M. Weglowski, Investigation on the arc light spectrum in GTA welding, JAMME, vol.20, pp.519-522, 2007.

B. Abdullah, Monitoring of welding using Laser diodes Semiconductor Laser diode technology and applications. Rijeka: InTech; 2012 Available from: http://www.intechopen.com/books/semiconductor-laser-diode-technology- and-applications/monitoring-of-welding-using-laser-diodes, pp.241-262

R. Huang, L. Liu, and G. Song, Infrared temperature measurement and interference analysis of magnesium alloys in hybrid laser-TIG welding process, Materials Science and Engineering: A, vol.447, issue.1-2, pp.239-243, 2007.
DOI : 10.1016/j.msea.2006.10.069

G. Zhang, C. Wu, and Z. Liu, Experimental observation of both keyhole and its surrounding thermal field in plasma arc welding, International Journal of Heat and Mass Transfer, vol.70, pp.439-448, 2014.
DOI : 10.1016/j.ijheatmasstransfer.2013.11.036

D. Miyazaki, M. Saito, and Y. Sato, Determining surface orientations of transparent objects based on polarization degrees in visible and infrared wavelengths, Journal of the Optical Society of America A, vol.19, issue.4, pp.687-694, 2002.
DOI : 10.1364/JOSAA.19.000687

G. Bimonte, L. Cappellin, and G. Carugno, Polarized thermal emission by thin metal wires, New Journal of Physics, vol.11, issue.3, pp.33014-33025, 2009.
DOI : 10.1088/1367-2630/11/3/033014

URL : http://iopscience.iop.org/article/10.1088/1367-2630/11/3/033014/pdf

W. Lukens, R. Morris, and E. Dunn, IR temperature sensing of cooling rates for arc welding control . DTNSRDC/SME-80, Bethesda (MD), vol.70, 1981.

J. Doong, C. Wu, and J. Hwang, Infrared temperature sensing of laser welding, International Journal of Machine Tools and Manufacture, vol.31, issue.4, pp.607-616, 1991.
DOI : 10.1016/0890-6955(91)90040-A

P. Moreira, O. Frazão, and S. Tavares, Temperature field acquisition during gas metal arc welding using thermocouples, thermography and fibre Bragg grating sensors, Measurement Science and Technology, vol.18, issue.3, pp.877-883, 2007.
DOI : 10.1088/0957-0233/18/3/041

G. Liang and S. Yuan, Study on the temperature measurement of AZ31B magnesium alloy in gas tungsten arc welding, Materials Letters, vol.62, issue.15, pp.2282-2284, 2008.
DOI : 10.1016/j.matlet.2007.11.096

L. Liu, C. M. Huang, and R. , Infrared measurement and simulation of mag-nesium alloy welding temperature field, Science in China Series E, vol.48, issue.6, pp.706-715, 2005.
DOI : 10.1360/102005-201

J. Boillot, P. Cielo, and G. Begin, Adaptive welding by fiber optic thermographic sensing: an analysis of thermal and instrumental considerations. Weld, J.: Weld. Res, pp.209-218, 1985.

S. Matteï, D. Grevey, and A. Mathieu, Using infrared thermography in order to compare laser and hybrid (laser+MIG) welding processes, Optics & Laser Technology, vol.41, issue.6, pp.665-670, 2009.
DOI : 10.1016/j.optlastec.2009.02.005

A. Mathieu, S. Matteï, and A. Deschamps, Temperature control in laser brazing of a steel/aluminium assembly using thermographic measurements, NDT & E International, vol.39, issue.4, pp.272-276, 2006.
DOI : 10.1016/j.ndteint.2005.08.005

URL : https://hal.archives-ouvertes.fr/hal-00438162

D. Chin, N. Madsen, and J. Goodling, Infrared thermography for sensing the arc welding process. Weld, J.: Weld. Res, pp.227-234, 1983.

S. Nagajaran, W. Chen, and B. Chin, Infrared sensing for adaptive arc welding. Weld, J.: Weld. Res, pp.462-466, 1989.

W. Chen and B. Chin, Monitoring joint penetration using infrared sensing techniques. Weld, J.: Weld. Res, pp.181-185, 1990.

A. Bicknell, J. Smith, and J. Lucas, Infrared sensor for top face monitoring of weld pools, Measurement Science and Technology, vol.5, issue.4, pp.371-378, 1994.
DOI : 10.1088/0957-0233/5/4/008

P. Bertrand, I. Smurov, and D. Grevey, Application of near infrared pyrometry for continuous Nd:YAG laser welding of stainless steel, Applied Surface Science, vol.168, issue.1-4, pp.182-185, 2000.
DOI : 10.1016/S0169-4332(00)00586-9

M. Doubenskaia, P. Bertrand, and I. Smurov, Pyrometry in laser surface treatment, Surface and Coatings Technology, vol.201, issue.5, pp.1955-1961, 2009.
DOI : 10.1016/j.surfcoat.2006.04.060

P. Bertrand, M. Ignatiev, and G. Flamant, Pyrometry applications in thermal plasma processing, Vacuum, vol.56, issue.1, pp.71-76, 2000.
DOI : 10.1016/S0042-207X(99)00168-2

M. Tanaka, K. Waki, and S. Tashiro, Visualizations of 2D temperature distribution of molten metal in arc welding process, T. JWRI, vol.38, pp.1-4, 2009.

E. Siewert, J. Schein, and G. Forster, Determination of enthalpy, temperature, surface tension and geometry of the material transfer in PGMAW for the system argon???iron, Journal of Physics D: Applied Physics, vol.46, issue.22, p.224008, 2013.
DOI : 10.1088/0022-3727/46/22/224008

H. Shöpp, A. Sperl, and R. Kozakov, Temperature and emissivity determination of liquid steel S235, Journal of Physics D: Applied Physics, vol.45, issue.23, p.235203, 2012.
DOI : 10.1088/0022-3727/45/23/235203

R. Kozakov, H. Schöpp, and G. Gött, Weld pool temperatures of steel S235 while applying a controlled short-circuit gas metal arc welding process and various shielding gases, Journal of Physics D: Applied Physics, vol.46, issue.47, p.475501, 2013.
DOI : 10.1088/0022-3727/46/47/475501

H. Kraus, Optical spectral radiometric method for measurement of weld-pool surface temperatures, Optics Letters, vol.11, issue.12, pp.773-775, 1986.
DOI : 10.1364/OL.11.000773

H. Kraus, Experimental measurement of stationary SS 304, SS 316L and 8630 GTA weld pool surface temperatures. Weld, J.: Weld. Res, pp.269-279, 1989.

L. Klein, S. Ingvarsson, and H. Hamann, Changing the emission of polarized thermal radiation from metallic nanoheaters, Optics Express, vol.17, issue.20, pp.17963-17969, 2009.
DOI : 10.1364/OE.17.017963

R. Weast, CRC handbook of chemistry and physics, p.405, 1988.

N. Coniglio, A. Mathieu, and O. Aubreton, Characterizing weld pool surfaces from polarization state of thermal emissions, Optics Letters, vol.38, issue.12, pp.2086-2088, 2013.
DOI : 10.1364/OL.38.002086

J. Tyo, D. Goldstein, and D. Chenault, Review of passive imaging polarimetry for remote sensing applications, Applied Optics, vol.45, issue.22, pp.5453-5469, 2006.
DOI : 10.1364/AO.45.005453

L. Klein, H. Hamann, and Y. Au, Coherence properties of infrared thermal emission from heated metallic nanowires, Applied Physics Letters, vol.92, issue.21, pp.213102-213106, 2008.
DOI : 10.1103/PhysRevLett.9.479

V. Yannopapas, Effect of material spatial dispersion in the degree of polarization of thermal radiation emitted by a spherical source, Optics Communications, vol.283, issue.22, pp.4494-4498, 2010.
DOI : 10.1016/j.optcom.2010.04.079

S. Ingvarsson, L. Klein, and Y. Au, Enhanced thermal emission from individual antenna-like nanoheaters, Optics Express, vol.15, issue.18, pp.11249-11254, 2007.
DOI : 10.1364/OE.15.011249

P. Hesketh, J. Zemel, and B. Gebhart, Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction, Physical Review B, vol.62, issue.18, pp.10795-10802, 1988.
DOI : 10.1364/JOSA.62.000602

P. Hesketh, J. Zemel, and B. Gebhart, Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation, Physical Review B, vol.5, issue.18, pp.10803-10813, 1988.
DOI : 10.1364/AO.5.001911

F. Marquier, K. Joulain, and J. Mulet, Coherent spontaneous emission of light by thermal sources, Physical Review B, vol.59, issue.15, p.155412, 2004.
DOI : 10.1088/0034-4885/59/6/002

URL : https://hal.archives-ouvertes.fr/hal-00132593

D. Bertilone, Stokes parameters and partial polarization of far-field radiation emitted by hot bodies, Journal of the Optical Society of America A, vol.11, issue.8, pp.2298-2304, 1994.
DOI : 10.1364/JOSAA.11.002298

S. Rahmann and N. Canterakis, Reconstruction of specular surfaces using polarization imaging, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 2001.
DOI : 10.1109/CVPR.2001.990468

URL : ftp://ftp.informatik.uni-freiburg.de/papers/lmb/ra_cant_cvpr01.ps.gz

A. Worthing, Deviation from Lambert???s Law and Polarization of Light Emitted by Incandescent Tungsten, Tantalum and Molybdenum and Changes in the Optical Constants of Tungsten with Temperature*, Journal of the Optical Society of America, vol.13, issue.6, pp.635-647, 1926.
DOI : 10.1364/JOSA.13.000635

D. Jordan and G. Lewis, Measurements of the effect of surface roughness on the polarization state of thermally emitted radiation, Optics Letters, vol.19, issue.10, pp.692-694, 1994.
DOI : 10.1364/OL.19.000692

J. Lee, J. Lee, and W. Leung, Polarization Engineering of Thermal Radiation Using Metallic Photonic Crystals, Advanced Materials, vol.67, issue.17, pp.3244-3247, 2008.
DOI : 10.1002/adma.200703160

J. Lee, W. Leung, and T. Kim, Polarized thermal radiation by layer-by-layer metallic emitters with sub-wavelength grating, Optics Express, vol.16, issue.12, pp.8742-8747, 2008.
DOI : 10.1364/OE.16.008742

N. Dahan, A. Niv, and G. Biener, Thermal image encryption obtained with a SiO_2 space-variant subwavelength grating supporting surface phonon-polaritons, Optics Letters, vol.30, issue.23, pp.3195-3197, 2005.
DOI : 10.1364/OL.30.003195

N. Dahan, A. Niv, and G. Biener, Space-variant polarization manipulation of a thermal emission by a SiO 2 subwavelength grating supporting surface phonon-polaritons, Appl. Phys. Lett, vol.86, 2005.

A. Wilkie and A. Weidlich, A Physically Plausible Model for Light Emission from Glowing Solid Objects, Computer Graphics Forum, vol.11, issue.12, pp.1269-1276, 2011.
DOI : 10.1364/AO.11.002984

URL : http://cgg.mff.cuni.cz/%7Ewilkie/Website/Home_files/egsr_2011_glow.pdf

K. Gurton, R. Dahmani, and G. Videen, Measured degree of infrared polarization for a variety of thermal emitting surfaces. U.S. Army Research Lab, 2004.

N. Coniglio, A. Mathieu, and O. Aubreton, Plasma effect on weld pool surface reconstruction by shape-from-polarization analysis, Applied Physics Letters, vol.185, issue.13, p.131603, 2014.
DOI : 10.1016/j.optlaseng.2011.05.012

URL : https://hal.archives-ouvertes.fr/hal-01006611