V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, 1989.
DOI : 10.1515/9781400875955

M. Abdelouahab, R. Lozi, and L. Chua, Memfractance: A Mathematical Paradigm for Circuit Elements with Memory, International Journal of Bifurcation and Chaos, vol.24, issue.09, 2014.
DOI : 10.1142/S0218127414300237

URL : https://hal.archives-ouvertes.fr/hal-01322396

M. Abdelouahab and R. Lozi, Hopf Bifurcation and Chaos in Simplest Fractional-Order Memristor-based Electrical Circuit, Indian Journal of Industrial and Applied Mathematics, vol.6, issue.2, pp.105-119, 2015.
DOI : 10.5958/1945-919X.2015.00009.2

URL : https://hal.archives-ouvertes.fr/hal-01324465

D. W. Brzezinski, Accuracy Problems of Numerical Calculation of Fractional Order Derivatives and Integrals Applying the Riemann- Liouville, Applied Mathematics and Nonlinear Sciences, vol.1, issue.1, pp.23-44, 2016.

E. N. Lorenz, Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences, vol.202, issue.2, pp.130-141, 1963.

J. A. Yorke and E. D. Yorke, Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model, Journal of Statistical Physics, vol.4, issue.1, pp.263-27710, 1979.
DOI : 10.1007/BF01011469

C. Sparrow, The Lorenz equations: bifurcations, chaos, and strange attractors, pp.10-1007, 1982.
DOI : 10.1007/978-1-4612-5767-7

D. A. Kaloshin, Search for and Stabilization of Unstable Saddle Cycles in the Lorenz System, Differential Equations, vol.37, issue.11, pp.1636-1639101017933202944, 1023.
DOI : 10.1023/A:1017933202944

L. Yao, Computed Chaos or Numerical Errors // Nonlinear Analysis: Modelling and Control, pp.109-126, 2010.

I. Babuska, M. Prager, and E. Vitasek, Numerical processes in differential equations, p.pp, 1966.

J. Teixeira, C. A. Reynolds, and K. Judd, Time Step Sensitivity of Nonlinear Atmospheric Models: Numerical Convergence, Truncation Error Growth, and Ensemble Design, Journal of the Atmospheric Sciences, vol.64, issue.1, pp.175-189, 2007.
DOI : 10.1175/JAS3824.1

S. H. Strogatz, Nonlinear dynamics and chaos, with applications to physics, biology, chemistry and engineering, 1994.

S. A. Sarra and C. Meador, On the Numerical Solution of Chaotic Dynamical Systems Using Extend Precision Floating Point Arithmetic and Very High Order Numerical Methods, Nonlinear Analysis: Modelling and Control, pp.340-352, 2011.

E. Hairer, S. P. Norsett, and G. Wanner, Solving ordinary differential equations I: nonstiff problems, 1993.
DOI : 10.1007/978-3-662-12607-3

J. C. Butcher, Numerical methods for ordinary differential equations, p.425, 2003.

S. S. Motsa, P. Dlamini, and M. Khumalo, A new multistage spectral relaxation method for solving chaotic initial value systems, Nonlinear Dynamics, vol.15, issue.5, pp.265-28310, 2013.
DOI : 10.1007/s11071-012-0712-8

S. S. Motsa, Abstract, Open Physics, vol.10, issue.4, pp.936-946, 2012.
DOI : 10.2478/s11534-011-0124-2

I. Hashim, M. S. Noorani, R. Ahmad, S. A. Bakar, E. S. Ismail et al., Accuracy of the Adomian decomposition method applied to the Lorenz system, Accuracy of the Adomian Decomposition Method Applied to the Lorenz System, pp.1149-1158, 2006.
DOI : 10.1016/j.chaos.2005.08.135

O. Abdulaziz, N. F. Noor, I. Hashim, and M. S. Noorani, Further accuracy tests on Adomian decomposition method for chaotic systems, Chaos, Solitons & Fractals, vol.36, issue.5, pp.1405-1411, 2008.
DOI : 10.1016/j.chaos.2006.09.007

M. M. Al-sawalha, M. S. Noorani, and I. Hashim, On accuracy of Adomian decomposition method for hyperchaotic R??ssler system, Chaos, Solitons & Fractals, vol.40, issue.4, pp.1801-1807, 2009.
DOI : 10.1016/j.chaos.2007.09.062

P. Vadasz and S. Olek, Convergence and accuracy of Adomian???s decomposition method for the solution of Lorenz equations, International Journal of Heat and Mass Transfer, vol.43, issue.10, pp.1715-1734, 2000.
DOI : 10.1016/S0017-9310(99)00260-4

A. N. Pchelintsev, Numerical and physical modeling of the dynamics of the Lorenz system, Numerical Analysis and Applications, vol.7, issue.2, pp.159-167, 2014.
DOI : 10.1134/S1995423914020098

R. Lozi and A. N. Pchelintsev, A New Reliable Numerical Method for Computing Chaotic Solutions of Dynamical Systems: The Chen Attractor Case, International Journal of Bifurcation and Chaos, vol.25, issue.13, 2015.
DOI : 10.1142/S0218127415501874

URL : https://hal.archives-ouvertes.fr/hal-01323625

G. Chen and T. Ueta, YET ANOTHER CHAOTIC ATTRACTOR, Yet Another Chaotic Attractor, pp.1465-1466, 1999.
DOI : 10.1142/S0218127499001024

T. Ueta and G. Chen, Bifurcation Analysis of Chen's Attractor, International Journal of Bifurcation and Chaos, vol.10, issue.8, pp.1917-1931, 2000.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, vol.31, issue.3, 1985.
DOI : 10.1103/PhysRevA.31.1695

S. Jafari, J. C. Sprott, and F. Nazarimehr, Recent new examples of hidden attractors, The European Physical Journal Special Topics, vol.100, issue.8, pp.1469-147610, 1140.
DOI : 10.1140/epjst/e2015-02472-1

J. C. Sprott, Some simple chaotic flows, Physical Review E, vol.50, issue.2, 1994.
DOI : 10.1103/PhysRevE.50.R647

R. Barrio, M. A. Martínez, S. Serrano, and D. Wilczak, When chaos meets hyperchaos: 4D R??ssler model, Physics Letters A, vol.379, issue.38, 2015.
DOI : 10.1016/j.physleta.2015.07.035

P. Reitererdag, C. Lainscsekdag, F. Schürrerdag, C. Letellierddag, and J. Maquet, A Nine-Dimensional Lorenz System to Study High- Dimensional Chaos, Journal of Physics A: Mathematical and General, vol.3134, pp.7121-7139015, 1998.

A. Algaba, F. Fernández-sánchez, M. Merino, and A. J. Rodríguez-luis, Chen's attractor exists if Lorenz repulsor exists: The Chen system is a special case of the Lorenz system, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.23, issue.3, pp.33108-33118, 2013.
DOI : 10.1063/1.4813227

G. Chen, The Chen System Revisited // Dynamics of Continuous , Discrete and Impulsive Systems Series B: Applications and Algorithms, pp.691-696, 2013.