arguments that explains the 502 
sometimes subjective selection of criterions used in the development of the GEOV1 algorithm 503 

and several alternative solutions could have been proposed. Nevertheless the GEOV1 504 
products resulting from the largely inductive approach undertaken yield robust, consistent and 505 
accurate estimates of these key biophysical variables as demonstrated in Camacho et al. 506 
(2012). The validation shown in the companion paper demonstrates that GEOV1 significantly 507 
improved the performances of currently existing products, both regarding accuracy and spatial 508 
as well as temporal consistency. It provides quantified estimates of uncertainties, although 509 
these are simply derived from the training dataset that reflects mostly the sensitivity of the 510 
product to input reflectance values. Further investigations should be directed towards a better 511 
quantification of the uncertainties, including ‘model’ assumptions since both MODIS and 512 

CYCLOPES are based on radiative transfer model inversion. 513 

A clear understanding of the actual definition of the retrieved variables and their consistency 514 

with application requirements is one of the key aspects to consider when deriving biophysical 515 
variables from remote sensing observations. For FCOVER, no particular question is raised 516 
since the FCOVER definition is simple and clear if restricted to the green vegetation elements 517 
including overstory and understory. For FAPAR, because of the good consistency between 518 
MODIS and CYCLOPES definitions, the output product is also well defined: black sky 519 
FAPAR (green element including over and understory) at 10:15 (actually between 10:00 and 520 
10:30). For LAI, the question is more complex since the original MODIS and CYCLOPES 521 
LAI products are defined differently, at least with regards to the assumptions embedded in the 522 
radiative transfer models used. For MODIS, clumping at the tree scale is accounted for, but 523 
not at the shoot, nor at the landscape scales. For CYCLOPES, clumping is accounted for at 524 
the landscape scale only. However, its effect will be significant mainly for the larger LAI 525 

values as discussed by Garrigues et al. (2006). Therefore, GEOV1 LAI product will 526 

marginally account for landscape clumping as demonstrated by the good consistency between 527 

MODIS and CYCLOPES LAI products for low to medium LAI values (Camacho et al. 2012). 528 
However the special case of savannas with relatively low LAI values and significant clumping 529 
(Ryu et al. 2010). In this case, the radiation interaction between plants that are separated by 530 
significant distances is minimal, and clumping described at the plant level in MODIS may be 531 
approximated at the landscape scale as in CYCLOPES. Clumping at the shoot scale will not 532 

be accounted for in GEOV1 LAI product since neither MODIS, nor CYCLOPES account for 533 
it. Conversely, clumping at the plant scale was accounted mainly for forests and savannas in 534 
the original MODIS product but not in the CYCLOPES ones. However, clumping is mainly 535 
observed for the higher LAI values (overlap between leaves within the tree volume when the 536 

number of leaves increases) (Rochdi 2003). Therefore, clumping at the plant scale as 537 
described in MODIS products should be partly preserved in the GEOV1 LAI product. The 538 
validation achieved in the companion paper (Camacho et al. 2012) over a limited number of 539 
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sites demonstrates that the GEOV1 LAI products are close to the values estimated from 540 

indirect techniques and that include the clumping effect. 541 

These products may thus be used in a range of applications including those targeted for the 542 
Essential Climate Variables and fulfill the needs for GMES and the GCOS task dedicated to 543 
the operationalization of the generation of FAPAR and LAI products. The GEOV1 products 544 
initiate a service whose sustainability is planned within the GMES Land Monitoring Core 545 
Service by adapting the algorithm, and the processing chain, to AVHRR/Metop, PROBA-V, 546 
and Sentinel-3 missions. Further, it will be completed backward using the AVHRR data as 547 
processed by Vermote et al. (2010) to get a long and consistent time series of more than 30 548 

years. 549 

Although the development of this series of biophysical products should represent an important 550 

step towards a more effective use of remote sensing observations, improvements are expected 551 
mainly through several aspects. Clouds constitute obviously the major limitation of optical 552 
systems that suffer from large areas and periods without data. Recent studies demonstrate that 553 
the fusion between several sensors improves data continuity (Hagolle et al. 2005; Verger et al. 554 
2010b; Yang et al. 2006b). Alternative approaches based on enhanced time series processing 555 
may help removing outliers, filling gaps due to missing observations and smoothing the 556 
temporal profiles (Kandasamy et al. 2013; Verger et al. 2012). However, the main limitation 557 
in such global products comes mainly from the little a priori information available and 558 
required to regularize the inversion process (Combal et al. 2002). The use of global 559 
classification is likely to be insufficient because of its limited accuracy (Defourny et al. 2009; 560 
Herold et al. 2008; Yang et al. 2006a) and because the variability in canopy architecture and 561 
optical properties within a given class is probably as large as between classes when the 562 

seasonal variability is considered. Further, the often mixed nature of kilometric pixels poses 563 
both a scaling issue and the difficulty to identify the several co-existing surface patches. 564 
These problems call for an improved spatial resolution that will allow resolving most of the 565 
vegetation patches and will authorize identifying the corresponding vegetation type from the 566 
past observations and use it as prior information. Such systems are currently being available 567 
with hectometric resolutions, such as the PROBA-V (300m daily), Sentinel-3 (300 m every 2 568 
days), VIIRS (370m daily). However, decametric systems such as Sentinel 2 or LDCM in 569 
combination with the previous hectometric ones would probably provide the most efficient 570 
observation system.  571 
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