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On the two-filter approximations of marginal smoothing
distributions in general state space models

Thi Ngoc Minh Nguyen* Sylvain Le Corfff Eric Moulines*

Abstract

A prevalent problem in general state space models is the approximation of the
smoothing distribution of a state conditional on the observations from the past, the
present, and the future. The aim of this paper is to provide a rigorous analysis of
such approximations of smoothed distributions provided by the two-filter algorithms.
We extend the results available for the approximation of smoothing distributions to
these two-filter approaches which combine a forward filter approximating the filtering
distributions with a backward information filter approximating a quantity proportional
to the posterior distribution of the state given future observations.

1 Introduction

State-space models play a key role in a large variety of disciplines such as engineering,
econometrics, computational biology or signal processing, see [9, [§] and references therein.
This paper provides a nonasymptotic analysis of a Sequential Monte Carlo Method (SMC)
which aims at performing optimal smoothing in nonlinear and non Gaussian state space
models. Given two measurable spaces (X, X) and (Y,Y), consider a bivariate stochastic
process {(Xy,Y;)} >0 taking values in the product space (X x Y, X ® )), where the hidden
state sequence {X;}¢>0 is observed only through the observation process {Y;};>0. Statisti-
cal inference in general state space models usually involves the computation of conditional
distributions of some unobserved states given a set of observations. These posterior distri-
butions are crucial to compute smoothed expectations of additive functionals which appear
naturally for maximum likelihood parameter inference in hidden Markov models (compu-
tation of the Fisher score or of the intermediate quantity of the Expectation Maximization
algorithm), see [3] Chapter 10 and 11], [17, 25, 20} 21].

Nevertheless, exact computation of the filtering and smoothing distributions is possible
only for linear and Gaussian state spaces or when the state space X is finite. This paper
focuses on particular instances of Sequential Monte Carlo methods which approximate se-
quences of distributions in a general state space X with random samples, named particles,
associated with nonnegative importance weights. Those particle filters and smoothers rely
on the combination of sequential importance sampling steps to propagate particles in the
state space and importance resampling steps to duplicate or discard particles according to
their importance weights. The first implementation of these SMC methods, introduced in
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[14, (18], propagates the particles using the Markov kernel of the hidden process {X;}i>0
and uses a multinomial resampling step based on the importance weights to select particles
at each time step. An interesting feature of this Poor man’s smoother is that it provides
an approximation of the joint smoothing distribution by storing the ancestral line of each
particle with a complexity growing only linearly with the number N of particles, see for in-
stance [4]. However, this smoothing algorithm has a major shortcoming since the successive
resampling steps induce an important depletion of the particle trajectories. This degeneracy
of the particle sequences leads to trajectories sharing a common ancestor path; see [25] [16]
for a discussion.

Approximations of the smoothing distributions may also be obtained using the forward
filtering backward smoothing decomposition in general state space models. The Forward
Filtering Backward Smoothing algorithm (FFBS) and the Forward Filtering Backward Sim-
ulation algorithm (FFBSi) developed respectively in [I8, [15] [10] and [I3] avoid the path
degeneracy issue of the Poor man’s smoother at the cost of a computational complexity
growing with N2. Both algorithms rely on a forward pass which produces a set of particles
and weights approximating the sequence of filtering distributions up to time 7. Then, the
backward pass of the FFBS algorithm modifies all the weights computed in the forward pass
according to the so-called backward decomposition of the smoothing distribution keeping
all the particles fixed. On the other hand, the FFBSi algorithm samples independently
particle trajectories among all the possible paths produced by the forward pass. It is shown
in [22] 2 5] that the FFBS algorithm can be implemented using only a forward pass when
approximating smoothed expectations of additive functionals but with a complexity still
growing quadratically with N. Under the mild assumption that the transition density of the
hidden chain {X;}:>¢ is uniformly bounded above, [6] proposed an accept-reject mechanism
to implement the FFBSi algorithm with a complexity growing only linearly with N. Concen-
tration inequalities, controls of the Lg-norm of the deviation between smoothed functionals
and their approximations and Central Limit Theorems (CLT) for the FFBS and the FFBSi
algorithms have been established in [Bl [6, 11].

Recently, [23] proposed a new SMC algorithm, the particle-based rapid incremental
smoother (PaRIS), to approximate online, using only a forward pass, smoothed expecta-
tions of additive functionals. The crucial feature of this algorithm is that its complexity
grows only linearly with IV as it samples on-the-fly particles distributed according to the

backward dynamics of the hidden chain conditionally on the observations Yy,...,Yr. The
authors show concentration inequalities and CLT for the estimators provided by the PaRIS
algorithm.

In this paper, we extend the theoretical results available for the SMC approximations of
smoothing distributions to the estimators given by the two-filter algorithms. These meth-
ods were first introduced in the particle filter literature by [I8] and developed further by
1] and [12]. The two-filter approach combines the output of two independent filters, one
that evolves forward in time and approximates the filtering distributions and another that
evolves backward in time approximating a quantity proportional to the posterior distribution
of a state given future observations. In [12], the authors introduced a proposal mechanism
leading to algorithms whose complexity grows linearly with the number of particles. An algo-
rithm similar to the algorithm of [I] may also be implemented with an O(N) computational
complexity following the same idea. We analyze all these algorithms which approximate
the marginal smoothing distributions (smoothing distributions of one state given all the
observations) and provide concentration inequalities as well as CLT.

This paper is organized as follows. Section 2 introduces the different particle approxima-
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tions of the marginal smoothing distributions given by the two-filter algorithms. Sections [3]
and M provide exponential deviation inequalities and CLT for the particle approximations
under mild assumptions on the hidden Markov chain. Under additional strong mizing as-
sumptions, it is shown that the results of Section [3] are uniform in time and that the asymp-
totic variance in Section Ml may be uniformly bounded in time. All proofs are postponed to
Section

Notations and conventions

Let X and Y be two general state-spaces endowed with countably generated o-fields X and V.
F, (X, X) is the set of all real valued bounded measurable functions on (X, X). @ is a Markov
transition kernel defined on Xx X" and {g: }+>0 a family of positive functions defined on X. For
any © € X, Q(z, -) has a density g(z, -) with respect to a measure A on (X, X'). The oscillation
of a real valued function defined on a space Z is given by: osc (h) := sup, /<7 [h(2) — h(2)].

2 The two-filter algorithms

For any measurable function h on X!~5+1 probability distribution x on (X, X), T > 0 and
0 < s <t<T, define the joint smoothing distribution by:

_ S x(dzo)go(@o) Ty @umr, du)gu(wu)h(wa)
f x(dzo)go(zo) Hf:l Q(Tu—1,d2y)gu(Ty)

where a,., is a short-hand notation for {as}"_,. In the following we use the notations

GOy,s|T 7= Oy,s:s|7 A0d Py ¢ := @y 141~ The aim of this paper is to provide a rigorous analysis
of the performance of SMC algorithms approximating the sequence ¢, 47 for 0 < s < T\
The algorithms analyzed in this paper are based on the two-filter formula introduced in
[1, 12], which we now detail.

¢X,s:t|T[h] : 3 (1)

2.1 Forward filter

Let {5{;}?:1 be i.i.d. and distributed according to the instrumental distribution py and define

the importance weights
d
‘¢,

wh = d—éﬁ)(&é)go@f;) .

For any h € F (X, X),

N N
i\fo[h] =" ngh(ﬁg) ,  where Qq:= ng ,
=1 =1

is a consistent estimator of ¢, o[h], see for instance [4]. Then, based on {(&¢_;,w! )}, a

new set of particles and importance weights is obtained using the auxiliary sampler intro-
duced in [24]. Pairs {(I%, ¢4}, of indices and particles are simulated independently from
the instrumental distribution with density on {1,..., N} x X:

7TSIS(& CL‘) X wﬁ—1195(§§—1)p5(§£—17x) > (2)
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where 9, is the adjustment multiplier weight function and ps is a Markovian transition
density. For any ¢ € {1,..., N}, ¢ is associated with the importance weight defined by:

ot e q(&ls’lﬁl,sf)g;(&@ o
05 (é—ss—l)ps (555—1 ) fg)

to produce the following approximation of ¢, s[h]:

N N
gs[h] =0t Zwﬁh({ﬁ) ,  where Qg := Zwﬁ .
=1 =1

2.2 Backward filter

Let {7 }+>0 be a family of positive measurable functions such that, for all ¢ € {0,...,T},

[ )

Following [1], for any 0 < ¢ < T we introduce the backward filtering distribution 1., ;7 on X
(referred to as the backward information filter in [18] and [I]) defined, for any h € F,(X, X),
by:

T

H gufl(xufl) Q(-:Cufl; dxu)] gT(ZCT) < 0. (4)

u=t+1

f Tt (It) day [HZ:tJrl gufl(xufl) Q(quly dxu)} gT(CCT)h(xt)

J (@) de [Tt gu-1(@u-1) Q(u-1, dwa)| gr(or)

If the distribution of X; has probability density function v, then 1., ;7 is the conditional
distribution of X; given Y;.p. Contrary to [I] or [12], f*yt (z¢)dz; may be infinite. The only
requirement about the nonnegative functions {v;}:>¢ is the condition () and the fact that
~¢ should be available in closed form. Here ~; is a possibly improper prior introduced to
make v, 7 a proper posterior distribution, which is of key importance when producing
particle approximations of such quantities. For 0 < ¢ < T — 1, the backward information
filter is computed by the recursion

1Z)'y,ﬂ'l"[h’] =

Yy gy [h] o< /1/Jy,t+1\:r(d$t+1) ’Yt(ﬂﬁt)gt(ﬂﬁt)M h(ze) dzy (5)
Ve+1(Te41)
in the backward time direction. (Bl is analogous to the forward filter recursion and particle
approximations of the backward information filter can be obtained similarly. Using the
definition of the forward filtering distribution at time s — 1 and the backward information
filter at time s + 1, the marginal smoothing distribution may be expressed as

¢X,S\T[h] X /¢X,s—1(dxs—l)w'y,s+1T(dxs-l-l)Q(xs—laxs)gs(xs)%h(xs)dxs . (6)

We now describe the Sequential Monte Carlo methods used to approximate the recursion
@) in [1], [I2]. Let pr be an instrumental probability density on X and {{%‘T}fil be i.i.d.
random variables such that fvﬁT ~ pr and define

-0 -

QT(E%\T)VT(EPEF\T)
va(gé“‘T) .
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Let now {(éﬁH‘T,chH‘T)}fil be a weighted sample targeting the backward information
filter distribution . 4 y1p[h] at time ¢ + 1:

N N

N -1 “i S - o -
w'y,tJrl\T[h] = Qt+1\T sz+1|Th(€z+1|T) , where €y iqp = ZW;H\T .
i=1 i=1

Plugging this approximation into (B)) yields the target probability density

N

Ttar “i q(fIJt, §Z+1|T)
(@) o Y @ty [ ge(e) —=——
i=1 7t+1(§t+1‘T)

)

which is the marginal probability density function of x; of the joint density

i
Wi

’Q/AJauth(’L.,.’L't) X ———"
i Yer1(§ g 7)

Ye(we)ge (1) q (e, €Z+1|T) .

A particle approximation of the backward information filter at time ¢ can be derived by
choosing an adjustment weight function ¥ and an instrumental density kernel ry 7, and
simulating { (17, éi‘T)}lN:l from the instrumental probability density on {1,..., N} x X given
by _ ~

werl\Tﬁt\T(ngrHT)

7t+1(£§+1\T)

7 (4, Tt) o ror (&l @) - (7)

Subsequently, the particles are associated with the importance weights

Tt (éi\T)gt (£§|T)Q(£§\T’ EZ_HT)

28 S
Doy () (€ Sr)

(®)

Wt|T =

Ideally, a fully adapted version of the auxiliary backward information filter is obtained by
using the adjustment weights ﬁ:‘T(:zr) = [y(z)ge(xe)q(xs, x) dzy and the proposal kernel
density
" _ a(zt,2)
rir (@ @) = vi(@e)ge () (@)
yielding uniform importance weights. Such a solution is most likely to be cumbersome from
a computational perspective.

2.3 Two-filter approximations of the marginal smoothing distribu-
tions

Plugging the particle approximations of the forward and backward filter distributions into
([6) provides the following mixture approximation of the smoothing distribution:

i -]

s—1%s 1|1 i x5
—— g€l r)ga(e)a(@a € ) - (9)
i=1 j=1 75+1(§s+1\:r)
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Following the TwoFilts,, algorithm of Fearnhead, Wyncoll and Tawn [12], the probability
density (@) might be seen as the marginal density of x5 obtained from the joint density on
the product space {1,..., N}? x X given by

J

s+1|T ( i

~ wzfld) =i
5 +1(€j 1|T) 5_1,Is)gs(xs)q(x5,55+1|T) . (10)
S S+

W, 2s) o
The TwoFiltf,; algorithm draws a set {(I¢, I’ ~ﬁ‘T)}éV:l of indices and particle positions

sy ts
from the instrumental density

w§711§S|T(52717 gngl T)werl T . i X
2 | | rs\T(§5—17§i+1‘T;xS) ’ (11)
Vs+1(Eopyyr)

7Ts|T(iuj7 xs) X

where, as above, 1§S|T(:1:, ') is an adjustment multiplier weight function (which now depends
on the forward and backward particles) and 7| is an instrumental kernel. We then associate

with each draw (I¢, ¢ ~£|T) the importance weight

srts
I gt ot o g N
~0 q(§s—l’gs\T)gS(§s|T)Q(€s|T’§s+1‘T) ~ )
WsiT "= = ¢ Lt T ~ o Q= Zws\T . (12)
e It N 10 It y
ﬁsIT(gsfla€S+1|T)T5|T(€s—1a€S+1|T; s\T) =1

Then, the auxiliary indices {(I¢, I¢)}, are discarded and {(cDﬁ'T, éﬁlT)}évzl approximate the

]
target smoothing density ¢?§<‘*ng Mimicking the arguments in [I5] and further developed

n [19], the auxiliary particle filter is fully adapted if the adjustment weight function is
19;|T(3:, z') = [q(z,24)9s(xs)q(zs,2") dzs and the instrumental kernel is

ST (z,2' ;1) = q(x,xs)gs(:zrs)q(xs,x’)/ﬁ;“T(:zr, x') .

Except in simple scenarios, simulating from the fully adapted auxiliary filter is computa-
tionally intractable.

Instead of considering the target distribution (@) as the marginal of the auxiliary distri-
bution ([0} over pairs of indices, the TwoFiltyg,, algorithm of [I] uses the following partial
auxiliary distributions having densities,

N ~J
Jaux,f /. i 7 w5+1‘T £J
¢s|T (Z, $5) X W571Q(55717 xs)gs(xs) Z X5 Q(xsu §s+1|T) )
j=1 78+1(§s+1|T)
~J N
raux,b ; Yor1T 5j i i
¢5|T (],IS) X f(J(xSager”T)gS(xS) Zwsflq(gsfbxs) .
’78+1(§5+1‘T) i=1

aux,f
s|T

and éZFTXb with respect to the forward and the backward particle indices, respectively,

Since (;3;32 T is the marginal probability density of the partial auxiliary distributions ngS

we may sample from A;az o by simulating instead {(I¢, &5}, or {(Zf, ZIT)}é\Ll from the

instrumental probability density functions

7T£|T(i7 Ts) o Wg—lﬁs(g—l)ps(g—lvxs) )

b » . . .
7Ts|T(jv$S) X 195|T(§£+1|T)Wi+1|T7"s|T(§£+1|T7$s)/75+1(§£+1|T) )
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where (9s,ps) and (J5417,757) are the adjustment multiplier weight functions and the
instrumental kernels used in the forward and backward passes. In this case the algorithm
uses the particles obtained when approximating the forward filter and backward information
filter to provide two different weighted samples {(cfj;fT, EHIN | and {(sz}, §§|T)}ij\;1 targeting

the marginal smoothing distribution, where the forward {@;f}}f;l and backward {d;lk}}f\le
importance weights are given by

~zf
WslT = Ws Z“s+1|Tq(§s=5s+1|T)/%+1( s1iT) V= Zwswv (13)
N
; - J i i ] £J 0 ~J:b
ol = &l Y whi1a(€oy ) /re(Er) A = ZwZ\T ' (14)
i=1 =1

An important drawback of these algorithms is that the computation of the forward and
backward importance weights grows quadratically with the number N of particles.

2.4 O(N) approximations of the marginal smoothing distributions

In [12], the authors introduced a proposal mechanism in (II)) such that the indices (I, I)
of the forward and backward particles chosen at time s — 1 and s 4 1 are sampled indepen-
dently. Such choices lead to algorithms whose complexity grows linearly with the number
of particles. The O(N) algorithm displayed in [12] suggests to use an adjustment multiplier
weight function in ([II]) such that I; and I, are chosen according to the same distributions as
the indices sampled in the forward filter and in the backward information filter. It is done
in [I2] by choosing 1§S|T(:c,:c’) = 0s(2)V (') so that (II)) becomes

)ﬁs\T(sz\T) s+1\T ~

7Ts|T(iaj7 Tg) o Wéqﬁs(fsq s\T(fs 17§5+1\Ta175) . (15)

Ys+1 (Eagrr)
In this case, the importance weight ([Z) associated with each draw (I¢, If, {S‘T) is given by
o 5y oz gl
o q(55717 fﬁ\T)gs (€f|T)Q(€f|Ta 5541|T) (16)
s|T = Ig N N ¢ xJ¢ ~ :
195 (gsil)198|T(€sil|T)Ts‘T(§Si175511‘T;€ﬁ|T)

Instead of sampling new particles at time s, an algorithm similar to the TwoFiltyg,, algorithm
of [1] which uses the forward particles {¢/}7, or backward particles {§f|T}éV:1 may also be

implemented with an O(NN) computational complexity.

4

24
(a) Choosing TS|T(§SI 1,§S+1|T, Ts) = rs‘T(giil‘T,xs) in ([I3), the smoothing distribution
approximation is obtained by reweighting the particles obtained in the backward pass.
The backward particles {fﬁ‘T}évzl are associated with the importance weights:

S 'Ys(gﬁ\T)QS(géT)Q(géTvgfs_l‘:r) (55 1755\T)
@ €y e €)1 €O

LAl Ey)

= ws\TV—e .
75( ﬁ\T)ﬁs(gis—l)

(17)
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4 74 £
(b) Choosing 7’;5|T(§£5_1,§£11|T;x5) = ps(gis_l,:vs) in (IT), the smoothing distribution ap-
proximation is obtained by reweighting the particles obtained in the forward filtering
pass. The forward particles {{f}é\[:l are associated with the importance weights:

It ¢ I ¢ gL
~0 . q<§5i1a€£)gs(§£) q(§5’€s+1|T) o gq( S7§s+1\T)
@i Lo S HUT) e Db T) (18)

96 )ps (6, €D 0 ) (€l

3 Exponential deviation inequality for the two-filter al-
gorithms
In this section, we establish exponential deviation inequalities for the two-filter algorithms

introduced in Section 21 Before stating the results, some additional notations are required.
Define, for all (x,2’,2") € X3,

¢, 2 2") = gz, 2" )q(2", o)
and for any functions f : X2 - Rand g : X — R,
fogla,a) = f(z,2)g(2') .
Consider the following assumptions:
Al. |gloo < 00 and for all 0 <t < T, g; is positive and |gt|oo < 00.
A2, Forall 0 <t <T, |9t < 00, [Pt|loo < 00 and |w,|oe < 00 where
dy q(z,z")ge(z")
=== d lt>1 o= 2T

WO(:I:) de (x)QO(‘T) an fOT a = Wt(xvx ) 19t($)pt(517,117/)

A3. - Forall0 <t <T-1, wtlT/%JF1|oo < 00 and |ryrlee < 00. Forall0 <t < T

‘wﬂT‘m < 00, where

_ Ye(z)g:(2)q(z, ")

_ gr(@)yr(z) _
Dy (2 )ryr (2, @)

pr(z)

Opir() : and for all 0 < t < T, &yp(x,a’) :

- Foralll <t <T -1, ’&tIT@%—J:l’ < o0, |q®7t_+11|oo < 00, ‘a}tIT|oo < oo and
o0
‘mT‘oo < 00 where

2] 1ol "
(I)t|T(.’L',CL'/;.’L'”) — q (.’L‘,CL‘ 3 L )gs(.’L' )

B §t|T(x, x )Ty (x, 2’5 2") '

We first show that the weighted sample {(wi@f‘T), (§§,£g|T)}ij:1 targets the product
distribution ¢ s ® ¥ 47

Theorem 1. Assume that Adl, AQ and A3 hold for some T < oo. Then, for all 0 <
s <t < T, there exist 0 < By y1,Cs 47 < o0 such that for all N > 1, ¢ > 0 and all
heFy(X x X, X ® X),
J

4T

i
Ws
Qs Qi

P

.. _ 2/ osc?
h( ;, g|T) - ¢X75 ® w’y,t|T[h] >e]| < Bs,t|Te Cs,¢)7Ne*/ osc*(h) .

3,J=1
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Proof. The proof is postponed to Section b1l O

We now study the weighted sample {(diwvgﬁm)}é\le produced by the TwoFilts,, algo-

rithm of Fearnhead, Wyncoll and Tawn [12] defined in ([I) and (I2) and targeting the
marginal smoothing distribution ¢, 7.

Theorem 2 (deviation inequality for TwoFilts,: of [I2]). Assume that A, A2 and A3 hold
Jor some T' < oco. Then, for all s < T, there exist 0 < Byrp,Cqr < 00 such that for all
N>1,e>0and allh e F (X, X),

N  ~i

= : 3 - €2/ osc?

< Q ‘ i Su) P51 [h]| > 6) < Bgre CsjrNe*/osc(h)
i=1 “os|T

roof. The proof is postponed to Section [(£.21

Using Theorem[I]and Leltnmva[Z|7 we may derive an exponential inequality for the weighted
samples {( ;,G);‘l;) N and {(§§|T,@l’|k})}ij\;1 produced by the TwoFilty,, algorithm of [IJ,
where &lefr and C:J;‘l,} are defined in (I3]) and ([I4). Therefore, both the forward and the
backward particle approximations of the smoothing distribution converge to the marginal

smoothing distribution, and these two approximations satisfy an exponential inequality.

Theorem 3 (deviation inequality for the TwoFiltyg,, algorithm of [I]). Assume that Adl, AZ
and A3 hold for some T < co. Then, for all1 < s <T — 1, there exist 0 < Bgr,Cqr < 00
such that for all N > 1, e >0 and all h € F, (X, X),

'
'

Proof. The proof is postponed to Section O

N (Di,f

S\Th iy h
Z Qf (gs) ¢X,S|T[ ]
i=1 ""s|T

~ib
al ws\Th i n
Z oo (&) — Dxsi (M

i=1 "s|T

] ) < Byjpe=CurNe fosc(h) (19)

> 6) S BS‘Te—Cs‘TN62/OSC2(h) . (20)

Remark 1. Following [23] [6] [I1], time uniform exponential inequalities for the two-filter
approximations of the marginal smoothing distributions may be obtained using strong mixing
assumptions which are standard in the SMC literature:

H1. There ezist 0 < o_ < oy < o0 and c— > 0 such that for all z,2’ € X, o_ < q(z,2') <
o4 and for allt > 0,

[ xCagn(en) = o and - int [ Qe de)gn(a!) = -
S

H2. There exist 0 < 7 < v4 < 00 and ¢— > 0 such that for all x € X and all t > 0,
Y- <y(z) <4 and for all t >0,

[rrtenar@nider 2 e and int [ (e eaten o @de 2 e
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(i) If Al and ARl hold uniformly in 7" and if HI holds, then, it is proved in [6] that
Proposition[§ holds with constants that are uniform in time : there exist 0 < B, C < oo
such that for all s >0, N >0, e >0 and all h € F, (X, X),

P <
(ii) Tt can be shown following the exact same steps that if Al and ARl hold uniformly in
T and if HIl and HZ| hold then Proposition [0 holds with constants that are uniform

in time: there exist 0 < B,C' < oo such that for all t > 0, N > 1, € > 0, and all
h eF (X, X),

|

(iii) Therefore, if Al A2land ABlhold uniformly in T and if HIland H2 hold, then Theorem[I]
holds with constants that are uniform in time. As a direct consequence, Theorems
and [3 hold also with constants that are uniform in time.

N
O " wih(€D) — dyslhl| >
=1

) < Be~ CNe?/ osc(h)?

Z € S Be—cN62/OSC(h)2

N
k> wlph(€r) = (B
=1

4 Asymptotic normality of the two-filter algorithms

We now establish CLT for the two-filter algorithms. Note first that under assumptions
AlIL ARl and AR for all 0 < s,t < T a CLT may be derived for the weighted samples
{(&8,wHY | and {(ftIT, t|T>}N1 which target respectively the filtering distribution ¢, s
and the backward information filter ¢, ;7. By Propositions [0 and [Tl there exist I'y s and

I, 47 such that for any h € F, (X, X),

N/ Z — bxs[h]) N oo N (0, T [ = 6y [R]]) (21)

N1/2Z

T D -
Qt‘ ( €t|T w’y,tlT[hD > Nooo N (07 F'y,t\T [h - w'y,t|T[hH) : (22)
T
Theorem [ establishes a CLT for the weighted sample {w’o? t|T’ (& §t‘T)}Z ;=1 Which targets

the product distribution ¢, S®¢v ¢7- As an important consequence, the asymptotic variance

N

of the weighted sample {wswt‘T, (&, t‘T) i\j—1 is the sum of two contributions, the first one

involves I'y ; and the second one F%HT. Intuitively, this may be explained by the fact that
the estimator (bx R ®1/J,Y . T[ | is obtained by mixing two independent weighted samples which
suggests the following decomposition:

N oo N o
— wh Wi N YT 5 5
NE Q (§S;€t|T N§ V‘ d)XqS[h’Sqt('?gi\T)]
= s Qt|T - Qt\T
i,j=1 Jj=1

N o
wS 7 7 ~
+ VN D G Uyairlha (60 + €y ()
i=1"°

10



Nguyen et al. Two-filter approximations of marginal smoothing distributions

where BS,t =h —¢y,s @y 4rlh] and

N i) o . ,
ENpu(h) = VN Y Q—Q—‘; {MELEr) = uslh Ep)) = Yy rlh(€l ]} -
i,j=1

A CLT for the two independent first terms is obtained by ([ZII) and ([22)). It remains then to
prove that € S]YT‘t(h) converges in probability to 0. However, this cannot be obtained directly
from the exponential deviation inequality derived in Theorem [ and requires sharper controls
of the smoothing error (for instance nonasymptotic LP-mean error bounds). Theorem [
provides a direct proof following the asymptotic theory of weighted system of particles
developed in [7].

Theorem 4. Assume that Al, AQ and A3 hold for some T < oo. Then, for all0 < s <t <
T and allh e F (X x X, X x X),

N i
w; W i &J
\/N Q_Q I h( sagiu‘) - ¢X75 ® 1/)7,t|T[h]
dg=1""%>"T

PrNmroe N (0, T [h = by ® yrlh]])

where fs,t|T [h] is defined by:

o 5= Do | [ ur(@entond| + By | [ oat@nnten] . e

with I'y, s and f%ﬂT are given in Proposition and Proposition [T
Proof. The proof is postponed to Section (.4 O
Define

Os i= Py ,s—1 @ Yoy s11|T {/ Q[Q](',w)gs(;v)dx ® 75431} ,
Es[h] = fs—l,s+1|T |:/ q[z](,z)gs(x)h(fﬂ)dx @754}1] .

Theorem [5] provides a CLT for the TwoFilts,, algorithm of [IZ]

Theorem 5 (CLT for the TwoFilts,,; algorithm of [12]). Assume that A, A2 and A3 hold
for some T < co. Then, for all1 <s<T —1 and all h € F (X, X),

N oo -
VA (Z GG - %wm) Do N (0T [ = 6y ]

where
T sir [h] = 0;2 {Es[h] + Oxs—1 ® Yy s1|T [1§S|T © 75_-:1}

X Gros1 @ Wy g7 U@sT(-;:v)qm(-,w)gs(:c)hz(w)dwG%_b]} . (24)

11
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Proof. The proof is postponed to Section O

The decompositions [27) and ([28) together with Theorem @ allow to prove a CLT form
the forward and the backward approximations of the marginal smoothing distribution. The-
orem [@l is a direct consequence of Proposition [[1] Theorem 4] and Slutsky Lemma.

Theorem 6 (CLT for the TwoFiltygy, algorithm of [I]). Assume that Adl, A2 and A3 hold
for some T < oo. Then, for all1 < s <T —1 and all h € F, (X, X),

N (:ji,f ‘
VN (; Qi';h@;) - ¢>X,ST[h]> Lo Nso N (0,28 7 [h = by [h]]) |
where
AL yr W] =T spyr [HE] Hdxs ® ¥y sprla © v}
Hi(z,2') = h(:b)q(x,x’)v;ﬁl (2) .
Stmilarly,
N ~i,b
\/N (Zl Qzllzh(gé) - ¢X,ST[h]> LN%OO N (07 A;75‘T [h' - ¢X,S|T[h’H) 5
where

AY yr (B =Ty ar [HY] H{bxs1 @ ¥y qrla 095 '}
HY(x,2) == q(z,2)y; ' (2")h(z') .

Note that o5 and X4[h] may be written as:
Os = (bx,s & '@[J'y,erl\T [q © ’75_-1-11] X (bx,s—l {/Q(', $)gs($)d$:|

and by Theorem [4],

50 = Dt | [ ato)gn @t (o)
+ ¢2,s—1 [/Q('aw)gs(ﬂﬁ)dfﬂ] F’y,s+1|T [h§+1} )

With Bl (2) i= h(@)eerrlale, ] and B2, (2) = b (@) h()a(,2)). Tn the
case where 747 (Ts,Tsy1;2s) = ps(Ts—1,25) in (IH) and 153|T(:v,:v') = Ys(2)0r(z’), the
smoothing distribution approximation given by the TwoFilts,; algorithm is obtained by
reweighting the particles obtained in the forward filtering pass and T ¢ [h] may be com-

pared to A; ST [h] as both approximations of ¢,  r[h] are based on the same particles

(associated with different importance weights). In this case, the two last terms in (24]) are
easily interpreted in the case U7 = ys41:

be,sfl ® 1/}y,s+1\T |:7§S|T © F)/;Lll} = (bx,sfl[195]1/)7,s+1|T[195\T7;+11] = (bx,sfl[ﬁs]

12
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and by Jensen’s inequality,
bre1 @ berir | [ @n a0 @ @)ds 027,
~ [ bt @i, 900Dt 00 sl B )
> [ oo, 200 )alas,2) Ly )P
Therefore, by Proposition [[1] and Theorem

1 B 2
FXwS [hs—i-l] + F7,5+1|T [flls-l-ll _ A;)S|T [h] 7
((bx,s ® w'y,s+1|T [q O] /75-1-1])

Tx,s\T [h’] Z

where the last inequality comes from Theorem [l The same inequality holds for AI;C o7 [h]

when FSIT(I5717‘IS+1;‘IS) = TS|T(I5+1; Is) in (m)

Remark 2. Under the strong mixing assumptions HIl and HZ] time uniform bounds for the
asymptotic variances of the two-filter approximations of the marginal smoothing distribu-
tions may be obtained.

(i) If Alll and A2 hold uniformly in 7" and if HIl holds, then it is proved in [6] that there
exists C' > 0 such that for all s > 0 and all h € F,(X, X), the asymptotic variance
Ty s [h] defined in Proposition [I0 satisfies:

Ty [h] < C L%
(ii) Following the same steps, if Al and AR hold uniformly in 7" and if HIl and HZ hold,
there exisvts C > 0 such that for all 0 < ¢ < T and all h € F,(X, X), the asymptotic
variance 'y [h] defined in Proposition 1] satisfies:

1vj%tIT [h<C |h|io

(iii) As a consequence, if ATl A2l and AB]hold uniformly in 7" and if HIl and HZ hold, the

asymptotic variances fs)ﬂT[ 1, A; s [, A; g7 [P and Ty g7 [h] defined in Theo-

rem [, Theorem [Bl and Theorem [6] are all uniformly bounded.

5 Proofs

5.1 Proof of Theorem [
Define gg‘VT = a(éle,w{‘T,l <j<N)and

5 N
fyr(z) == Z (2,&)7)
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whose oscillation is bounded by osc(h). By the exponential inequality for the auxiliary
particle filter (Proposition Bl), there exist constants By and Cs such that

t|T
Z Q Qt| §S’€t|T) QtT/¢XS dIS (Isagtuﬂ) €

1,7=1
(g )

Since the oscillation of the function = — [ ¢y s(dzs)h(zs,z) is bounded by osc(h), by
Proposition [l there exist constants By and Cyjp such that

> € S Bse—csN€2/OsC2(h) . (25)

_ft\T — &x,s(fur)

t|T

/bes (dzs) ($Sa€t|T) ¢xs®1/)'yt|T[ J| >e

t|T
< BtITefcMTNﬁ/osc?(h) , (26)

which concludes the proof.

5.2 Proof of Theorem
Define BS|T :=h — ¢, gr[h]. Lemma[dis used with

N
Ni=N"" Z@i|Ths\T(§§|T) . by i=N"'Qyr,

=1
_ Px,s @ w’y,erllT [f q[Q](';fcs)gs(%)dws O] ’75_-1-11}
Py.s @ "/J'y,erl\T [Q§S|T © '7;.11}

Lemma [7H({I) is satisfied using 8 := b and |ayx|/|bn| < osc (k). To prove Lemma [ for
apn, note that Hoeffding inequality implies that, for any € > 0,

N 2
géVT) < 2€Xp - 26 )
’ 8 @y |-, 0sc?(h)

P (‘aN - E [C:J;\TEQT(E;\T) ’ gé\fT] ‘ > €

where G, 1= ghtvy gﬁ;;T and
QNJF *a{{ u,fl e 1,u:1,...,s—1} ,
g‘i\j’}‘ =0 {{(d}u‘T,fulT)}l]»V:l,u =s+1,... ,T} )
On the other hand, for all £ € {1,..., N},
E [@ﬁwﬁsm(gﬁm) ‘ gé\,]T}
S @ ) [ aPE L s )gu () (2,)de,
2%21 W271@£+1|T”Y;+11 (5Z+1|T)1§5\T(€£717 QH\T) '

14
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The proof of Lemmal[7 (i) is then completed by applying Lemmal[fl to ay, by and b’ defined
by:

J

wi @ +1UT 1 x5 ] h
ay =) #%h(ﬁiﬂﬂ/qm(&1’§§+1T;%)gs(zs)h”(xs)dxs ’
ij=1 s—1%8s541|T
N i~
Ws—1Werr 1 55 3 i £J
by = Z Q0 1QS+1\TFYS“(QH\TWS'T@;—“€£+1|T) ’
Gj=1 7"

b= ys @ ¢7,5+1|T[1§S|T © ”Ys_+11] .

Note first that Lemma [7-({) is satisfied using 5’ := b’ and |a/y/bly| < ‘@5|T’OOOSC(h)- In
addition, by (@),

¢X75 & ¢v,s+1\T[h5\T] S8 ¢X,S|T[hs\T] =0,

where

Fur(@,2) = / 02 (3 2) 90 (@3 oz (2)des @12 (2,27) |

Theorem [I] ensures that Lemma [T} () is satisfied for a/y as

osc (hgr) <2

@S‘T ® *y;rllLO }&JS|T|OO osc(h) .
Similarly, Theorem [ yields:
P(|by — | > €) < Bye™ C:Ne/oxHureni)

which proves Lemma [T for b, and concludes the proof of Lemma [(H{) for ay. The
proof of Lemma [l for by is along the same lines.

5.3 Proof of Theorem [3
Define
hs(z, ') = ’ys__i_ll (@)h(x)q(z,2") and hy(z,2'):= ng(x’)q(x,x/)h(x’) .

It follows from the definition of the forward and backward smoothing weights (I3 and (I4)
that,

§0 gty - O Btir Eir 9E e 6 S o)
R O oy Wil (€ €Ly )
ZN: ol )= Q;lls?gé Zi,vjzlwg,lw;‘Tﬁs(£§,1,£:§|T> | 28)
b, T oAk s Wl el (€€ )

On the other hand, from the definition of the filtering distribution and of the backward
information filter

(bx,s\T[h] = ¢x,s @ 1Z)s-i-l\T [ES} /¢X75 & 7/)s+1|T [Ts] )
(bx,s\T[h] = (bX,S*l & ¢S|T [ﬁs] /¢X15*1 ® U)s\T [ls] :

15
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Then, (3] is established by writing:

N ~zf

sT
Z I (bx,s\T[ ] _aN/b
i=1 s|T

where

i,f i UJ;®§+1|T TS( i ){Es( i €S+1|T) _ ¢X,s ®U)s+1\T [ﬁs] } ,
1

ay = ) »Ss+1|1T/ ) T
g1 Qst—i-lIT 875541 15( % s+1|T) ¢X»S ®U)5+1‘T[ 5}
N igd
wiw
if . SYsHUT 5 /00 & L —
= D Gt b s b= s @ e (L]
i,j=1""%""s

Lemma [ may then be applied with 3 := b. Note that

(§S’§S+IIT) _ ¢x,s & 1/’s-ﬁ-l\T [Es}
s(géu §s+l|T) (bx,s ® werl\T ﬁs}

= h(&) = dy,sirlh]

ai{,f/bév’lc < osc (h) and that Lemma [T is satisfied. By

osc (I,) = osc (g ®7,14) ,
osc (Ts © {h(€)) — by qrhl}) < 2]q @754 | osc (h)

Theorem [I] shows that Lemma [[}() and (@) are satisfied. The proof of ([20) follows the
exact same lines.

5.4 Proof of Theorem [

For all 1 <t < T, the result is shown by induction on s where s € {0,...,t —1}. Write
hot == h — ¢y,0 @1y 4r[h] and set, for i € {1,..., N},

N ~J

w
_ i T7
UN,i =N 1/2w0 E Qt‘ hO t(ﬁngt‘T)
=1 7tT

Then,

T
Z o Q: 507 §t\T) Dy,0 @ ’l/J%t‘T[h] QO/N Z Un.i .
3,7=1

Define gN,i =0 ({gé}fﬁiu {€i|T}tSu§T7j =1,..., N) Then7

N
Z]E [Uni|Gnio1] = NY/? Z —PO [Wohoﬁt('v gg\T)
=1

16



Nguyen et al. Two-filter approximations of marginal smoothing distributions

As fz/J%t‘T(d:vt)po(dxo)wo(:vo)ﬁo,t(xo,xt) = 0, by the CLT for the backward information
filter (Proposition [IT]),

N
ZE [Un,i|GN,i-1] e N (0,Ty7 [Ho,) ,
i1

where Ho4(xt) == fpo(dxo)wo(xo)izoﬁt(:ro, x). We now prove that

al P u?ap ,irlh]
E | exp iUZ{UN,i_E[UN,i|gN,i—1]} ONo| — Nosso €Xp | ———— | ,
im1

2
where

7 gelh] = [ pold)u (@02 yrlhoste, )

This is done by applying [7, Theorem A.3] which requires to show that

N
> (]E [UX,i|Gnio1] —E[Un| gN,i—1]2> L N oo ogyrlh] (29)
i=1
N
Z]E [U]2V,i1{|UN,i| > e} | ON,i1] LN 0. (30)
i—1

By Proposition [3]

N N (‘DJT 2 P
/ 3
ZE [Un,i|Gn,ic1)” = Z Q—‘Ho,t( qr) | o ¥ yrlHod = 0.
i=1 j=1 T
On the other hand,
N
E ZE [UJQ\M | ngifl] - Ug,t\T[h] ]
i1
N ‘DJ|T 2
i B -
= [ @@ ||| 30 G o8 |~ rlhoten )|
j=1""t
< 205c(h) [ pole)ud (@) [An(2)]
where
Yo
Ax(e) = |30 2 g0, €l ) — o (e, )
j=1 T

By Proposition [ there exist By and Cyp such that for all z € X,

E[An(z)] = /000 P (An(z) > ) de

< Bt‘T/ e~ CurNe*/ose(h)® 4o < Dyjrosc(h) N-Y2, (31)
0

17
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which shows that N

ZE [URi | Gn i) Lo Ug,ﬂ;r[h]
i=1
and concludes the proof of (29)). For all N > 1,
{|lUn;| > ¢} C {wé > eNY2osc (h)_l} ,

which implies that

N

S E[URA{Unil > e} |Gn.ia] < ose(h)? / po(de)d (@)1 {wy(@) = N2 ose ()}

i=1

and (B0) follows by letting N — oo. Note that

N1 Sy /X(dIO)QO(IO) ,

which shows (3 since
Four o] = ([ xt@ranteo))
< (T o + [ (o) 0162 o))
=Dyur [ / x.0(dwo)ho,t (o, -)] +Ty0 [ / Wy gz (da)ho (-, :vt)} .

Assume now that the result holds for some s — 1. Write hy s == h — ¢y ® ¥y 17 [h] and set,
forie {1,...,N},

N @]
UN 1/2 zZQ h i t|T)
Then,
VN 3 o g & €)= 00 @ e lh] | = (/) ZUNZ.
ij=1"°

Define, for 1 <i¢ < N,

N
gNl.—a({gj}] 17{§u}gla{v\T} 1§u<s,t§v§T).

Then,

N N i j

-1 s T i -
> (Ui Gavici] = (61 [0]) N2 30 2= 19”‘ Ho(&: &)
i=1 s— t\T

ij=1
where

Hoy(tor,r) = / Q(@am1,2)ga(@)on (2,20 (32)

18
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Since ¢y,s—1 ® Yy 4 7[Hs,¢] = 0, by the induction assumption,

N
ZE[UN,i |Gn,i-1] o N (Oaf‘sq,t\T [H.¢] /¢i,571[195]> .

i=1

We will now prove that

N .
exp (iu Z{UN,i —E[Un,] gN,il]}> |QN,01 s N oo €XD <_%|T[]> 7

i=1

E

where

Ug,t\T[] d)xs 1[ ] 1¢xs 1[fs 1t] 5
fs—l,t(xs—l) = /q(xs—luxs)ws(xs—luxs)¢51t|T[Bs,t($su')]gs(xs)dxs .

This is done using again [7, Theorem A.3] and proving that ([29) and (B0) hold with UgﬁtlT[h]

replaced by o t|T[h]' Note that
2
N IT _
2 — t i X
Y E[Uni|Gnial’ = Q Q stlCan Gpr) | /(@Y l0:)?
i—1 ij=1"s—LikT

which converges in probability to 0 by Theorem[Iland the fact that ¢, ;1 ®v., y7[Hs ] = 0.
In addition,

N
ZE[UZQ\T,i‘gN,i—l] :( X,5— 1 Z 5 1 /19 s 175[:8 gs(xs)

i=1 S 1p5 S l’xs)

X (w’]YVtIT[Bs,t(mh )])2 gs(zs)dzs

'L

N
:( X, 8— 1Y Z — / ; 1> )Q(gé—laIS)

S P NIENE)) AR

:( ﬁs_l[ﬂs])_l iv,s—l [fs]\il,t} ’

where
~ 2
fsj\ilyt(xs—l) = /q(xs—luxs)ws(xs—luxs) (’@[]»Jy\{t‘T[hs,t(xsa )]) gs(xs)dxs .

(7] Voo Ox.5—1[Vs] and write

}d)x,s l[slt] ¢XS 1[f5 1tH<Ast+Bst’

where Aé\ft = |¢X s— 1[ s—1 t] j X s— 1[fs 1 t]| and B = |¢X s— l[fs—l,t] - ¢X;S—1[fs—l,t]|'
As (wi_q,&_ )N, and (w t‘T,ﬁt‘T)]:l are mdependent,
]dxs] )

First note that qSX s—1

E [Aé\,]t] < |w5| |gs

ZQS o K GIREN Y[ I PN
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where Awi\ftlT[ﬁ&t](xs) = (wi\{t\T[;LS;t(x& )% - ¢57t‘T[BS7t($S, -)]. Following the same steps
as in (B1)), there exists Dy such that

E[| a2, rlhsd(e)

] < 2Dyjr osc (h)? JVN ,

which yields

E [Ai\ft] < 20sc (h)2 |Ws| oo 95|00 Dt E

N i
We_ i
Z : /q(gsfl,xs)dws /\/N’
o stl
< 2o0sc (h)2 |ws] oo 195] 00 DT\t/\/N

and E [Aé\{t] —N—oo 0. On the other hand, as osc (fs—1,+) < osc (h)2 |Ws) oo 19500 s Bé\ft LNAOO
0 by Proposition Finally, the tightness condition (B0) holds since |Un ;| < N~ |ws|__ osc (h).
Note that,

Nﬁle i>N%oo (bx,sfl {/q('axs)gs(xs)dxs} /(bx,sfl[ﬁs] .

Therefore (23] holds with

N [ﬁ }: Y s1l0] {Fs L7 [Hst] | fysm1 [fom 1t]} 7

T, +
AT X s—1 [fq y Ls gS Is)dxs] i,sfl[ﬁs] d)XqS*l[ S]

Fslt\T[H ) ¢X51[fs1t]¢xsl[ ]
2 e VL a( ms)gs(2s)dass] 2 e L aCzs)gs(zg)das]

where, by induction assumption,

Doty [Het] = Tye |:/¢'y,t|T(d$t)Hs,t('a$t):|
+ f"y,t|T |:/ ¢X,s—l(dxs—l)Hs,t($s—la )

The proof is completed upon noting that

f(bxs 1 d:Z?S 1) (:ES 1;' _ fﬁbx,sfl d:Z?S 1) (Is 17:55)95(5175);55 t(xsf)dxs
¢X;S 1 [fq LL‘S)dLL'S} (bx,s 1 [fq xs gs xs)dxs] ’

= /be,s(dxs)hs,t(IS’ )

and, by Proposition [I0,

nysfl

fﬂjvt\T day)Hs (-, w¢) 4 (bxs 1[fs— 1t]¢xs 1[04
¢X5 1 [fq y Ts gs xs)dxs] XS 1 [fq y Ls gs xs)dxs}

= Fx,s |:/ 1Z)'y,ﬂT(dxif)ills,t('7'It)
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5.5 Proof of Theorem
Write s = h — by,si7(h). Note that

&

N i . N
VN T her(€r) = (QS\T/N) 1 > Uni,
= Qar i=1

where Un ¢ := N7V208 ph (€L 7). Set, for i € {1,..., N},

Gni = o L@ € timy s {wh €D u =0, s 1,
{((‘Dﬁ\T7€f|T)}éV:17U =s+ 17 o 7T} .
By the proof of Theorem [2]
(bx,sfl & 1Z)s-l-l\T [f q[QJ(,x)gs(a:)dx © FY;JFIJ
Gy,s—1 @ YsqiT |:7§S|T © ”Y;:J

—1A P
N Qs|T —7N-—oco

The proof therefore amounts to establish a CLT for Zévzl Un,e and then to use Slutsky

Lemma. The limit distribution of Eévzl Un ¢ is again obtained using the invariance principle
for triangular array of dependent random variables derived in [7]. As

N

ZE [Un,i|GnN,i—1]

=1
N o 5 B ) »
Zi,j:l w;—lwiJrl\T f q[2]('§ Is)gs(xS)hS,T(fES)dxs © 'Ys+11 (5;715 €i+1|T)
~ —— — ~ - —
Zi,j:l Wg—lwi+1|T75+1(§§+1\T)195|T(§§—1 ) §§+1|T)

it follows from Theorems [I] and [ that

=VN

)

N ~

Z]E [Un,i|GnN,i—1] N N0, Es[hs’f] 3
i=1 (¢X,571 ® Vs[5 © ’Y;rll])
Using that
b @V [ a0 @ r(@)da] © 473,
et = e TP GO @d] ot
Theorem [ yields

N
Z E[Un,| gN,ifl]Q =
i=1

- 2

<Z£\,[j_1 w§71@§+1\T7;+11 (éngl\T) f q[2] (52717 éngl\T; :E)gs (x)hs,T (‘T) )

N — - = - —
Zl}jzlw;—lw;-i-l\T/ys-'rl(§i+1\T)0SIT(§;—1=§§+1|T)

, Do 1 @ Gagair [ 0 (52)g0(@)ho,r(@)dw @
—7?N—oo 2 -1 -
(bx,sfl oy 1Z)s-l-l\'f[’lgs\T © 75+1]
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Similarly, using again Theorem [I]

N

ZE [URi | Gn.i1] s Moo
i=1

Drs—1 @ Yeq1T [fws\T('; I)qm(~;x)gs(ir)5§,cp($)dfl? © ”Y;r11
Dy,s—1 @ 1/Js+1|T[1§s\T © ’Ys_+11]

Since under AR} [Uy ;| < N~1/2 ’(:)S‘T‘OO osc (h), for any € > 0,

N
ZE [UR:{|Unl > €} | Gn,i1] L Noee 0,

=1

which concludes the proof.
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A Exponential deviation inequalities for the forward fil-
ter and the backward information filter

The following result is proved in [6].

Lemma 7. Assume that an, by, and b are random variables defined on the same probability
space such that there exist positive constants 3, B, C, and M satisfying

(i) lan/bn| < M, P-a.s. and b > (3, P-a.s.,
(ii) For all ¢ >0 and all N > 1, P[lay]| > ¢] < Be=ON(/M)*

(i4i) For all e >0 and all N > 1, Pllby —b| > ¢] < Be—CNe*

2] <mem{-en(57) ]

Proposition 8 provides an exponential deviation inequality for the forward filter and is
proved in [6].

Then, for all € > 0,

Proposition 8. Assume that Al and AQ hold for some T > 0. Then, for all s > 1, there
exist 0 < B,, Cs < 0o such that for all N > 1, € >0, and all h € F, (X, X),

g

Proposition [0 provides an exponential inequality for the backward information filter
¥y 47 and its unnormalized approximation. Its proof is similar to the proof [6, Theorem 5]
and is omitted.

N
Q1Y wih(€)) = dyslh]| =
i=1

E) < BsefcsNez/osc(h)2 )

Proposition 9. Assume that Adl and A3 hold for some T > 0. Then, for all0 <t < T,
there exist 0 < By, Cyp < 00 such that for all N > 1, € >0, and all h € F, (X, X),

>l < BtlTe—Ct‘TNgz/osC(h)2 '

N
Qﬂclr Z @ rh(Ehr) — Yoy lh]
=1

B Asymptotic normality of the forward filter and the
backward information filter

Proposition [0 provides a CLT for the weighted particles {(w?, &)} | approximating the
filtering distribution ¢, s and is proved for instance in [4].

Proposition 10. Assume that Al and A2 hold for some T > 0. Then, for all0 < s < T
and all h € F (X, X),

ws.

2 <Z % 1(eh) - byl ]> e N(0.Ty [~ by [HL)
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where

J po(dao)wi (o) h*(20)

Iyolh]: 5 and for alls > 1,
olhl= (f po(dzo)wg (o))

L X,s 1 [fq s(xs)h(xs)dxs]
FX.’S [h] o X s—1 [fq )gS(xS d.’L’S}

)
+ ¢X75—1 [f ws( xs)‘]( xs)gs(xs)hz(xs)dxs} ¢X75—1[0S] .

X'S 1 [fq xS gS xs)dxs]

Proposition [l provides a CLT for the weighted particles {((I)‘Z‘T, fvf‘T)}é-Vzl approximating
the backward information filter. Its proof follows the same lines as the proof of Proposition[I0]
and is omitted for brevity.

Proposition 11. Assume that Al and A3 hold. Then, for all0 < t < T and all h €
F, (X, X),

N o
N2 | 32 G Ela) vl | Prvooe N Fr [ = vl
where
Iv‘%T|T [h] == pr(dIT)wT‘T(ZET)h (IQT) and for allt <T —1,
(f pr(awr)op (o))
r ¢ [h] == f%tH\T L ve(@e)ge(ze)g(ae, )7;}1(-)h(xt)dxt]
" V2 e (@) ge(@a(@e, )yl ()dae]
n U rrr [ @e(@e, )q(@e, ) ge (@) ye (@) v (VR (@) dae] ¥y enyr [Ioryit] '
1/}3,7154,1‘]‘ [f ”Yt(xt)gt(xt)Q(iFtv )71;»11()dxt]
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