Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics

Abstract : In this paper we define an infinite-dimensional controlled piecewise deterministic Markov process (PDMP) and we study an optimal control problem with finite time horizon and unbounded cost. This process is a coupling between a continuous time Markov Chain and a set of semilinear parabolic partial differential equations, both processes depending on the control. We apply dynamic programming to the embedded Markov decision process to obtain existence of optimal relaxed controls and we give some sufficient conditions ensuring the existence of an optimal ordinary control. This study, which constitutes an extension of controlled PDMPs to infinite dimension, is motivated by the control that provides Optogenetics on neuron models such as the Hodgkin-Huxley model. We define an infinite-dimensional controlled Hodgkin-Huxley model as an infinite-dimensional controlled piecewise deterministic Markov process and apply the previous results to prove the existence of optimal ordinary controls for a tracking problem.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01320498
Contributeur : Vincent Renault <>
Soumis le : lundi 23 mai 2016 - 23:54:45
Dernière modification le : jeudi 27 avril 2017 - 09:46:15

Fichier

Preprint_PDMP.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01320498, version 1

Collections

Citation

Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. 2016. <hal-01320498>

Partager

Métriques

Consultations de
la notice

186

Téléchargements du document

62