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A SUB-RIEMANNIAN MODULAR FRAMEWORK FOR

DIFFEOMORPHISM BASED ANALYSIS OF SHAPE ENSEMBLES

BARBARA GRIS ∗, STANLEY DURRLEMAN† , AND ALAIN TROUVÉ‡

Abstract. Deformations, and di�eormophisms in particular, have played a tremendous role in
the �eld of statistical shape analysis, as a proxy to measure and interpret di�erences between similar
objects but with di�erent shapes. Di�eomorphisms usually result from the integration of a �ow of
regular velocity �elds, whose parameters have not enabled so far a full control of the local behaviour
of the deformation.

In this work, we propose a new mathematical and computational framework, in which di�eo-
morphisms are built on the combination of local deformation modules with few degrees of freedom.
Deformation modules contribute to a global velocity �eld, and interact with it during integration so
that the local modules are transported by the global di�eomorphic deformation under construction.
Such modular di�eomorphisms are used to deform shapes and to provide the shape space with a
sub-Riemannian metric.

We then derive a method to estimate a Fréchet mean from a series of observations, and to decom-
pose the variations in shape observed in the training samples into a set of elementary deformation
modules encoding distinctive and interpretable aspects of the shape variability. We show how this
approach brings new solutions to long lasting problems in the �elds of computer vision and medical
image analysis. For instance, the easy implementation of priors in the type of deformations o�ers a
direct control to favor one solution over another in situations where multiple solutions may �t the ob-
servations equally well. It allows also the joint optimisation of a linear and a non-linear deformation
between shapes, the linear transform simply being a particular type of modules.

The proposed approach generalizes previous methods for constructing di�eomorphisms and opens
up new perspectives in the �eld of statistical shape analysis.

1. Introduction. Shape data play a very peculiar role within the blooming
�eld of data science. Unlike many other kinds of data, the �right� representation of
shape data remains largely an open problem despite a long lasting research e�ort,
for instance in the �elds of computer vision and medical image analysis. Another
speci�city of shape data is their ability to be easily visualized and interpreted. This
fact often demands the derivation of learning methods that yield statistical estimate
also in the form of shapes that may be visualized and interpreted. The de�nition of
generative statistical models is notably di�cult due to the inherent structure of shape
data, and the absence of obvious mathematical framework to de�ne a shape space
that accounts for this structure.

A category of methods builds on the idea to deform one shape onto another
to quantify their di�erences. The deformation is used here to position one shape
with respect to another in a high-dimensional manifold. This line of works, which
follows the pioneering work of Grenander, grounded itself in the seminal vision of
D'Arcy Thompson [13, 32], has played an important role in the �elds of medical
image analysis, computational analysis, or biological shape analysis. In these �elds,
shape data are derived from 2D or 3D imaging systems, and collections of such data
form a set of observations of the same organ, tissue or structure that vary in shape
across di�erent individuals. Since such samples are usually observed in full (e.g.
without occlusion) and share a similar topology, it makes sense to try to estimate a
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di�eomorphic deformation, namely a smooth and invertible space deformation with
smooth inverse, which warps one shape onto another.

Various mathematical constructions have been derived from this idea [7, 24, 34].
Such constructions usually include the de�nition of a particular group of di�eomor-
phisms and an action of the deformation on the shape data, which together yields
then a shape space provided with a metric. These methods may be pooled under the
umbrella of the generic concept of �shape spaces� as recently formalised in [4]. A group
of di�eomorphisms G is built by integrating trajectories of vector �elds belonging a
�xed Hilbert space V , and the inner product of this space allows the de�nition of a
Riemannian structure on the group G. Then a shape space is de�ned as a manifold
M , on which this group G may act. The Riemannian structure on G enables the
de�nition of a distance on the shape space M .

These geometrical constructions have been then included into generative statisti-
cal models to estimate an �average shape�, usually called �template�, and the defor-
mations warping the template to each observation [2, 9, 21, 22, 33]. The parameters
of these deformations are used to give an estimate of the variance of the observa-
tions in the tangent-space of the manifold M at the template point. Template and
deformations together are referred to as an �atlas�.

Key to these statistical shape analysis methods is the de�nition of the defor-
mation group and its metric. In the vast majority of cases, the metric structure
of the deformation group is inherited from the Hilbert space V of driving velocity
�elds and therefore o�ers little control over the local behaviour of the deformations.
Resulting deformations show complex non-linear patterns, which are di�cult to iso-
late and interpret. Deformation parameters usually give only a vague description of
these patterns. Coming back to Grenander's vision, as detailed in the introduction
of [14], shape analysis methods should learn from the observations the typical local
deformation patterns, which are indicative of the biological processes that have led
to the observed variability. By nature, these patterns are constrained to be local and
have very few degrees of freedom. Typical types of such local patterns may include
local scaling, torque, or fanning pattern for instance. In the Grow Random Iterated
Di�eomorphisms (GRID) model [15, 25, 31], deformation patterns are built thanks
to active points, called seeds, whose placements are modelled as a Poisson process
and which generate local particular deformation. The global di�eomorphism results
in the iterative composition of such deformations. Locations of seeds and types of
deformations are estimated at each time so that they maximize the likelihood and
then are not transported by the di�eomorphism between iterations.

It is relatively easy to de�ne vector �elds as the superimposition of local in�nites-
imal deformations of a given type. What is di�cult is to know how to update this
vector �eld during integration to generate large di�eomorphic deformations. An idea
may be to keep the vector �eld stationary as in [6, 27, 36], but then the local defor-
mation generators are attached to a �xed background, and not to the object that is
deformed. One needs not only to combine local deformation generators into a sin-
gle vector �eld, but also to transport the local generators with the deformation that
results from the integration of the velocity �elds.

In the framework of Large Di�eomorphic Deformation Mapping (LDDMM) [24],
the structure of the velocity �elds depends on the data, although it is possible to
constrain the velocity �eld to be generated by a set of local translations acting at
a speci�c scale [10]. Other attempts to gain control over the local structure of the
deformation is to replace the local translation, which is a singular momentum, by a
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higher-order momentum encoding local a�ne transform [17, 29]. The scale at which
translations act may be also adjusted by using a superimposition of windowing func-
tions with various scales and to select the ones that are the most relevant to describe
shape variability [26, 28]. In [35], local constraints depending on the shape are intro-
duced, and allow a particular control on the structure of vector �eld. This structure
evolves along the resulting �ow and induces a sub-Riemannian structure on the shape
space. But in [35] the idea is more to provide good �nite dimensional approximations
to the full group of deformations through the introduction of constraints than consider
the introduction of more prior-based constraints.

The main contribution of this work is to de�ne �modular� di�eomorphisms, which
are de�ned by a set of local in�nitesimal deformation generators called modules, ex-
tending the work of [16]. These modules combine to generate velocity �elds embedded
in a common Hilbert space V . Deformations resulting from the integration of trajec-
tories of such velocity �elds are used to update the parameters of the modules. This
construction forms a dynamical system with a feedback loop, in which modules inter-
act in a dynamical way. Shapes can be deformed by these modular di�eomorphisms,
and a concept of cost associated to each module provides the shape space with a
sub-Riemannian metric. This structure in general is not Riemannian because of the
modularity constraints on the velocity �eld. We de�ne modules and costs, so that
elementary modules may be combined into more complex compound modules, thus
allowing the de�nition of a tree structure for modules. The deformation is determined
by the root module, which may be decomposed in a hierarchy of sub-modules.

Modular di�eomorphisms allow an explicit control of the local structure of the
di�eomorphisms, in the sense that one may choose beforehand the type and scale of
the local deformation in each region of the space. Their parameters have a clear and
intuitive meaning. They depict the dynamical modular structure of the deformation.
An interesting feature of this construction is that it encompasses previous models of
di�eomorphic deformations, such as those in [10, 24].

In the following, we present the geometrical construction of the modular di�eo-
morphisms in Section 2 and 3). In Section 4, we include such deformation model in
a method to build an atlas from a series of shape data. We show then in Section 5
how this approach may bring new solutions to simple but yet challenging problems in
shape analysis.

2. Modular large deformation.

2.1. Deformation Module. We recall �rst the mathematical framework which
de�nes deformations as the result of the integration of time-varying velocity �elds. Let
d and ℓ be non-zero integers, we de�ne Cℓ

0(Rd) the space of vector �elds of class Cℓ on
Rd whose derivatives of order less than or equal to ℓ converge to zero at in�nity and we

equip it with norm |v|ℓ = sup{|∂
ℓ1+···+ℓdv(x)

∂x
ℓ1
1 ···xℓd

d

| | x ∈ Rd, (ℓ1, · · · , ℓd) ∈ Nd, ℓ1+·+ℓd ≤ ℓ}

such that it is a Banach space. We de�ne Diffℓ
0(Rd) the space of Cℓ−di�eomorphisms

of Rd that converge to identity at in�nity, that is an open set of the a�ne Banach space
Id+Cℓ

0(Rd) and as such equipped with a natural smooth di�erential structure. We will
consider particular trajectories of Diffℓ

0(Rd) de�ned as �ow of particular trajectories
of Cℓ

0(Rd).
Proposition 1. [5] Let v be an element of L1([0, 1], Cℓ

0(Rd)), ie a time-dependent
vector �eld such that t ∈ [0, 1] 7→ |v(t)|ℓ is integrable. Then there exists a unique
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absolutely continuous solution φv, called the �ow of v, to the system{
φ̇v(t) = v(t) ◦ φv(t)
φ(0) = Id

where ϕv(t) ∈ Diffℓ
0(Rd) for any t ∈ [0, 1].

This proposition allows us to consider �ows of time-dependent vector �elds, where
�time� t refers here to a variable of integration. As we are interested in how these
�ows can deform a certain shape, we need to precise what is a shape, and how a
di�eomorphism of Diffℓ

0(Rd) can act on it. We will use the notion of shape space
de�ned by S. Arguillère in [5], which we recall here.
De�nition 1. Let O be a manifold of �nite dimension and k ∈ N∗. Assume that the
group Diffℓ

0(Rd) continuously acts on O, according to the action

Diffℓ
0(Rd)×O → O

(φ, o) 7→ φ · o (2.1)

We say that O is a Ck-shape space of order ℓ on Rd if the following conditions are
satis�ed:

1. for each o ∈ O, ϕ ∈ Diffℓ
0(Rd) 7→ ϕ · o is Lipschitz with respect to the norm

| · |ℓ and is di�erentiable at IdRd . This di�erential is denoted ξo and is called
the in�nitesimal action of Cℓ

0(Rd).
2. The mapping ξ : (o, v) ∈ O × Cℓ

0(Rd) 7→ ξov is continuous and its restriction
to O × Cℓ+k

0 (Rd) is of class Ck.
An element o of O is called a shape, and Rd will be referred to as the ambient space.

The simplest example of shape space is the one of landmarks, where shapes are
given as a collection of a �xed number of points: O = {o = (x1, · · · , xn) ∈ (Rd)n |
xi ̸= xj if i ̸= j}. The action of Diffℓ

0(Rd) is given by ϕ · o = (ϕ(x1), · · · , ϕ(xn)),
namely the deformed shape, and the in�nitesimal action for v ∈ Cℓ

0(Rd) is ξo(v) =
(v(x1), · · · , v(xn)) for o = (x1, · · · , xn) ∈ O, namely the velocity of the trajectories of
shape points. These actions make O a shape space of order ℓ for any ℓ ≥ 1.

Another example is a set of N Delta Dirac 1-currents encoding tangents of a
2D or 3D curve [11]. Shapes in this shape space are represented by base points
ck and tangent vectors τk. The action of Diffℓ

0(Rd) (where d = 2 or 3) is given
by ϕ. ((c1, τ1), . . . , (cN , τN )) = ((ϕ(c1), dc1ϕ(τ1)), . . . , (ϕ(cN ), dcNϕ(τN ))), and the in-
�nitesimal action as ((v(c1), dvc1(τ1)), . . . , (v(cN ), dvc1(τN ))).
Remark 1. If O1 and O2 are two shape spaces of order ℓ on Rd, then O = O1 ×O2

is also a shape space of order ℓ on Rd.
The following proposition was proved in [5] and shows that a shape transported

by a �ow of di�eomorphisms (see Proposition 1) satis�es a di�erential equation.
Proposition 2. For every o ∈ O, the mapping ϕ 7→ ϕ · o is of class C1. Moreover, if
v ∈ L1([0, 1], Cℓ

0(Rd)), for a ∈ O, the curve o : t ∈ [0, 1] 7→ o(t) = φv(t) ·a is absolutely
continuous and satis�es for almost every t ∈ [0, 1], ȯ = ξo(v).

2.1.1. De�nition and �rst examples. We will now de�ne the core concept of
our approach, the concept of deformation module. Intuitively, a deformation mod-
ule is a structure that embeds a vector �eld generation mechanism. This mechanism
depends on some geometrical descriptors, which specify the local structure of the
induced vector �elds (think about the positioning of some actuators), and a �nite
numbers of control parameters commanding the actuators. For a given positioning,
a cost is speci�ed for any possible values of the control parameters, so that optimal
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Field generator

In�nitesimal action

cost

Fig. 2.1. Schematic view of a deformation module.

policies can be de�ned. For each resulting vector �elds, a feedback mechanism is de-
�ned to update the positioning of the geometrical descriptors. Desirable consistency
properties lead to consider the geometrical descriptors as de�ning a shape on which
one has a di�eomorphic action. Hence following [35], the positioning of the geometri-
cal descriptors will be represented as a shape in a shape space.

In the following we set d ∈ N∗ the dimension of the ambient space.
De�nition 2. Let k, ℓ ∈ N∗. We de�ne M = (O,H, ζ, ξ, c) as a Ck-deformation
module of order ℓ with geometrical descriptors in O, controls in H, in�nites-
imal action ξ, �eld generator ζ and cost c, if

• O is a Ck-shape space of Rd of order ℓ with in�nitesimal action ξ : Cℓ
0(Rd)×

O −→ TO,
• H is a �nite dimensional Euclidean space,
• ζ : (o, h) ∈ O ×H → (o, ζo(h)) ∈ O × Cℓ

0(Rd) is continuous, with h 7→ ζo(h)
linear and o 7→ ζo of class Ck,

• c : (o, h) ∈ O×H → co(h) ∈ R+ is a continuous mapping such that o 7→ co is
smooth and for all o ∈ O, h 7→ co(h) is a positive quadratic form on H, thus
de�ning smooth metric on O ×H.

A deformation module is de�ned by the way it can generate a vector �eld, which
is given by the �eld generator ζ, and by the feedback action on vector �elds, which is
given by the in�nitesimal action ξ. A schematic view of the construction of a module
can be seen in �gure 2.1.
Remark 2. By de�nition, the geometrical descriptors of a deformation module are
considered as a �shape� in the shape space O. In the following examples, these �shapes�
are the centers of the scaling, of the rotation or the base points of translation vectors.
The fact that they are �shapes� in the sense of De�nition 1 allows us to use the global
deformation under construction to deform or transport them via the in�nitesimal ac-
tion ξ. These �shapes� may or may not coincide with points from the input shape data
set. For example, it is sensible not to locate the center of a scaling on the boundaries
of an object. We will see in the following that the input shape data may be considered
as geometrical descriptors of a particular module, called a silent module, which is de-
formed thanks to its in�nitesimal action, but which does not contribute to the global
velocity �eld.

We will now present two examples of simple deformation modules, a richer pre-
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Fig. 2.2. Schematic view of a combination of three deformation modules.

sentation of di�erent deformation modules will be done in Section 2.3
First example: sum of local translations. This �rst example explains how the

construction of [10] can be seen as a Ck-deformation module of order ℓ for any k, ℓ ∈
N∗. We want to build a deformation module M that generates vector �elds that are
a sum of D local translations acting at scale σ in the ambient space Rd (d ∈ N∗).
We set Vσ the scalar Gaussian Reproducing Kernel Hilbert Space (RKHS) of scale
σ (its kernel will be denoted Kσ : (x, y) ∈ Rd × Rd 7→ exp(−|x − y|2/2σ2)), O .

=
(Rd)D the shape space of D landmarks with in�nitesimal action ξo : v ∈ Cℓ

0(Rd) 7→
(v(zi))i, where o = (zi) ∈ O (application of the vector �eld at each point), and
H

.
= (Rd)D (families of D vectors). For o = (zi) ∈ O, we de�ne ζo : h = (αi) ∈ H 7→∑D
i=1Kσ(zi, ·)αi and co : h = (αi) ∈ H 7→ |

∑
iKσ(zi, ·)αi|2Vσ

. It is easy to show that
M = (O,H, ζ, ξ, c) de�nes a deformation module of order ℓ.

Second example: local scaling or rotations. Let ℓ, k ∈ N∗. The second example is a
Ck-deformation module of order ℓ which generates vector �elds that are local scalings
of �xed scale σ ∈ R+ in the ambient space R2. A local scaling is parametrized by
its center o ∈ R2 and its scale factor h ∈ R. The point o plays the role of the
geometrical descriptor, and the factor h the control parameter. From o, we build 3
points zj(o) and 3 unit vectors dj as described in Figure 2.3 (they also depend on the
�xed parameter σ). The idea is to build the vector �eld generated by the geometrical
descriptor o and the control h as an interpolation of the values at these points zj(o)

thanks to vectors dj : ζo(h)
.
= h

∑3
j=1Kσ(zj(o), ·)dj , where Kσ is the kernel of the

scalar gaussian RKHS of scale σ. We emphasize here that points zj(o) and vectors
dj are intermediate tools used to build the vector �eld but that the latter is only
parametrized by o and h. We then de�ne the deformation moduleM by the following
spaces : O .

= R2, H = R and the following mappings : for o ∈ O, ζo : h ∈ H 7→ ζo(h)
as given above, ξo : v ∈ Cℓ

0(R2) 7→ v(o), the velocity �eld at the scaling center, and
co : h ∈ H 7→ |ζo(h)|2Vσ

= h2
∑

j,j′ Kσ(zj , zj′)d
T
j dj′ , the squared norm of the generated

velocity �eld in the RKHS Vσ. Then M = (O,H, ζ, ξ, c) de�nes a Ck-deformation
module of order ℓ. Indeed space O is a Ck-shape space (of one landmark) of order
ℓ and ζ : o ∈ O 7→ ζo ∈ L(H,Cℓ

0(R2)) is locally Lipschitz because distances between
zi(o) and zi(o

′) (1 ≤ i ≤ 3) are the same as the distance between o and o′. For the
same reason ζ is globally continuous. Other properties can be easily veri�ed. This
construction can be generalised to any other a�ne deformation by changing the rule
to build vectors dj , as for example in Figure 2.4 where the generated vector �eld is a
local rotation.
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Fig. 2.3. Local scaling. Geometrical descrip-
tor o (in blue) and intermediate tools (in black).
Plot of the resulting vector �eld in green.

Fig. 2.4. Local rotation. Geometrical de-
scriptor o (in blue) and intermediate tools (in
black). Plot of the resulting vector �eld in green.

A key point in the design of a consistent approach for deformation modules is the
possibility to deduce existence of optimal deformations between shapes as solutions
of the optimal control problem associated with the choice of a cost for the control
parameters. This requirement imposes constraints on the choice of costs. For instance,
it seems important for the cost to be related with some metric of the induced vector
�eld. This is the spirit of the following embedding condition:
De�nition 3. Let M = (O,H, ζ, ξ, c) be a Ck-deformation module of order ℓ. We
say that M satis�es the Uniform Embedding Condition (UEC) if there exists
a Hilbert space of vector �elds V continuously embedded in Cℓ+k

0 (Rd) and a constant
C > 0 such that for all o ∈ O and for all h ∈ H, ζo(h) ∈ V and

|ζo(h)|2V ≤ Cco(h)

Remark 3. Examples of deformation modules presented previously satisfy this UEC.
Indeed in these two examples the in�nitesimal action ξ takes values in the Hilbert space
Vσ which is continuously embedded in Cℓ+k

0 (Rd) (see [11]), and the cost is de�ned by
the squared-norm of the generated vector �eld in Vσ.

2.1.2. Combination. We have presented in the previous section examples of
simple, base deformation modules generating simple vectors �elds. We want now
to build multi-modular vector �elds by summing vector �elds generated by di�erent
deformation modules. In order to do so, we de�ne the combination of modules as
follows (a schematic view of this combination can be seen in Figure 2.2).
De�nition 4. Let M l = (Ol,H l, ζl, ξl, cl), l = 1 · · ·L, be L Ck-deformation modules
of order ℓ. We de�ne the compound module of modules M l by C(M l, l = 1 · · ·L) =
(O,H, ζ, ξ, c) where O .

=
∏

l Ol, H
.
=

∏
lH

l and for o = (ol)l ∈ O, ζo : h = (hl) ∈
H 7→

∑
l ζ

l
ol(h

l), ξo : v ∈ Cℓ
0(Rd) 7→ (ξlol(v))l ∈ ToO and co : h = (hl) ∈ H 7→∑

l c
l
ol(h

l).
A key point of our framework is the following stability result under combination:

Proposition 3. If M l = (Ol,H l, ζl, ξl, cl), l = 1 · · ·L, are Ck-deformation modules
of order ℓ, then C(M l, l = 1 · · ·L) is a Ck-deformation module of order ℓ. Further-
more, if each M l satis�es UEC, then C(M l, l = 1 · · ·L) also satis�es UEC.
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Proof. It is clear that C(M l, l = 1 · · ·L) is a Ck-deformation module of order ℓ. Let
suppose that each M l satis�es UEC. We de�ne

π : w = (w1, ..., wL) ∈W
.
=

∏
l

V l 7→
∑
i

wi ∈ Cℓ
0(Rd).

Then space V
.
= π(W ) can be equipped with the following norm: for v ∈ V , |v|2V =

inf{
∑

l |vl|2V l | π((vl)l) = v}, such that it is a Hilbert space continuously embedded in
Cℓ

0(Rd). For any o = (ol) ∈ O and h = (hl) ∈ H we have

|ζo(h)|2V ≤
L∑

l=1

|ζlol(h
l)|2Vl

≤
L∑

l=1

Clc
l
ol(h

l) ≤ ( max
1≤l≤L

Cl)co(h)

and then C(M l, l = 1 · · ·L) satis�es UEC.

Remark 4. Note that even if costs of elementary modules M l are given by clol(h
l) =

|ζlol(h
l)|2V l as in our previous examples, in general (when π is not one to one) the cost

of the compound module is not the squared norm of the compound velocity �eld ζo(h) =∑
l ζ

l
ol in the global embedding RKHS V , i.e. co(h) =

∑
l |ζlol(h

l)|2V l ̸= |ζo(h)|2V . Then
in general C > 1 and c is not the pullback metric on O ×H of the metric on O × V .
The cost co(h) does not directly depend on the norm of the generated vector �eld
ζo(h) but on its speci�c decomposition as a sum of elementary vector �elds ζlol(H

l).
As we will consider con�gurations (o, h) that minimize the cost co(h) (for a given
action ξo(ζo(h)) on the geometrical descriptor), di�erent choices of cost cl can favour
di�erent decompositions for the same resulting vector �eld. Moreover in practice one
can compute easily the cost of the compound module c from the elementary costs cl.

2.2. Large deformations. In this section, we show how large deformations can
be generated from a given deformation module M = (O,H, ζ, ξ, c) satisfying UEC.
These large deformations are obtained as the integration of a trajectory of vector
�elds v : t ∈ [0, 1] 7→ vt ∈ V that are modular, meaning that at each time t one can
write vt = ζot(ht) with (ot, ht) ∈ O × H. During the integration of the trajectory
we want the geometrical descriptor of the module to be transported by the �ow and
therefore, denoting φv the �ow of v (see Proposition 1), that vt belongs to ζot(H),
with ot = φv

t (ot=0).

De�nition 5. Let a, b ∈ O. We denote Ωa,b the set of mesurable curves t 7→ (ot, ht) ∈
O×H where ot is absolutely continuous (a.c.), starting from a and ending at b, such
that, for almost every t ∈ [0, 1], ȯt = ξot(vt), where vt

.
= ζot(ht), and

E(o, h)
.
=

∫ 1

0

cot(ht)dt <∞.

The quantity E(o, h) is called the energy of (o, h) and Ωa,b is the set of controlled
paths of �nite energy starting at a and ending at b.

If UEC is satis�ed, we can build large deformations from these trajectories :
Proposition 4. Let us suppose that M satis�es UEC. Let (o, h) ∈ Ωa,b and for each
t, vt = ζot(ht). Then v ∈ L2([0, 1], V ) ⊂ L1, the �ow φv exists, h ∈ L2([0, 1], H) and
for each t ∈ [0, 1], ot = ϕvt .o0. The �nal di�eomorphism φv

t=1 is called a modular
large deformation generated by a.
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Proof. Let (o, h) ∈ Ωa,b and v : t ∈ [0, 1] 7→ vt
.
= ζot(ht). From the UEC we get :∫ 1

0
|v(t)|2V dt ≤ C

∫ 1

0
cot(ht)dt < ∞ since (o, h) ∈ Ωa,b. Then v ∈ L2([0, 1], V ) ⊂

L1([0, 1], V ) ⊂ L1([0, 1], Cℓ
0(Rd)) and its �ow φv can be de�ned. As explained in

Proposition 2 we can deduce that o(t) = φv
t · a for each t.

Let us now de�ne, for o ∈ O, ||c−1
o || := sup|h|H=1 co(h)

−1 (well de�ned as H is of

�nite dimension). As o 7→ co and t 7→ o(t) = φv
t ·a are continuous, supt ||c−1

ot || is �nite
and then

∫ 1

0
|ht|2Hdt ≤ (supt ||c−1

ot ||)
∫ 1

0
cot(ht)dt <∞ so h ∈ L2([0, 1], H).

Remark 5. A modular large deformation is parametrized by an initial value of geo-
metrical descriptor ot=0 and a trajectory of control h ∈ L2([0, 1],H).

2.3. Examples. We present here a list of possible deformation modules, which
comes for the �rst case with an illustration of a modular large deformation. Most of
these modules will be used in the numerical experiments in Section 5. Some mod-
ules will be presented only in dimension 2, but may be easily generalized in higher
dimensions.

2.3.1. Constrained local transformations. In Section 2.1.1 we presented the
example of a deformation module generating vector �elds that are always a local scal-
ing at a �xed scale σ. In a more general setting, we can design deformation modules
generating a particular type of local transformation by choosing di�erent vectors dj .
Let us �x these vectors dj and therefore the corresponding local transformation A.
Let us now build the deformation module that generates vector �elds that are a sum
of P replications of A at P di�erent locations. We set O .

= (R2)P , H
.
= RP and, for

o = (oi)i ∈ O, ζo : h = (hi) ∈ H 7→
∑P

i=1 hi
∑3

j=1Kσ(zj(oi), ·)dj (with points zj(oi)

de�ned in Section 2.1.1, Example 2), ξo : v ∈ Cℓ
0(Rd) 7→ (v(oi))i ∈ TO (application of

the vector �eld to each point), co : h = (hi)i ∈ H 7→ |ζo(h)|2Vσ
. As for the deformation

module generating one local scaling, it can be shown that M = (O, H, ζ, ξ, c) is a
deformation module satisfying UEC.

In Figure 2.5 we present an example of large deformation (see Proposition 4)
generated by the combination of two deformation modules generating constrained
local transforms: one generating a scaling at scale σ1 and the second generating a
rotation at scale σ2 = σ1/3. The deformation at each time is represented by the
deformation of the grid. We can see that geometrical descriptors are transported
by the global �ow created by the two deformation modules. As its scale is smaller,
the area of action of the local rotation is smaller than the one of the scaling. Then
the area of in�uence of the local rotation is transported by the vector �eld created
by the local scaling, while the geometrical descriptor of the local scaling is almost
constant. We represent also in this �gure intermediate tools dj , which are recomputed
at each time from the geometrical descriptors (centres of the scaling and rotation) and
therefore are not transported by the �ow. This example shows how complex modular
large deformations can be naturally built from simple base modules, and how their
mutual interaction during the integration of the trajectory is encoded in the compound
deformation module.

2.3.2. Unconstrained local a�ne transformations. We present here the
deformation module generating vector �elds that are locally an a�ne deformation (at
a �xed scale σ), without any other prior on the local deformation pattern. We explain
here the construction in dimension 2 without loss of generality. For o ∈ R2 we de�ne
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t=0 t=0.5 t=1

Fig. 2.5. Example of a large deformation. Geometrical descriptors are in blue (triangle for
scaling, circle for rotation). Vectors are intermediate tools used to build vector �elds (magenta for
rotation and green for scaling)

points (zj(o))j as in the previous case. We de�ne spaces O .
= R2, H

.
= (R2)3 (groups

of 3 vectors of R2) and applications ζ : (o, h = (αj)) ∈ O ×H 7→
∑

j Kσ(zj(o), ·)αj ,

ξo : v ∈ Cℓ
0(R2) 7→ v(o) and co : h = (αj) ∈ H 7→ |ζo(h)|2Vσ

. Then M = (O,H, ζ, ξ, c)
is a Ck-deformation module that satis�es UEC and generates vector �elds that are
unconstrained local transformations at scale σ. This example di�ers from the sum of
translation in Section 2.1.1 (example 1) as the 3 centres of translations here are glued
together. This example di�ers also from the previous one (Section 2.3.1), as here
the directions dj are free to generate any local transform. These directions become
then control parameters, whereas they were �xed in the previous example. Similarly
to previous examples local a�ne transforms may be combined into a deformation
module creating a superimposition of P unconstrained local transforms at di�erent
locations. This module class di�ers from the poly-a�ne framework [27] in that the
neighbourhood which is a�ected by the local a�ne transformation is transported by
the global deformation via the in�nitesimal feedback action ξ.

2.3.3. Deformation module generating a sum of local translations. This
deformation module enables us to see the construction of [10] as an instance of a defor-
mation module and was detailed in Section 2.1.1, Example 1. The cost of this defor-
mation module is c : (o = (zi), h = (αi)) 7→ |ζo(h)|2Vσ

=
∑

i,j Kσ(zi, zj)α
T
i αj . Another

possibility to generate sum of translations would be to consider the combination of
modules creating one translation, such that the cost would be

∑
i |Kσ(·, zi)αi|2Vσ

=∑
i |αi|2. The �rst case is more interesting because minimizing the cost tends to sep-

arate centres zi and then forces local translations of the same scale to act everywhere
it is needed, while in the second case several could converge to the same location,
making it redundant.

2.3.4. Example of combination: a multi-scale sum of local translations.

Let us �x P scales σl and for each l a number of translations Dl. We present here
the construction of the deformation module that generates vector �elds that are a
sum of multi-scale local translations, with Dl translations for each scale σl. For each
l can be built, as de�ned in Section 2.1.1 (�rst example), a module M l generating
vector �elds that are a sum of Dl local translations acting at scale σl. The multi-scale
module M is then the combination of these modules M l (see Section 2.1.2). In par-
ticular the vector �eld created by geometrical descriptor o = (zlj) ∈ O = Πl

(
(Rd)Dl

)
and control h = (αl

j) ∈ H = Πl

(
(Rd)Dl

)
is ζo(h) =

∑
l

∑
j Kσl

(zlj , ·)αl
j . It is clear

here that, unlike in the framework of [26] where vector �elds are generated thanks
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to a sum of gaussian kernels, centres of local translations are di�erent for each scale.
This property is kept for optimal trajectories (minimising the cost) as we force these
points to be di�erent at initial time. The cost is, for o = (zlj) ∈ O and h = (αl

j) ∈ H,

co(h) =
∑

l

∑
j Kσl

(zlj , z
l
j′)α

lT
j α

l
j′ . Even though this cost is similar to the frame-

work of vector bundle presented in [30], the control variables which are optimised in
our framework are only the vectors of local translations h = (αl

j) ∈ H and not the
global vector �eld. Therefore, optimal trajectories are di�erent from the vector bun-
dle framework and the decomposition of the vector �eld in a sum of local translations
acting at di�erent scales and centres at di�erent points is preserved.

2.3.5. Deformation module generating a sum of local translations with

a prior on the direction. In the previous examples of deformation modules based
on local translations (Sections 2.3.3 and 2.3.4), the direction and magnitude of the
translation vector were considered as control parameters. Therefore, during the inte-
gration of the �ow, the direction of the translation at each time needs to be determined
as a optimal solution for a given criterion. By contrast, we may want to update the
direction of the translation during deformation by using a prior rule, thus considering
the direction no more as a control parameter but as a geometrical descriptor instead.
In this case, only the magnitude of the translation vector is considered as a control
parameter. We give two examples of such modules for translations acting at scale σ.

Translation with constant direction. In this example, the translation vector is kept
constant during integration, meaning that the direction of the translation is linked to
a �xed background and not to the shape that is deformed. We denote u ∈ Rd this
direction, and set O .

= Rd, H
.
= R (the control is scalar) and for (z, u) ∈ Rd × Rd,

h ∈ R, v ∈ C1
0 (Rd), ζo(h)

.
= Kσ(z, ·)hu, ξo(v) = (v(z), 0) and co(h) = |ζo(h)|2Vσ

= h2.
The geometrical descriptors are the base point of the translation vector which is
transported by the deformation �ow, and the direction u which is kept constant. This
deformation module can be generalized to the deformation module generating vector
�elds that are a sum of P local translations at scale σ with �xed directions ui by
setting O .

= (Rd)P × (Rd)P , H
.
= RP (the control is made of P scalars), V

.
= Vσ

and for o = (zi, ui) ∈ O, h = (hi) ∈ H, v ∈ C1
0 (Rd), ζo(h)

.
=

∑
iKσ(zi, ·)hiui,

ξo(v) = (v(zi), ui) and co(h) = |ζo(h)|2Vσ
. This deformation module satis�es also UEC

and will be used in examples of Section 5.1.

Translation with direction updated by adjoint action. This example is the same
as the previous one, except that we change the update rule for the direction u
of the translation. The in�nitesimal action on geometrical descriptors writes now
ξo(v) = (v(z),−dvTz u) (with o = (z, u)). The integration of this in�nitesimal action
gives the action of the deformation ϕ on the geometrical descriptors o as (ϕ, o =
(z, u)) 7→ (ϕ(z), (dϕ−1

ϕ(x))
Tu), where the second part is the so-called adjoint action.

If one considers the direction u as the normal to an in�nitesimal surface patch, then
(dϕ−1

ϕ(x))
Tu) is the direction of the normal of the deformed surface patch. If we consider

a compound module combining this deformation module with others, the direction of
the translation at integration time t will only depend of the generated global di�eo-
morphism ϕ and the direction u at time t = 0. As above, the combination of P of
these modules also satisfy UEC. They will be used in examples in Section 5.2 and 5.3.

2.3.6. Silent modules. We present here a last example of deformation modules:
modules generating a vector �eld that is always null. For a choice of O, a Ck-shape
space of order ℓ with its in�nitesimal action ξ, we set H

.
= {0} (null space for the
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controls) and for o ∈ O, ζo : h ∈ H 7→ 0, co : h ∈ H 7→ 0. Then M = (O, H, ζ, ξ, c)
de�nes a Ck-deformation module of order ℓ satisfying UEC, which will be referred to
as the silent deformation module induced by shape space O. For instance, if
O is the shape space made of a collection of points as in the examples of landmarks
(Section 2.1.1), then these points, considered as a silent module, will feel the velocity
�eld generated by active modules located around them, and move accordingly, but will
not contribute to this velocity �eld. The introduction of silent modules is necessary
if one wants to use active deformation modules whose geometric descriptors do not
derive from the input shape data, for instance for scaling module whose center is
not forced to be a vertex or point of the input shape data, or for the direction of a
translation which is not forced to be normal to a surface mesh.

3. Sub-Riemannian setting. We explain here how modular large deformations
may be used to provide shape spaces with a sub-Riemannian metric, and therefore
de�ne a distance between shapes.

We consider a Ck-deformation module M = (O, H, ζ, ξ, c) of order ℓ ∈ N∗. A ge-
ometrical descriptor of the module is a �shape� in the shape space O and, intuitively,
the orbit of this geometrical descriptor under the action of a regular group of di�eo-
morphisms forms a Riemannian manifold. If one considers only the di�eomorphisms
which result from the integration of a modular velocity �eld (generated by the module
M), then one provides this Riemannian manifold with a sub-Riemannian structure
(Section 3.1). This construction allows the de�nition of a sub-Riemannian distance
and of optimal trajectories between two geometrical descriptors in the shape space O
(Section 3.2). In general,M is a compound module built from a silent module induced
by the shape space of input shape data and user-de�ned deformation modules. There-
fore, the sub-Riemannian distance is de�ned for the augmented data set containing
the input data and the geometrical descriptors of the user-de�ned modules. In this
case, this distance cannot be used to compare directly the input shape with another
input shape data, since �rst, one may not assume that the second shape derives from
the input shape by a modular deformation, and second, one does not know what
would be the corresponding active modules in the second shape. This practical case
will be detailed in Section 3.2.2.

3.1. A sub-Riemannian structure on O. We suppose that M satis�es UEC,
and we �x a space of vector �eld V and a constant C > 0 such that V is continuously
embedded in Cℓ+k

0 (Rd) and for all o ∈ O and for all h ∈ H, ζo(h) ∈ V and |ζo(h)|2V ≤
Cco(h). We use now the notion of continuous sub-Riemannian structure on a manifold,
following the de�nition given in [4].
De�nition 6. Let M be a manifold of �nite dimension. We de�ne a continuous
sub-Riemannian structure on M as a triple (E , g, ρ), where : E → M is a smooth
vector bundle on M endowed with a smooth, Riemannian metric g, and ρ : E → TM
a continuous vector bundle morphism.

The composition of the �eld generator ζ with the in�nitesimal action ξ yields a
continuous vector bundle morphism ρ : (o, h) ∈ O×H 7→ (o, ρo(h) = ξo◦ζo(h)) ∈ TO.
Moreover, the cost c induces a smooth Riemannian metric g on the vector bundle
O×H. Then (O×H, g, ρ) de�nes a sub-Riemannian manifold, which we will denote
OH . This structure is the key to de�ne trajectories of modular deformations. At each
shape o ∈ O, the space ζo(H) is the space of vector �elds that can be generated by o.
The horizontal space ρo(H) = ξo(ζo(H)) is the set of tangent vectors of ToO that
can be obtained by the action of the geometrical descriptor o on itself.
Remark 6. Note that the dimension of the horizontal space at o ∈ O, namely the
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rank of the sub-Riemannian structure at o ∈ O, may depend on o. For instance,
let us consider the deformation module M = (O,H, ζ, ξ, c) obtained by combining
a module M1 = (O1,H1, ζ1, ξ1, c1) generating a local scaling in R2 at scale σ (see
Section 2.1.1, second example) and a module M2 = (O2,H2, ζ2, ξ2, c2) generating a
sum of three local translations in R2 at scale σ (see Section 2.1.1, �rst example). For
each geometrical descriptor o = (o1, o2 = (zi)1≤i≤3) ∈ O1×O2 = R2×(R2)3 and each
control h = (h1, h2 = (αi)1≤i≤3) ∈ H1 ×H2 = R × (R2)3, the generated vector �eld
is ζ(o, h) = h1

∑
j K(zj(o

1), ·)dj(o1)+
∑

iK(zi, ·)αi with zj(o
1) and dj(o

1) de�ned in

Section 2.1.1, Example 2. Then in the particular case where o1 and o2 = (zi)i are
such that zi = zi(o

1) for i ∈ {1, 2, 3}, dim(ξo(ζo(H))) = 2×3 = 6 while in other cases
dim(ξo(ζo(H))) = 2× 3 + 1 = 7.

The cost c equips the vector bundle O × H with a metric g, which may be
used to derive a metric gO on OH : if δo, δo′ ∈ ρo(H), let h, h′ ∈ Ker(ρo)

⊥

(orthogonal for the metric g on O ×H) such that ρo(h) = δo and ρo(h
′) = δo′, then

gOo (δo, δo′)
.
= go(h, h

′). Note that for δo ∈ ρo(H), |δo|2o
.
= gOo (δo, δo) = inf{co(h) |

ρo(h) = δo, h ∈ H}. This sub-Riemannian metric gO will be the one used to build
the new distance on O. f H such that ρo(h) = δo and co(h) = |ρo(h)|2o.

We will now present some de�nitions and results given in [1], which allow the
de�nition of a sub-Riemannian distance on O.
De�nition 7. [1] Let M be a smooth manifold of �nite dimension equipped with
a continuous sub-Riemannian structure (E , g, ρ). A horizontal system is a curve
t ∈ [0, 1] 7→ (q(t), u(t)) ∈ E such that t ∈ [0, 1] 7→ u(t) ∈ Eq(t) is of class L2 (ie∫ 1

0
gq(t)(u(t), u(t))dt <∞), and its projection : t ∈ [0, 1] 7→ q(t) is absolutely continu-

ous and satis�es for almost every t ∈ [0, 1], q̇(t) = ρq(t)u(t). A horizontal curve is
the projection q(·) to M of a horizontal system.
Remark 7. For a, b ∈ O, space Ωa,b (see De�nition 5) is exactly the set of horizontal
system connecting a and b.
De�nition 8. [1] Let o : [0, 1] −→ O be a horizontal curve, we de�ne its sub-
Riemannian length:

l(o) =

∫ 1

0

|ȯt|otdt =
∫ 1

0

√
gOot(ȯt, ȯt)dt.

For a, b ∈ O we can then de�ne the sub-Riemannian distance

D(a, b) = inf{l(o) | ∃h : (o, h) ∈ Ωa,b}.

Lemma 1. [1] Let o be a horizontal curve. There exists a horizontal curve õ and a
Lipschitz bijective reparametrization γ : [0, 1] −→ [0, 1] such that õ = o ◦ γ and for a.e
t, | ˙̃o(t)|õ(t) = l(o).
De�nition 9. [1] Let a, b ∈ O and (o, h) ∈ Ωa,b. We de�ne the length of (o, h) by

l(o, h) =

∫ 1

0

√
cot(ht)dt

and then

DH(a, b) = inf{l(o, h) | (o, h) ∈ Ωa,b}.

Remark 8. If Ωa,b is empty, both D(a, b) and DH(a, b) have an in�nite value.
We will now show that studying D and DH amounts to consider same trajectories,

and that D is a real distance on O.
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De�nition 10. [1] Let o : [0, 1] −→ O be a horizontal curve, for each t ∈ [0, 1],
let h⋆(t) ∈ H be the only element of H such that co(h

⋆(t)) = |ȯt|2o. We say that
h⋆ : t 7→ h⋆(t) is the minimal control associated with o.
Lemma 2. [1] Let o : [0, 1] −→ O a horizontal curve, its minimal control h⋆ is
measurable and of class L2.

Thanks to the previous lemma, we can deduce the following proposition:
Proposition 5. [1] Let a, b ∈ O, D(a, b) = DH(a, b).

We can now prove that D de�nes a distance on O.
Proposition 6. AsM satis�es UEC, the sub-Riemanian distance D is a true distance
on O.

Proof. It is clear that D is a pseudo-distance, we need to show that if D(a, b) = 0
then a = b. We will use a result proved in [5]: if we set for ϕ ∈ Diffℓ

0(Rd), d(Id, ϕ)
.
=

inf{
∫ 1

0
|vt|V dt | ∀t vt ∈ V and φv

t=1 = ϕ} (we remind that V is the Hilbert space of
vector �elds de�ned UEC) and for a, b ∈ O, dist(a, b) = inf{d(Id, ϕ) | ϕ · a = b} then
dist de�nes a distance (taking its value in [0,+∞]).
Let a, b ∈ O such that D(a, b) = 0, then there exists (on)n∈N such that for each
n there exists hn such that (on, hn) ∈ Ωa,b and l(on) −→ 0. By choosing hn the
minimal control of on, we also have l(on, hn) −→ 0. Yet, thanks to the UEC, for each

n: dist(a, b) ≤
∫ 1

0
|ζon(hn)|V ≤

√
C
∫ 1

0

√
con(hn) =

√
Cl(on, hn) −→ 0. Then a = b.

3.2. Optimal trajectories. Thanks to Proposition 5, minimizers of l in Ωa,b

(for a, b ∈ O) characterise the distance between a and b. However the quantity

l(o, h) =
∫ 1

0

√
co(h) is hard to study and then it is necessary to link it with the energy

E(o, h) =
∫ 1

0
co(h).

Proposition 7. [1] Let a, b ∈ O and let (o, h) be in Ωa,b. Then (o, h) minimizes E
in Ωa,b if and only if it minimizes l in Ωa,b and its cost co(h) is constant.
Remark 9. We deduce that along minimizers (if they exist), DH(a, b)2 = l(o, h)2 =
E(o, h).

3.2.1. Existence of optimal trajectories. Propositions 5 and 7 show that
calculating the distance D(a, b) between two elements a, b of O amounts to looking
for horizontal system minimizing the energy E, which is easiest to study. Therefore,
in the next paragraph we characterize horizontal system minimizing E. We need here
to restrain ourselves to a certain type of shapes, obtained through an adaptation of a
de�nition given by S. Arguillère in [5].
De�nition 11. An element o of O, is said to be of compact support if there exists
a compact set K of Rd such that for all ϕ ∈ Dℓ

0(Rd), ϕ · o only depends on ϕ|K and

ϕ ∈ Dℓ
K 7→ ϕ · o is continuous with Dℓ

K := {ϕ|K | ϕ ∈ Dℓ
0(Rd)} equipped with the

distance deduced from the norm on {v|K | v ∈ Cℓ
0(Rd)}: |v|ℓ,K = sup{|∂

ℓ1+···+ℓdv(x)

∂x
ℓ1
1 ···xℓd

d

| |

x ∈ K, (ℓ1, · · · , ℓd) ∈ Nd, ℓ1 + ·+ ℓd ≤ ℓ}.
Remark 10. Examples presented in Section 2.3 correspond to geometrical descriptors
of compact support.
Lemma 3. Let o ∈ O be of compact support and let K be a compact set of Rd such
that for all ϕ of Dℓ

0(Rd) ϕ · o only depends on K and ϕ ∈ Dℓ
K 7→ ϕ · o is continuous.

Then for each ϕ ∈ Dℓ
0(Rd), ϕ · o is of compact support and ψ ∈ Dℓ

0(Rd) 7→ ψ · (ϕ · o)
only depends on the compact set ϕ(K).
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Proof. Let ϕ, ψ and ψ′ be elements of Dℓ
0(Rd) such that ψ|ϕ(K) = ψ′

|ϕ(K). Then

ψ·(ϕ·o) = (ψ◦ϕ)·o = (ψ′◦ϕ)·o because ψ◦ϕ|K = ψ′◦ϕ|K . Then ψ·(ϕ·o) = ψ′·(ϕ·o) and
we conclude that for all ψ ∈ Dℓ

0(Rd), ψ ·(ϕ·o) only depends on ϕ(K). Besides from Faà
di Bruno's formula one gets that for ϕ an element of Dℓ

0(Rd), there exists a constant
C|ϕ|ℓ,K such that for each ψ, ψ′ in Dℓ

0(Rd), |ψ ◦ ϕ− ψ′ ◦ ϕ|ℓ,K ≤ C|ϕ|ℓ,K |ψ − ψ′|ℓ,ϕ(K).

Then for ϕDℓ
0(Rd), ψ ∈ Dℓ

0(Rd) 7→ ψ · (ϕ · o) is continuous and therefore ϕ · o is of
compact support.

Let a and b be two geometrical descriptors of compact support, we prove here
the existence of minimizers of the energy (if Ωa,b is non-empty), and therefore of
trajectories reaching sub-Riemannian distance D.
Theorem 1. We recall that the deformation module M satis�es UEC. If Ωa,b is
non-empty, the energy E (see De�nition 5) reaches its minimum on Ωa,b.

Proof. Let (on, hn) be a minimizing sequence of E in Ωa,b and let, for each n, φn

be the �ow associated to (on, hn) as de�ned in Proposition 4: φn = φvn with vn =

ζon(h
n). Since

∫ 1

0
|vnt |2V dt ≤ CE(on, hn) (from UEC), the sequence (vn)n is bounded

in L2([0, 1],Rd) so up to the extraction of a subsequence we can assume that vn

converges weakly to v∞ ∈ L2([0, 1],Rd). Let us de�ne φ∞ the �ow of v∞. As a is of
compact support, there exists K compact of Rd such that for all ϕ ∈ Dℓ

0(Rd), ϕ·a only
depends on ϕ|K . Moreover, as K is compact, [11] shows that sup(t,x)∈[0,1]×K |ϕnt (x)−
ϕ∞t (x)| −→ 0 so that, as ϕ ∈ Dℓ

K 7→ ϕ · a is continuous, on· = ϕn· · a converges
to o∞· = ϕ∞· · a uniformly on [0, 1]. Therefore there exists a compact set L of O
such that for all t, o∞t ∈ L and for all n, ont ∈ L. Then supo∈L ||c−1

o || (see proof

of Proposition 4) is �nite and for each n:
∫ 1

0
|hn(t)|2Hdt ≤ supo∈L ||c−1

o ||E(on, hn).
Therefore hn is bounded in L2([0, 1],H) so up to the extraction of a subsequence
we can assume that hn converges weakly to h∞ ∈ L2([0, 1],H). Let us show that
(o∞, h∞) ∈ Ωa,b. Let w ∈ L2([0, 1], V ), we have

|
∫ 1

0
⟨v∞t − ζo∞t (h∞t ), wt⟩V dt| ≤ |

∫
0
⟨v∞t − ζont (h

n
t ), wt⟩V dt|

+|
∫ 1

0
⟨ζont (h

n
t )− ζo∞t (hnt ), wt⟩V dt|

+|
∫ 1

0
⟨ζo∞t (hnt )− ζo∞t (h∞t ), wt⟩V dt.

As ζon(h
n) converges weakly to v∞ the �rst term tends to 0. In the same way,

h ∈ L2([0, 1],H) 7→
∫ 1

0
⟨ζo∞t (ht), wt⟩V dt is continuous since, as ζ is of class C1 with

respect to o, o ∈ L 7→ ζo ∈ L(H,V ) is bounded on L (which contains o∞t for all

t). Then as hn weakly converges to h∞,
∫ 1

0
⟨ζo∞t (hnt ) − ζo∞t (h∞t ), wt⟩V dt tends to 0.

Therefore

|
∫ 1

0
⟨v∞t − ζo∞t (h∞t ), wt⟩V dt| ≤ lim sup |

∫ 1

0
⟨(ζont − ζo∞t )(hnt ), wt⟩dt|

≤ lim sup(
∫
0
|wt|2V dt

∫ 1

0
||ζont − ζo∞t ||2|hnt |Hdt)1/2

= 0

since hn is bounded in L2([0, 1],H) and, as on uniformly converges to o∞, ||ζont −
ζo∞t || −→ 0. Since w is arbitrary, v∞ = ζo∞(h∞) and ȯ∞t = ξo∞t (v∞t ) so that
(o∞, h∞) ∈ Ωa,b. We now need to show that E(o∞, h∞) = limE(on, hn). Since h 7→∫ 1

0
co∞t (h)dt is continuous and convex

∫ 1

0
co∞t (h∞t )dt ≤ lim inf

∫ 1

0
co∞t (hnt )dt. Moreover

since c is a continuous metric, there exists C : o 7→ Co continuous such that co(h) =

(Coh|h)H⋆ , so that |
∫ 1

0
(co∞t (hnt )−cont (h

n
t ))dt| ≤ (supt ||Co∞t

−Cont
||)

∫ 1

0
|hnt |2Hdt −→ 0.
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Then we obtain
∫ 1

0
co∞t (h∞t )dt ≤ lim inf

∫ 1

0
cont (h

n
t )dt and E(o∞, h∞) = limE(on, hn).

3.2.2. Extended optimal trajectories and their equations. We will now
explain how optimal trajectories can be computed. The following construction is valid
for generic deformation modules satisfying UEC, but we will detail here the practical
case where one wants to study the di�erences between shapes belonging to a common
shape space F thanks to a user-de�ned deformation moduleM1 = (O1, H1, ζ1, ξ1, c1)
independent from the shape space F (and satisfying UEC). We then consider the
silent deformation module induced by shape space F M2 = (F ,H2, ζ2, ξ2, c2) (see
Section 2.3.6) and its combination M = (O,H, ζ, ξ, c) with M1 (see Section 2.1.2).
M is a deformation module satisfying UEC and for a = (o, f) ∈ O = O1 × F ,
h = (h1, 0) ∈ H, the application to a of the vector �eld generated by a and the
control h is

ξo ◦ ζo(h) = ξo ◦ ζ1o1(h1) = (ξ1o1 ◦ ζo1(h1), ξ2f ◦ ζo1(h1)).

Let �x a and b two shapes of O = O1 × F of compact support. We distinguish
in these shapes the input data (component belonging to F) and the geometrical
descriptors of the user-de�ned modules (component belonging to O): a = (o1, f1) and
b = (o2, f2). We consider now the practical case where the target shape b does not
derive from the source shape a by the action of a modular di�eomorphism. Instead,
we propose to �nd the �optimal� shape b̂ = (ô2, f̂2) in the orbit of a, i.e. such that

b̂ = ϕ.a, so that the deformed shape b̂ = ϕ.a falls as close as possible to b in the sense
of a measure µ. As in practice we only know the component f2 of b, µ(b̂, b) will only

depend on f̂2 and f2. Simultaneously we derive the di�erential equations to compute
the optimal trajectory between a and b̂.

This construction may be seen from a statistical point of view using the following
generative model : we suppose that the probability density function (with respect

to a given reference measure) of the transformation b̂ of a through a modular large

deformation is proportional to exp(−D(a, b̂)2/σ2
0) where D is the sub-Riemannian

distance built on O (see Section 3). We also suppose that, the density of the condi-

tionnal distribution of b given b̂ is proportional to exp−(µ(b̂, b)/σ2
1). Eventually, we

want to estimate the most probable b̂, given a and b: the likelihood of b̂ knowing a
and b is proportional to exp(−D(a, b̂)2/σ2

0) × exp(−µ(b̂, b)/σ2
1) and its maximisation

amounts to the minimisation of:

µ(b̂, b)/σ2
1 +D(a, b̂)2/σ2

0 (3.1)

As shown in Theorem 1, for each b̂ such that D(a, b̂) is �nite, there exists a

trajectory h⋆ of controls such that D(a, b̂) =
∫ √

co(h⋆), with o satisfying ot=0 = a

and ȯ = ξo ◦ ζo(h⋆). Then minimizing (3.1) with respect to b̂ amounts to minimizing
the following quantity with respect to h

1

σ2
1

µ(ot=1, b) +
1

σ2
0

(∫ √
cot(ht)dt

)2

(3.2)

where ot=0 = a and ȯ = ξo ◦ ζo(h).
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Besides, thanks to Proposition 7 we know that along minimizing trajectories( ∫ √
cot(ht)dt

)2

=
∫
cot(ht)dt. Then maximizing (3.2) amounts to minimizing the

following quantity with respect to h

Ja,b(h) =
1

σ2
µ(ot=1, b) +

∫
cot(ht)dt (3.3)

with σ = σ1

σ0
, ot=0 = a and ȯ = ξo ◦ ζo(h). Note that, as M = C(M1,M2) (with M2

silent) and µ only depends on the component belonging to F , Ja,b can be written :

Ja,b(h) =
1

σ2
µ(ft=1, f

2) +

∫
c1o1(h

1)

with ot=0 = a, b = (o2, f2), o = (o1, f), h = (h1, 0) and ȯ = (ȯ1, ḟ) =
(
ξ1o1◦ζ1o1(h1), ξ2f◦

ζ1o1(h
1)
)
.

A trajectory o of O starting at a such that there exists h ∈ L2([0, 1],H) so that
(o, h) is a horizontal system (see De�nition 7) and h minimizes Ja,b, will be called
an optimal trajectory starting at a. These trajectories can be well characterized
thanks to the next result, which we prove following the idea of the proof of [4].
Theorem 2. We recall that M = (O,H, ζ, ξ, c) is a Ck-deformation module of order
Cℓ satisfying UEC with k, l ≥ 1. We suppose that µ is C1. If h ∈ L2([0, 1],H)
minimizes functional Ja,b then there exists a path η : t ∈ [0, 1] −→ ηt ∈ T ∗

otO such
that with

H : (o, η, h) ∈ T ∗O ×H 7→
(
η|ξo(ζo(h))

)
− 1

2
co(h)

the Hamiltonian of the system, ηt=1 = −∂1µ(ot=1, b) and (in a local chart)
do
dt = ξo ◦ ζo(h)
dη
dt = −∂H

∂o
∂H
∂h = 0

(3.4)

Proof. In this proof we suppose that O is an open subset of RN . As previously we
associate to each h ∈ L2([0, 1],H) the trajectory oh of O such that ot=0 = a and
ȯht = ξot ◦ ζot(ht). For each h ∈ L2([0, 1],H), oh is absolutely continuous on [0, 1] (see
Proposition 2) and then belongs to H1

a([0, 1],O) (elements in H1([0, 1],O) starting at

a). We de�ne the new functional J̃ : (o, h) ∈ H1([0, 1],O)×L2([0, 1],H) 7→
∫ 1

0
co(h)+

µ(ot=1, b). Then h ∈ L2([0, 1],H) minimizes J if and only if (oh, h) minimizes J̃ under
the constraint 0 = Γ(o, h)

.
= ȯ − ξo ◦ ζo(h). Functions J̃ and Γ are of class C1 and

∂oΓ is an is an isomorphism for each o ∈ H1([0, 1],O). Indeed let o ∈ H1([0, 1],O)
and α ∈ L2([0, 1],RN ), we can de�ne δo ∈ H1

0 ([0, 1],RN ) by δo(t = 0) = 0 and δ̇o =
∂o(ξo ◦ ζo(h)) +α (the solution is well de�ned). Then α = ∂oΓ(o, h) · δo and therefore
∂oΓ(o, h) is surjective. Moreover ∂oΓ(o, h) in injective as for δo ∈ H1

0 ([0, 1],RN ),
∂oΓ(o, h)δo = 0 implies δo = 0 by Cauchy uniqueness. We therefore deduce (thanks
to the implicit function theorem) that Γ−1({0}) is a manifold.
Let (o, h) be a minimizer of J̃ over the set Γ−1({0}), from [20] (Theorem 4.1) can
be shown that there exists a non trivial Lagrange multiplier η ∈ L2(0, 1,RN )⋆ =
L2(0, 1,RN,⋆) such that dJ̃(o,h) + (dΓ(o,h))

⋆(η) = 0. It is shown in [5] that η̇ = −∂oH
and ∂hH = 0.
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Remark 11. As co is positive de�nite, there exists an invertible symmetric operator
C : o ∈ O 7→ Co ∈ L(H,H⋆) such that for all (o, h) ∈ O ×H, co(h) = (Coh|h). Then
the third equality in (3.4) allows to compute h: h = C−1

o ρ⋆oη with ρo = ξo ◦ ζo and ρ⋆o
such that (η|ρo(h))ToO = (ρ⋆oη|h)H .

We de�ne the reduced Hamiltonian

Hr(o, η)
.
= H(o, η, C−1

o ρ⋆o(η)) =
1

2
(ρ⋆o(η)|C−1

o ρ⋆o(η)) =
1

2
co(C

−1
o ρ⋆o(η))

and as ∇hH = 0, the system of equations (3.4) can be written:{
do
dt = ∂Hr

∂η = ρo(C
−1
o ρ⋆o(η))

dη
dt = −∂Hr

∂o

(3.5)

Proposition 8. If the module M is Cj of order ℓ with j, ℓ ≥ 2 then solutions of
Equation (3.5) exist for any (ot=0, ηt=0) and are totally de�ned by these initial values.

Proof. In this case (o, η) 7→ Hr(o, η) is of class at least C
2 so (o, η) 7→ (∂Hr

∂η ,−
∂Hr

∂o ) is

at least C1.

Then by choosing an initial momentum η ∈ T ∗
oO one can generate an optimal

trajectory starting at a. Optimal trajectories are parametrized by initial values of
geometrical descriptor and momentum, so in dimension 2× (dim(O1) + dim(F)).
Remark 12. It is important to note that even though h = (h1, 0), ρ⋆o(η) ̸= ρ1,⋆o1 (η1)
(with η = (η1, η

2) ∈ T ∗
o1O1 × T ∗

fF and ρ1o1 = ξ1o1 ◦ ζ1o1). Then, even though the
component of geometrical descriptor belonging to F generates only a null vector �eld,
its initial momentum has an in�uence on the trajectory.
Remark 13. From Equation (3.4) we re-deduce that cost co(h) is constant along
minimizing trajectories. Indeed let (o, h) be such an optimal trajectory and let η
be the trajectory of momenta, such that (o, η, h) satis�es Equation (3.4). Then, as
ρo(h) = ξo◦ζo(h) = ∇ηH, one gets: dH

dt = ∂oHdo
dt +∂ηH

dη
dt +∂hH

dh
dt = (∇oH,∇ηH)−

(∇ηH,∇oH) = 0. So the Hamiltonian is constant along optimal trajectories and as

it is equal to half of the cost,
∫ 1

0
co(h) = cot=0(ht=0) along minimizing trajectories.

4. Modular analysis of shape variability. The goal of this section is to show
how the previous geometrical construction may be used to infer statistical properties
from a series of shape data belonging to a common shape space F . The idea is that
these properties may be studied thanks to one deformation module obtained through
the combination of the silent deformation module induced by F and a user-de�ned
active deformation module. Computing an atlas of the data set will correspond to
computing one initial value of the geometrical descriptor, and modular large defor-
mations generated by it, bringing its silent component as close as possible to target
shapes. Geometrical descriptors of the silent deformation module will be referred to
as the template shape and plays the role of an �average� of the data set. The active
deformation module is a dictionary, in which the shape variations seen in the data may
be decomposed. The choice of the types of modules is left to the user, whereas param-
eters such as the initial position of their geometrical descriptors are to be optimised
for a given training shape data set. In the spirit of [9], the user provides an example
of template shape with the desired topology (i.e. number of points, edges between
points, number of connected components, etc..), and the atlas construction method
will optimize its shape (i.e. the position of the points or vertices) to be at the �center�
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of the training samples. The method needs to optimize at the same time the other
geometrical descriptors and �nd the P modular large deformations ϕk, so that each
warped template resembles as much as possible to one of the target shapes fktarget.
Given the initial position of geometrical descriptors, modular large deformations that
need to be estimated are parametrized by initial momenta. So �nally the method will
estimate one initial position of geometrical descriptors and P initial momenta. These
momenta may be used subsequently for other statistical tasks, such as clustering,
classi�cation or regression with covariates. We will now detail this construction, and
then present the algorithmic method.

4.1. Building an atlas of shapes. Let F be a shape space of order ℓ ≥ 2,
let fktarget be a series of P di�erent shapes of F , and let M̃ = (Õ, H̃, ζ̃, ξ̃, c̃) be
the deformation module thanks to which we want to study this series of shapes.
As previously we build M = (O,H, ζ, ξ, c) the compound module of M̃ and the
silent deformation module induced from F . We suppose that M is Cj of order ℓ
and satis�es UEC. The estimation of the atlas may be done in a coherent Bayesian
framework. However, the derivation of a Bayesian approach as in [3] is out of the scope
of this paper, and we propose here a more straightforward extension of the geometrical
construction of Section 3.2.2. It is the analogue of the concept of Fréchet mean,
which has been used intensively in the �eld of Computational Anatomy [21, 18, 9].
This approach amounts here to minimising the following quantity with respect to
the geometrical descriptors of the template module otemp and P trajectories hk ∈
L2([0, 1],H):

1

σ2

∑
k

µ(fkt=1, f
k
target) +

∫
cok(h

k) (4.1)

with for each k, okt=0 = otemp and ȯk = ξok ◦ ζok(hk).
Like in Section 3.2.2, can be shown that for a �xed value of otemp, the minimiser

(hk)k of (4.1) is such that there exist P trajectories ηk : t ∈ [0, 1] 7→ ηkt ∈ T ∗
okt
O so

that, with H : (o, η, h) ∈ T ∗O ×H 7→ (η|ξo(ζo(h)))− 1
2co(h),

hk = ho
k,ηk .

= C−1
ok
ρ⋆okη

k

dok

dt = ξok(ζok(h
k)

dηk

dt = −∂H
∂o (o

k, ηk, hk)

(4.2)

where C : o ∈ O 7→ Co is smooth and satis�es for each h ∈ H, co(h) = (Coh|h)H ,
and ρ⋆o is such that, for all h ∈ H, η ∈ T ∗

oO, (η|ρo(h)) = (ρ⋆o(η), h). Then whole
trajectories (ok, ηk, hk) are de�ned by initial values of ok and ηk. Moreover, thanks
to Remark 13, the cost is constant along optimal trajectories and so for each k:

cotemp(h
otemp,η

k
0 ) =

∫ 1

0
cok(h

ok,ηk

). Therefore computing the atlas of shapes fktarget,
k = 1 · · ·P thanks to the deformation module M1 amounts to minimizing:

E(otemp, (η
k
0 )k) =

P∑
k=1

cotemp(h
otemp,η

k
0 ) +

1

σ2
µ
(
ϕo

k,ηk

· ftemp, f
k
target

)
(4.3)

where for each k, (ok, ηk) starts at (otemp, η
k
0 ) and satis�es Equation (4.2), and

ϕo
k,hk

= φvk

t=1 with vk = ζok(h
k). The �rst term of this sum will be referred to
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as the Regularity term while the second one will be called the Data term.

Note that the initial value of geometrical descriptor otemp is common to all sub-
jects but that the trajectory ok (starting at otemp) obtained by integrating Equa-
tion (4.2) is speci�c to each subject as it depends on the initial momentum ηk0 , which
is speci�c to each subject.

We emphasize here that the estimated otemp = (o1temp, ftemp) has two components.
The second one ftemp is the template and corresponds to an average of the data set,
while the �rst one o1temp is a common geometric characterization of the variability
among the population of shapes.

4.2. Algorithmic method. In order to minimize Functional (4.3), we use a
gradient descent scheme. The �rst term of the sum only depends on initial values
of (otemp, η

k
0 ) so the gradient can be easily computed. The second term depends on

ϕ
(ok,ηk)
t=1 ·ftemp, so in order to calculate its gradient we use the following result (see [4]):
Proposition 9. Let n ∈ N, let U be an open subset of Rn, w : U −→ Rn be a
complete Cj vector �eld on U (j ≥ 1), G be the function of class C1 de�ned on U
by G(q0) = g(qt=1) where g is a function of class C1 and q : [0, 1] −→ Rn satis�es
q̇t = w(qt) for almost every t ∈ [0, 1] and qt=0 = q0. Then ∇G(q0) = Z(1) where
Z : [0, 1] −→ Rn is the solution of Ż(t) = dwT

q(1−t)
Zt for almost every t ∈ [0, 1] and

Z(0) = ∇g(qt=1).

In our case let us �x k and detail the computation of the gradient of the k-
th term of the sum (4.3). We have U = T ∗O = T ∗O1 × T ∗F , q = (ok, ηk) :

t ∈ [0, 1] −→ (okt , η
k
t ) ∈ T ∗O, g(okt=1, η

k
t=1) = µ

(
fk,t=1, f

k
target

)
, and w(ok, ηk) =

(∂ηH,−∂oH)(ok, ηk, ho
k,ηk

) with H and ho
k,ηk

de�ned in Equation (4.2). Then the

gradient of µ(ϕ
(ok,ηk)
t=1 · ftemp, f

k
target) with respect to initial values (okt=0, η

k
t=0) can be

computed by �rst integrating Equation 4.2). Then we initialize an adjoint variable
ν ∈ T(okt=1,η

k
t=1)

TO with initialized with ν(t = 1) = ∇(okt=1,η
k
t=1)

µ(fkt=1, f
k
target) (where

ok = (o1,k, fk)) such that only the dual variable of fkt=1 is non zero. Finally by inte-

grating ν̇t = dwT
(ok1−t,η

k
1−t)

νt, one obtains ∇(okt=0,η
k
t=0)

µ(ϕ
(ok,ηk)
t=1 · ftemp, f

k
target) = ν(t =

0).

The proposed modular deformation framework is very well adapted for an imple-
mentation in an object-oriented language. All kinds of modules inherit from a single
abstract module class, which contains abstract methods for the implementation of the
�eld generator ζ, the in�nitesimal action ξ (which takes another deformation module
as argument), the cost c, and their di�erentials. A meta class contains a list of mod-
ule, and implements the simple rules presented in Section 2.1.2 for the combination
of modules. Now, all the remaining part of the codes depends on this meta class only,
so that the de�nition of new modules is as simple as �plug-and-play�. The remain-
ing part of the code encodes the integration of the di�erential equation to compute
large deformations from initial values of geometrical descriptors and momenta for each
module, the gradient of a data attachment term, and the optimization method. The
code has been implemented in the software Deformetrica [9], so that one may use a
large collection of similarity metrics µ, for point clouds, curve and surface meshes in
2D and 3D.

5. Numerical experiments.

20



−3 0 3

0

1

2
Subject 1

−3 0 3

0

1

2
Subject 2

−3 0 3

0

1

2
Subject 3

−3 0 3

0

1

2
Subject 4

−3 0 3

0

1

2
Subject 5

−3 0 3

0

1

2
Subject 6

Fig. 5.1. Building an atlas using a prior. Target shapes
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Fig. 5.2. Building an atlas using a prior. Prior: horizontal displacement. Template

at time t = 0 (purple curve) and other geometrical descriptor (blue cross). Targets in black.
The black vector is the �xed parameter that de�nes the direction of the translation. Left: Before
optimisation. Right: After optimisation.

5.1. Building an atlas using a prior. In this section, we study the set of
shapes presented in Figure 5.1 : each shape has a hump, three of them have the
hump rather on their left part, and three other have it on their right part, all at
variable locations. Intuitively, there are two possible descriptions of the variability
of this collection of shapes. One possibility is to consider that shapes derive from
a �template� shape with one central hump by random translations of the hump in
either direction. Another possibility is to consider that shapes derive from �template�
shape by unfolding the hump in one place and fold a hump at another place. These
two models of shape variability would explain the observed samples equally well, and
the problem is undecidable without assuming priors on the solution. Determining
the template re�ecting the structure in the data set, and allowing to study its vari-
ability is a well-known problem in computer vision and shape analysis, as described
in [19, 23] for instance. If no point-correspondence is assumed, the current implemen-
tation of most statistical shape analysis techniques will give one or the other solution
in an unpredictable way depending mostly on implementation choices, initialisation,
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Fig. 5.3. Building an atlas using a prior. Prior: horizontal displacement. Template

at time t (in purple), target shapes are in black. Other geometrical descriptor at time t (blue
cross). First line: momenta at t = 0 (in marine blue are momenta attached to the template's
points and in blue the one attached to center of the translation with �xed direction). Three lower
lines : the black vector is the �xed parameter that de�nes the direction of the translation, controls
at t are represented by the length of the red arrow.
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Fig. 5.4. Building an atlas using a prior. Prior: vertical displacements. Template at
time t = 0 (purple curve) and other geometrical descriptor (blue crosses). The black vector is
the �xed parameter that de�nes the direction of the translation. Targets in black. Left: Before
optimisation. Right: After optimisation.

regularisation techniques, etc..

We show here that our approach based on modular deformations allows the user
to decide beforehand which solution he wants to favor. The addition a such a prior
on the sought solution is possible by the design of relevant modules.

To obtain a description of shape variability based on horizontal translations of
the hump, we use a user-de�ned deformation module, which generates a vector �eld
that is always a horizontal translation at a �xed large scale σ (see Section 2.3.5, here
we use σ = 3 and a constant direction of translation). We initialise the template
curve with a shape with no hump, include it into a silent module and combine it with
the translation module. We minimize the Functional (4.3), where µ is the varifold
distance between the curves, which measures how well two curves are superimposed
without the need to have point correspondence and consistent orientation [8]. The
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Fig. 5.5. Building an atlas using a prior. Prior: vertical displacements. Template at
time t (in purple), target shapes are in black. Other geometrical descriptor at time t (blue
crosses). First line : momenta at t = 0 (in marine blue are momenta attached to the template's
points and in blue the ones attached to centers of translations with �xed direction). Three lower
lines : black vectors are the �xed parameter that de�nes the directions of translations, controls at
t are represented by the lengths of red arrows.

minimisation results is the optimal geometrical descriptors of the compound module,
here the position of the vertices of the template curve and the base point of the trans-
lation, and one initial momentum per target shapes characterising the deformation
of the template curve to the corresponding target shape. In Figure 5.2 (left part) we
present the initialisation of the template and the geometrical descriptor, momenta ηk0
are initialized at zero. The �xed horizontal vector u = (1, 0) is plotted in black, it is
not optimised during the gradient descent and does not evolve during the integration
of the trajectory of vector �eld. In Figure 5.2 (right part) we display the optimized
shared parameters of optimal trajectories: the optimized template and position for
the geometrical descriptor at time t = 0. The di�eomorphic deformation from the
template to one target is parametrized by values at time t = 0 of the template,
the geometrical descriptor and the momentum (dual variable of these quantities). We
present on Figure 5.3, for two subjects, this parametrization of trajectories (�rst row),
and also the transport of the template to targets with the geometrical descriptor and
the control (last three rows). As the control is scalar, it is plotted as the length of
the vector of the translation: the unit horizontal vector (�xed parameter) is plotted
in black and in red is plotted this vector multiplied by the scalar control.

By contrast, we may decide to describe the variability in this same data set by
using folding/unfolding pattern. The corresponding prior in the deformation model is
encoded by one deformation module generating vector �elds that are always a sum of
two vertical translations at a �xed small scale σ (see Section 2.3.5, here we use σ = 0.4
and constant directions of translations). In Figure 5.4 can be seen the template and
other geometrical descriptors before and after optimisation, as well as �xed vertical
vectors . Parametrisation of minimizing trajectories, and trajectories of the template,
geometrical descriptors and controls are plotted in Figure 5.5 for two subjects. As
previously, controls can be seen in the lengths of vertical vectors, black vectors being
�xed vertical unit vectors.
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Fig. 5.6. Building an atlas using a prior. Di�erent data set.

In these two experiments the data term
∑P

k=1
1
σ2µ

(
ϕo

k,ηk · ftemp, f
k
target

)
(see

Equation (4.3)) decreases signi�cantly during the optimisation process (divided re-
spectively by 120 and 55): both priors allow to study the variability amongst the
population, even though the �rst one seems to explain a larger part of the variance.
These two experiments show that one may obtain di�erent templates and deforma-
tions from the same data set by using di�erent prior on shape variability. Our method
allows the user to easily encode such prior in an intuitive and controlled manner by
the design of suitable modules.

We present now the results obtained for another data set presented in Figure (5.6):
here humps are at various locations. In Figure 5.7 is presented the initialisation and
optimisation of the template and geometrical descriptor if we incorporate the �rst
kind of prior in the deformation model, ie we use the deformation module generating
always a horizontal translation. The template has one big centred hump and the
data term is divided by 46 during the gradient descent. In Figure 5.8 are presented
the same results but if we use the other kind of prior, ie the deformation module
generating always a sum of two vertical translations. The optimised template seems
less appropriate. This is con�rmed by the evolution of the data term during the
gradient descent : it is only divided by 3. Here by comparing the decrease of the data
term we understand that the �rst prior is more adapted to this data set, and then that
the variability among the population is better described by horizontal displacements.

5.2. Performing jointly rigid and non linear registration to study vari-

ability among the population. In this section we present the construction of an
atlas from a collection of 40 rabbit pro�les (see Figure 5.9) with variable ear size and
variable positioning of the shape in the ambient space. These shapes are encoded as
varifolds [8] so that no point-correspondence is assumed. We propose here to com-
bine rigid registration and local deformation in a single optimisation, whereas in the

24



−3 0 3

0

1

2
Initialisation

−3 0 3

0

1

2
Optimisation

Fig. 5.7. Building an atlas using a prior. Prior: horizontal displacement. Template at
time t = 0 (purple curve) and other geometrical descriptor (blue cross). Black vector is the �xed
parameter that de�nes the direction of translation. Targets in black. Left: Before optimisation.
Right: After optimisation.
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Fig. 5.8. Building an atlas using a prior. Prior: vertical displacement. Template at time
t = 0 (purple curve) and other geometrical descriptors (blue crosses). Black vectors are the �xed
parameters that de�ne the direction of translations. Targets in black. Left: Before optimisation.
Right: After optimisation.

vase majority of cases shapes are rigidly registered as a pre-processing step before
statistical analysis.

To this end, we propose to combine three deformation modules: the �rst one
generates vector �elds that are a rotation at scale 5000 (see Section 2.3.1), the second
one generates vector �elds that are a translation at scale 5000 (see Section 2.3.3).
The last deformation module generates a sum of two translations whose directions
are updated by adjoint action at scale 600 (See Section 2.3.5). The �rst two modules
encode a rigid body transformation (at the scale of the shapes), and the third one
encodes local non-linear deformation patterns. In Figure 5.10 are plotted template
and other geometrical descriptors at t = 0, before and after optimisation. Note that
the geometrical descriptor of the deformation module generating a sum of two trans-
lations with directions updated by adjoint action is composed of two points and two
vectors : the initial directions of these two vectors are shared by all subjects. The
optimised initial directions are along ears : the variability amongst the population at
this scale is in the direction of ears, which was expected. Besides, as a consequence,
values of associated controls measure the growth or shrinking of ears and then this
particular feature can be studied independently from the rigid registration. In Fig-
ure 5.11, on the �rst columns, are presented parametrisation of minimizing trajectories
(template,other geometrical descriptors and momenta) for three subjects. Note that
momenta associated to the sum of two translations with updated directions have two
components: one associated to base points of translations, and one to vectors of trans-
lations. All these vectors are represented attached to the base point of the translation,
but in di�erent colors. In the three columns on the right hand side of this �gure are
represented the trajectory of the template, geometrical descriptors and controls for
these three subjects. Controls associated to translations with updated direction are
scalar so they are represented as lengths of vectors. The geometrical descriptor of the
rotation is a blue circle, circled by a black one. The control associated to the rotation
(scalar) is represented by the portion of this black circle which is coloured in red (the
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Fig. 5.9. Performing jointly rigid and non linear registration. Target shapes
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Fig. 5.10. Performing jointly rigid and non linear registration. Template at time
t = 0 (purple shape) and other geometrical descriptors: rotation's one is the blue circle, the
translation's ones is the blue square and translations with transported vectors' ones have their dot-
component represented by blue diamonds and their vector components represented by green arrows.
Targets in black. Left: Before optimisation. Right: After optimisation.

control is positive if the colouring is anti-clockwise and negative otherwise).
We compare our result with the one obtained by rigidly registering data before-

hand and then applying the framework developed in [10]: in this framework the vector
�eld is built as a sum of local translations carried by control points. We use here 50
control points, and we set the scale of translations equal to 500. In Figure 5.12 we
present the targets after the rigid registration, as well as the initial position of the tem-
plate and control points, before and after optimisation. In Figure 5.13 are presented
the parametrisation of optimal trajectories for several subjects (in this framework
momenta are equal to controls) and the evolution of the template, control points and
controls. One can see that non linear deformations are now necessary not only in
the area of the ears, but also in the inferior part of the head. This fact is the direct
consequence of the rigid-body registration, which does not align the inferior parts
of the heads. It shows the sub-optimality of the greedy approach that consists in
optimising the rigid part and the non-linear part in two consecutive step. Very few
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Fig. 5.11. Performing jointly rigid and non linear registration. Template at time t
(in purple), target shapes are in black. Other geometrical descriptors at time t: rotation's one
at the blue circle, the translation's one at the blue square, translations with updated directions ones
have their dot-component at blue diamonds and their vector-component represented by green arrows.
Left column: Momenta at t = 0 in blue, attached to their geometrical descriptor (translations with
update directions' ones have their vector-component represented in green, attached to the center of
the translation). Three right-hand columns: Controls at time t : the red arrow attached to the blue
square is the translation's one, the rotation's one is represented by the portion of the black circle
coloured in red, and the one of translations with transported vectors are represented by the lengths
and orientations of the red arrows attached to the blue diamond.

mathematical frameworks may deal with this issue, whereas it is well-known in the
statistical shape analysis community. By contrast, the method that we present here
allows the joint optimisation of linear and non-linear deformation patterns by the use
of combined deformation modules at various scales. The resulting explanation of the
variability seen in the data is much more satisfying by displaying a �xed head and
ears of variable sizes.
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Fig. 5.12. Performing rigid before non linear registration. Template at time t = 0
(purple) and control points (blue crosses). Targets in black. Left: Before optimisation. Right:
After optimisation.

5.3. An example of atlas with a weak prior. In this last example we com-
pute an atlas of the �ve shapes of skulls presented in 5.14. Similarly to previous
examples, shapes are encoded as varifolds [8] so that no point-correspondence is as-
sumed. Here, we do not have clear prior to include in the model. Therefore, we
combine 7 deformation modules: one generating a translation at large scale (σ = 200,
see Section 2.3.3), one generating a rotation at large scale (σ = 200, see Section 2.3.1),
one generating a sum of two rotations at middle scale (σ = 100, see Section 2.3.1),
one generating a sum of two scalings at middle scale (σ = 100, see Section 2.3.1),
one generating a sum of four rotations at small scale (σ = 50, see Section 2.3.1), one
generating a sum of four scalings at small scale (σ = 50, see Section 2.3.1) and one
generating a sum of 16 translations of directions updated by adjoint action at small
scale (σ = 50, see Section 2.3.5). The �rst two deformation modules (those at large
scale) enable to perform rigid registration simultaneously with �ner deformations. At
the smallest scales, translations with transported direction have shared initial posi-
tions and directions for all subjects, and their directions are transported by the �ow.
Using this deformation module instead of one generating translation as in Section
2.3.3, allows to interpret initial vector of these translations as directions of greatest
variability among the population (at the small scale). The initial distribution of the
geometrical descriptors on a regular lattice and the template before optimisation can
be seen in Fig. 5.15. Geometrical descriptors are updated during optimisation to re-
gions of interest. Parametrization of minimizing trajectories (template, initial other
geometrical descriptors and momenta) and trajectories of template, geometrical de-
scriptors and controls can be seen in Figure 5.16 for three skulls. Controls associated
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Fig. 5.13. Performing rigid before non linear registration. Framework [10]. Template

at time t (in purple), target shapes are in black. Control points at time t (blue crosses). Left
column: Momenta at t = 0 (blue arrows). Three right-hand columns: Controls at time t in red.

to translations with updated directions are scalars and are represented by lengths
of vectors attached to blue diamonds. Rotations have their geometrical descriptors
represented by blue circles, and their controls (scalars) by the portion of these blue
circles that are coloured in red (the control is positive if the colouring is anti-clockwise
and negative otherwise). Geometrical descriptors of scalings are represented by blue
triangles, and for each one a red triangle corresponding to the image of the blue one by
this scaling enables to represent the scalar control. From these results one can see, for
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Fig. 5.14. Building an atlas with weak priors. Target shapes
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Fig. 5.15. Building an atlas without prior. Template at time t = 0 (purple shape)
and geometrical descriptors: □ (translations), ◦ (rotations), △ (scalings) and green vectors
attached to ♢ (translations with updated directions). The color and size of markers represent the scale
(200,100,50). Black shapes are the targets. Left: Before optimisation. Right: After optimisation.

example, that the size of the cranium is a feature that varies importantly amongst the
population as one center of the two local scalings at scale 100 has moved to this area
during optimisation, and trajectories of the corresponding control are di�erent for all
skulls: negative for skull one (the red triangle is very small so the control is highly
negative: his cranium is smaller than the template), close to zero for skull three (the
red triangle is almost of the size of the blue one: his cranium is almost of same size as
the template) and positive for skull �ve (the red triangle is bigger than the blue one:
his cranium is bigger than the template). Other features of great variabilities can be
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Fig. 5.16. Building an atlas with weak prior. Template at time t (in purple), target
shapes are in black. Geometrical descriptors at time t: □ (translations), ◦ (rotations), △
(scalings) and green vectors attached to ♢ (translations with updated directions). The color and size
of markers represent the scale (200,100,50). Left column: Momenta at t = 0. Three right-hand
columns: Controls at time t in red (vector for the translation, portion of the blue circle coloured in
red for rotations, ratio between the blue and red triangles for scalings and length of the red vectors
for translations with updated direction).

deduced from this results such as, for instance, the shape of the back of the head by
inspecting the initial value of vector of the corresponding translation with updated
direction.

This experiment shows in a more realistic case how the variability seen in a shape
data set may be decomposed in a series of local non-linear and multiscale deformation
patterns.

6. Conclusion. In this paper we de�ned a coherent mathematical framework
to build locally constrained di�eomorphic deformations thanks to the introduction
of a new concept: deformation modules. The modules constrain the driving velocity
�eld of the deformation to belong to particular subspaces of admissible vector �elds.
The �ow of such sub-Riemannian trajectories of vector �elds forms a modular large
deformation. These deformations act both on the shapes (namely points, meshes or
images) that are embedded into the ambient space, and on the geometrical parame-
ters of the deformation modules themselves, so that they are all transported during
the integration of the �ow equations. We consider the shapes to be deformed as geo-
metrical parameter of a particular module, called �silent� module, so that shapes and
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active geometrical descriptors alike belong to a common �shape space�. We show that
our construction enables the de�nition of a sub-Riemmanian distance on this shape
space, and that normal geodesics are parameterized in �nite dimension thanks to the
initial momentum.

We showed how these deformations may be used to summarise the variability
observed in a series of example shapes. The proposed method estimates a �template
shape�, as a Fréchet mean, and decomposes the observed variability into a dictionary of
deformation modules encoding speci�c local deformation patterns. The relative posi-
tion of each example shape with respect to the template shape on the sub-Riemannian
manifold is encoded into the initial momentum. These descriptors of shape variabil-
ity may be then used for statistical purposes, such as classi�cation, clustering, or
regression against covariates.

It is worth noting that the dimension of the initial momentum is larger than the
number of control parameters in the modules, since it is the sum of the dimension of
geometrical descriptors of the active modules and the number of points in the shapes
to be deformed, namely the geometrical descriptor of the silent module. Therefore, the
variability is usually encoded in much higher dimension than the number of degrees of
freedom of the deformations. There is an interplay between the momentum attached
to the active modules and the one attached to the shapes, which enriches the possible
dynamics of control parameters in the active modules. In particular, the initial value
of the control parameters does not uniquely determine the subsequent deformation,
neither do initial momentum of active deformation modules alone. Nonetheless, it
is not clear what is the optimal number of parameters to describe the variability of
a given data set. One may want to automatically learn this number using sparse
penalties in the spirit of [10]. It is also an open question to know whether the same
deformations may be obtained in a purely Riemannian framework, where the dimen-
sion of the initial momentum exactly matches the number of control parameters, that
is the number of degrees of freedom of the deformations.

The presented experiments show di�erent situations where this modular analysis
of shape variability may be useful. It allows the user to easily include prior knowledge
in the analysis of shape variability, by encoding biological constraints for instance. By
combining global rigid-body transformations with a non-linear combination of locally
a�ne transforms, our method allows the joint optimisation of the pose and shape
parameters, thus providing a solution to a long-lasting problem in statistical shape
analysis.

There are situations where multiple local deformation patterns may explain the
shape variability equally well. In such situations, the optimal solution depends on
the weights in the combination of costs associated to each module. One may learn
such weights in the future by using a Bayesian framework along the lines of [2, 12] for
instance.
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