Flatness for linear fractional systems with application to a thermal system

Abstract : This paper is devoted to the study of the flatness property of linear time-invariant fractional systems. In the framework of polynomial matrices of the fractional derivative operator, we give a characterization of fractionally flat outputs and a simple algorithm to compute them. We also obtain a characterization of the so-called fractionally 0-flat outputs. We then present an application to a two dimensional heated metallic sheet, whose dynamics may be approximated by a fractional model of order 1/2. The trajectory planning of the temperature at a given point of the metallic sheet is obtained thanks to the fractional flatness property, without integrating the system equations. The pertinence of this approach is discussed on simulations.
Type de document :
Article dans une revue
Automatica, Elsevier, 2015, 57, pp.213-221. 〈10.1016/j.automatica.2015.04.021〉
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01319169
Contributeur : Stéphane Victor <>
Soumis le : lundi 23 mai 2016 - 14:46:51
Dernière modification le : lundi 12 novembre 2018 - 11:04:31

Lien texte intégral

Identifiants

Citation

✩ Stéphane Victor, Pierre Melchior, Jean Lévine, Alain Oustaloup. Flatness for linear fractional systems with application to a thermal system. Automatica, Elsevier, 2015, 57, pp.213-221. 〈10.1016/j.automatica.2015.04.021〉. 〈hal-01319169〉

Partager

Métriques

Consultations de la notice

324