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Multiscale functional analysis of wear
A fractal model of the grinding process
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France b ESI, LMPGM UMR CNRS 8517, ENSAM Lille, 8 boulevard Louis XIV, 59046 LILLE, Cedex, France

Abstract

In this paper, we propose to create a fractal function defined by an infinite series to model worn surfaces obtained by a grinding process. 
In this series, each elementary term characterizes a wear process at a given scale. This series is only defined by two parameters: an amplitude 
parameter and the fractal dimension. This model is tested on worn profiles obtained by using different grinding paper grades and roughness 
is assessed by tactile profilometry. Then an inverse method is developed to obtain simulated profiles that present the same morphology as the 
experimental ones. The results from this study prove that our method allows simulation of profiles with elementary functions that 
characterize the wear process.

Keywords:Wear; Roughness; Profilometry; Simulation; Smoothing effect

1. Introduction

Roughness is of much importance in surface response in
relation to mechanical or physical solicitations. An impor-
tant concept is to construct an analytical description that well
represents the original topography of the surface. Then it be-
comes possible to perform some analytical calculi on this
surface, i.e. parameter estimations, boundary conditions on
differential equations, etc. There is a high number of sig-
nal transforms that allows us to model the surface, such as
the Fourier transform, the Haar and Hilbert ones, etc. and
more recently the wavelet transform. All these transforms
suppose that the surface can be represented by an infinite (or
finite for discretized profiles) number of elementary func-
tions (cosines, rectangle, Gaussian, etc.). However, do these
elementary functions possess a physical sense with regard
to the observed phenomena? It is true for periodic acoustic
signals; the Fourier transform possesses some physical sense
because the solution to a wave equation is often a series of
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sinus functions. However, it becomes risky to postulate that
the formation of a machined surface can be explained by a
superposition of sinus functions. If so, elementary functions
must model the basic principle of the creation of the sur-
face topography and include its fractal properties (as a high
number of surfaces possess fractal properties[1–8]). Since
Mandelbrot’s works[9,10], it has been shown that numer-
ous classes of surfaces cannot be modeled with derivative
functions and then are nowhere derivative[11–14]. These
surfaces are called fractals and all metric parameters built
on these surfaces depend on the measurement scale. The
fractal properties imply that between two adjacent points of
the surface, however close they are, the curves cannot be
seen as increasing or decreasing. A method intensively used
to simulate fractal surfaces is the Fractional Brownian Mo-
tion [15,16]. However, this method involves restriction of the
mathematical properties of the surfaces (like self affinity).
Moreover, some artifacts in the Fast Fourier Transform make
this method uncertain: this theory supposes that the spec-
trum of the surface follows the power lawP(f)∝ f 2�−5 and
highest frequencyfh » 1/L, whereL is the scanning length
[16,17].



Nomenclature

a regression slope of logP(f) versus logf
A scaling amplitude factor
f frequency of the power spectrum
fh highest calculated frequency of the power

spectrum
FCF circle function
FMSCF Stochastic circle function with added terms
FSCF Stochastic circle function
g elementary function of period 1 defined on [0,

. . ., 1]
�(Gf ) fractal dimension associated to the graph of the

functionf
H Hölder exponent
lx characteristic length for local peak radius cur-

vature computation (seeAppendix C)
ly characteristic height for local peak radius cur-

vature computation (seeAppendix C)
L scanning length of profiles
p integer higher than unity
P(f) power spectrum
rc local peak radius curvature (seeappendix C)
W Weierstrass function
x abscissa of the profile

Greek letters
α angle to define differentg function
β amplitude scaling factor
φn Gaussian random numbers
γ frequency parameter greater than unity
ϕn uniform random numbers
Ψn positive Gaussian random numbers

Terms
ANAM average normalized autocorrelation method
CF circle function
d.f. degree of freedom
D fractal dimension calculated by ANAM
F Fisher value
MS mean square
pc critical value of a statistical test
PDS power density spectrum
peaks number of peaks per inch of profiles
Ra mean roughness amplitude
Rt range amplitude
WF Weierstrass function

Furthermore, it must be borne in mind that all experi-
mental devices involve a certain amount of smoothing or
degradation of the real surface[18–22]. As the smoothing
effect is highly non-linear, it becomes very hard to estimate
the effect of smoothing on the original data. However, it re-

mains of paramount importance to quantify the scale where
the smoothing effect plays a role.

The aim of this paper is to define an analytical model of
the topography of a surface taking into account the micro-
scopic features of the elementary wear process at a given
scale and amplitude (i.e. the shape of the grooves generated
by a grain of silicon carbide during the grinding process of the
surface of an aluminum sheet is investigated here). Based on
the concept of fractal geometry, a mathematical summation
of several elementary processes at different scales and am-
plitudes is used to generate final simulated profile that look
like the experimental one recorded by tactile profilometry.
Furthermore, on these modeled profile, a simulation of a me-
chanical scanning is applied to analyze and quantify the scale
on which the smoothing effect must be considered.

2. Analytical model: the Fractal circle function

The aim of this chapter is to create a new fractal function
that describes the grinding process. We shall assume that
grains of silicon carbide of the grinding papers have approx-
imately a hemispherical shape. We shall then assume that the
scratches can be seen as indentations having a circular shape
which follows a power law. As a consequence, the profile is
described as a sum of elementary half-circles. The basic idea
is to show that a high number of ground profiles looks like
the graph of this function.

Let us first define an elementary functiong(x) of period 1
on the [0,. . ., 1] interval as follows:

g(x) =
√

0.52 − (x − 0.5)2 x ∈ [0, . . . , 1] (1)

We then propose the deterministic Fractal circle function
(Fig. 1):

FCF(x) = A

∞∑
n=0

2−nHg(2nx) (2)

whereH ∈ [0, . . ., 1] and Ais a scaling amplitude factor.

Theorem. The fractal dimension of the profile�(Gf ) is
given by:

�(Gf ) = 2 − H (3)

To take into account the stochastic component of experi-
mental profiles, a stochastic version of the previous function
given by Eq.(2) (Fig. 2) must be formulated:

FSCF(x) = A

∞∑
n=0

Ψn2−nHg(2nx + ϕn) (4)

whereΨn are positive Gaussian random numbers that phys-
ically represent the stochastic variation of stress during the
grinding process, andϕn are uniform random numbers that
represent the disorientation of the grooves due to the rotation



Fig. 1. Fractal circle function: (a0–a3) representg(20x), . . ., g(23x) and (b0–b3)
0∑

n=0
2−n/2g(2nx), . . . ,

3∑
n=0

2−n/2g(2nx).

of the grinding disk. These numbers leave the fractal dimen-
sion unchanged. In fact,Ψn-values allow us to moderate the
perfect circle hypotheses of theg function. An analysis re-
ported inAppendix Aproves that taking a quarter of a circle
rather a half to define theg functions does not change the
amplitude parameters such Ra or the frequency ones, such
as the number of peaks and this is confirmed for any fractal
dimension�(Gf ).

Only a few terms are needed to discretize the curve be-
cause of the exponential decrease in the period in theg(x)
function. Forn= 0, the function is defined on [0,. . ., 1],n= 1
on [0, . . ., 0.5],n= 2 on [0,. . ., 0.25] and so on. This means
that very quickly the period of the function will reach the sam-

pling length. Consequently, the shape of elementary functions
will often appear on the graph ofFSCF(x). To avoid this nu-
merical fact, we have to add new terms to the fractal series
without modifying the fractal dimension. We then retain the
new function:

FMSCF(x, p) = A

∞∑
n=0

Ψn2−(nH/p)g(2n/px + ϕn) (5)

with p an integer higher than unity.
As a consequence, the spectrum of the function Eq.(5)

tends to be more continuous than those described in the liter-
ature[23]. It must be outlined that these non-integer indicia



Fig. 2. Stochastic circle function with four fractal dimensions corresponding toH ∈ {1, 0.8, 0.5, 0.2}.

(n/p) can be introduced for any fractal function described by
series, such as the Knopp function[12]. It becomes obvious to
compare the efficiency of our function with the conventional
Weierstrass one because of frequent use in the profile rough-
ness modeling. By spectrum analyses, it is shown that our
circle function gets a more continuous spectrum which better
corresponds to the grinding process (seeAppendix B). The
use of Eq.(5) to model profiles allows us to estimate more
efficiently the numerical fractal determination of simulated
profiles.

3. Study of worn surfaces

3.1. Analyses of experimental profiles

A pure aluminum sheet was ground with paper grade 500.
Then 30 profiles were recorded using a tactile profilometer
with a stylus radius of 10�m. Fig. 3a shows an example
of a ground profile with paper grade 500.Fig. 4 shows the
variation of the local peak radius curvature logrc(lx) versus
log lx (seeAppendix Cfor the definition of the local peak
radius curvaturerc(lx)). As can be observed in this figure, a
cross-over appears aroundrc(lx) = 10 �m. Under this critical
value,rc(lx) seems to be constant and over this value,rc(lx)
follows the power law given by Eq.(C1).

3.2. Simulation of worn profiles

It can be noticed that only two parameters have to be
determined for the definition of the Fractal circle function
proposed in this paper: the amplitude factorAand the Ḧolder
exponentsH. Thep-value is chosen to be high enough (p= 10)
so as to avoid statistical artifact in the spectrum representa-

Fig. 3. (a) Profile of a pure aluminum sheet surface (ground with grain size
500) recorded by means of a tactile profilometer with a stylus radius of
10�m. (b) Simulation of a profile by Stochastic circle function. (c) Sim-
ulation of the scanning of the profile (b) considering a stylus radius of
10�m.



Fig. 4. Evolution of the peak radius curvature logr(l x) vs. loglx for profiles
shown inFig. 3a and c.

tion. To calculate the pair (H,A), we have to discuss the
properties of the fractal peak radius curvature. According to
Eq. (C1), if the profile is scaled in amplitude by a factorβ,
thenrc(lx) = l2x/8βly and finally in log–log representation of
log rc versus loglx, the curves decrease vertically to a value
of logβ. If H changes toH′, the fractal dimension changes
from �(Gf ) = 2 −H to �(Gf ) = 2 −H′ and as a consequence
from Eq. (C2), the slope of logrc(lx) versus loglx changes
too. Then the slope of this graph related to the experimen-
tal profiles is estimated to obtain theH exponent. To calcu-
lateA, the simulated curve is plotted by takingA= 1 with
the value ofH firstly estimated. Finally, theA-value is de-
duced by analyzing the vertical difference between simulated
curves and experimental curves.Fig. 4represents the log–log
graph of both the experimental and the simulated evolutions
of the fractal peak radius curvature versus the evaluation
length.

3.3. Smoothing effect of the stylus radius

The basic idea we shall develop is to apply the theory of
the fractal peak radius curvature of the profile to detect the
scale where the measurement system introduces a smoothing
effect on data measurement. In fact, the smoothing effect
will increase the fractal peak radius curvature on the scale
measurement.

We have decided to write an algorithm that simulates the
stylus effect that we shall apply to theFMSCF functions. By
means of an inverse method, the scaling factor and the fractal
dimension are adjusted to experimental data to reproduce pro-
files that look like the grinding profiles onto which the stylus
scanning effect was simulated with a stylus radius curvature
of 10�m. Fig. 3c shows the simulated profile corresponding
to the experimental one (Fig. 3a) including stylus integration
simulation algorithm on original simulated profiles (Fig. 3b).
Table 1represents the usual roughness parameters on the ex-
perimental profiles, simulated profiles and stylus integration
simulation algorithm profiles (Ra: mean roughness ampli-
tude, Rt: range amplitude, peaks: number of peaks per inch,
D: fractal dimension calculated by the average normalized
autocorrelation method (ANAM)[24].

Table 1
Roughness parameters computation of profiles shown inFig. 3

Roughness
parameters

Experimental
r = 10 (�m)

Simulated
r = 0 (�m)

Simulated
r = 10 (�m)

Ra 0.63 0.66 0.64
Rt 4.64 4.32 4.64
Peaks/inch 820 1186 814
Fractal dimension 1.08 1.23 1.09

The following remarks have to be made:

• Although our inverse method only calculated the two
parameters (A,H) in Eq. (5), the experimental and sim-
ulated values of other roughness parameters are statisti-
cally equal (like peaks, Ra, etc.). We can therefore infer
that:
o Our original fractal model is adequate to model some

complex worn surfaces such as ground ones with only
two parameters. Then the mechanism seems to be de-
scribed by an amplitude phenomenon, a circle function
basis, stochastic components and finally the fractal di-
mension.

o The fractal dimension estimation calculated by the
ANAM seems very pertinent since estimated fractal di-
mension and theoretical fractal dimension given byH in
Eq.(5) are equal as well as the frequency roughness pa-
rameters (peaks). The experimental profile then seems
to be both Ḧolderian and anti-Ḧolderian since both the
ANAM and the power law of the fractal peak radius
curvature require these properties.

• The fractal dimension of a simulated profile with stylus
integration is lower than the original simulated one be-
cause of a smoothing effect. This is also confirmed by the
decrease in the number of peaks, characterizing a ‘less’
fractal profile.

• Amplitude parameters are quite constant (with a 10�m
stylus). The stylus effect does not fundamentally affect the
amplitude parameter (however, the stylus radius should not
be wide).

We then plot inFig. 4, logrc(lx) versus loglx for the three
categories of profiles (in fact these are mean value of 30 pro-
files). The following remarks can be made:

• When lx> 30 �m, all points are confounded in a linear
log–log relation meaning that: (1) there is no quanti-
fied stylus effect, (2) experimental and simulated profiles
are similar in a wide range of scales, (3) Hölderian and
anti-Hölderian hypothesis on experimental profiles are re-
spected.

• Both simulated stylus integration and experimental pro-
files present a step at the values of 10�m, which is exactly
the radius of curvature of the tip. Our method allows us to
detect the stylus effect and more particularly, to quantify
the radius of curvature of the profilometer. As a conse-
quence, this method allows us to give the critical thresh-
old on lx and alsoly under which measurement effect can



affect a metric value constructed on the signal. This fact is
a very important feature in the topographic measurement
area.

• For the experimental profiles, iflx< 2 �m the peak radius
curvature increases linearly in log–log plot withlx. This
effect is related to the conversion from analogical to nu-
merical mode that produces a white noise with low ampli-
tude. Therefore, the method we have proposed allows us
to detect high frequency components and also to quantify
the amplitude range where measurement can be affected.

4. Conclusion

In this paper, we have proved that a process like grinding
can be characterized with an elementary function and the
worn profile can be modeled by a fractal curve defined by
only two parameters (amplitude and fractal dimension) with
an infinite summation of these elementary functions. Thanks
to an inverse method and a multiscale characterization of the
peak radius curvature of the profile, it was shown that the
experimental profile was well modeled all over the scale. It
was also shown that the fractal characterization allows us to
find the scale where measurements become uncertain (in our
cases the stylus integration) and to reconstruct the details that
have been lost. However, to check if elementary functions
well describe the process under study, we have to construct a
method to measure the similarity of different profiles to verify
if a given elementary function is better adapted than another.
Using the theory of information, we are still working on this
concept and results will soon be published.

Appendix A. The Fractal α-circle function

The aim of this appendix is to analyze the effect on the
final modeled profiles by choosing a part of circle rather than
half-circle one. Let us now define different circular functions
represented onFig. A1. To test the effects of theα angle on
the profile shapes, 10 profiles with different angles and frac-

Fig. A1. Spectra of profiles with theoretical fractal dimension of 1.5 simu-
lated by the Weierstrass function (left) and the circle function (right).

Fig. A2. Analyses of the circle angle (α) and the fractal dimension (∆)
effects on the Ra parameter.

Fig. A3. Analyses of the circle angle (α) and the fractal dimension (∆)
effects on the number of peaks.

tal dimensions∆ (varying from one to two) are simulated.
Then two bivariate analyses of variance are processed on two
roughness parameters to quantify the effect of both Ra (am-
plitude roughness parameter) and number of peaks per inch
(frequency parameter).Fig. A2andFig. A3represent, respec-
tively, theα and∆ effects on Ra and the number of peaks,
andTables A1 and A2represent their associated analyses of
variance. Thanks to the Fisher test, it could be concluded that
there is no effect of theα angle on both roughness parameters
within a 5% error (on the contrary, fractal dimension gets a
major influence on these parameters).

Appendix B. Comparison between the Weierstrass
function and the circle function

The aim of this appendix is to compare the conventional
Weierstrass function (WF) that is usually used to model the

Table A1
Analyses of variance to test theα effect, the fractal dimensions and their
associated interaction (∆× α) on the Ra parameter

Ra d.f. effect MS effect d.f. error F pc-level

∆ 10 0.108801 990 258.4 0
α 8 0.000440 990 1.04 0.39
∆ × α 80 0.000505 990 1.19 0.12



Table A2
Analyses of variance to test theα effect, the fractal dimensions and their associated interaction (∆ × α) on the number of peak

Number of peaks d.f. effect MS effect d.f. error F pc-level

∆ 10 3.1538E + 14 990 22511 0
α 8 2.9248E + 10 990 2.08 0.05
∆ × α 80 9119898624 990 0.65 0.99

roughness profiles with our circle function (CF). WF is de-
fined by:

W(x) = A

+∞∑
n=0

φn

cos(2πγnx + ϕn)

γHn
(B1)

with our functional circles given by Eq.(5). According to
the fractal theory, the power density spectrumP(s) (PDS) of
both Weierstrass and circle functions present the following
scaling law with the frequencyf:

P(f ) ∝ 1

f 2H+1
(B2)

As a consequence, the fractal dimension could be obtained
by plotting in a log–log coordinate the relation betweenP(f)
andf, the slopea is then related to the fractal dimension by
the relation:

�(Gf ) = 5 + a

2
(B3)

To compare the validity of our function, we shall simulate
both WF and CF functions with a fractal dimension equal to
1.5. Then we shall analyze their related PDS. The aim is to
show that usual WF is not well adapted to model the grind-
ing process by the spectrum analysis. As can be observed
in Fig. B1 (on the left), the WF PDS presents peaks of high
amplitude (harmonics). These harmonics are related to the
proper frequencies of each cos term in Eq.(B1). Experimen-
tal PDS do not present harmonics (carbide grain are deposited
at random, no periodic vibration on the grinding machine,
etc.). As a consequence, some artifacts will be present on
the simulated profiles, which leads to a profile with hetero-
geneous amplitude observed at a given scale that does not
correspond to the grinding profile. On the contrary, our CF

Fig. B1. Evolution of theg(20x) function (n= 0) for different values ofα
(α =π/2: half-circle,α =π/4: quarter-circle, etc.).

PDS present inFig. B1 (on the right) presents a continuous
spectrum without any peaks. To well appreciate the accuracy
of our modeling, we have calculated the fractal dimension of
both spectra. For the WF profiles, we obtains∆WF = 1.334
for a theoretical value of∆Th = 1.5 that gives a systematic bi-
ased error of 17% (underestimation) on the fractal dimension.
On the contrary, for CF, we obtain the value∆CF = 1.509. It
leads to an error lower than 1%, which is only due to stochas-
tic variations (unbiased error) in the spectrum representation
due to stochastic terms introduced in the CF definition.

Appendix C. A fractal definition of the local peak
radius curvature

The curvature radius of a peak,rc, for the fractal curves
makes sense in terms of a scale when observed (Fig. C1). We
postulate that the peak radius curvature can be defined on a
given scale. We choose to calculate the value ofrc by the
following method:

(1) We choose a horizontal line at the levelh that crosses the
profile. Then we calculate a set oflx-values that cross the
intercept line and the profile.

(2) For eachlx-value, the local maximal peak is computed
and gives thely-value.

(3) Therc is then computed from Eq.(C1). These operations
are repeated for all the elements of the set oflx-values

rc(lx) = l2x

8ly
(C1)

(4) Another horizontal height is chosen and steps 1–3 are
repeated.

Theorem. For all non constant continuous uniformly
Hölderian and anti-Ḧolderian functions[23], f defined on

Fig. C1. Definition oflx andly used to calculate the local peak radius cur-
vaturerc(lx).



[a, b], if lx exists, then the fractal dimension of the profile is
given by:

�(Gf ) = lim sup
lx→0

(logrc(lx)/ log lx) (C2)
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