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Abstract

Dealing with fatigue lifetime prediction, this paper aims to report on a new statistical method combining the Lambda Distributions and the 
Bootstrap technique. This method is first applied for determining the Probability Density Function (PDF) of the C and n coefficients in the 
Paris relationship of a fatigue crack propagation curve. Then, introducing the initial crack’s length distribution, the fatigue lifetime prediction 
is obtained and discussed considering various standard deviations of the initial crack’s length. It is shown that the scattering of the initial 
crack’s length needs to be taken into account in predicting lifetime, and that the stochastic nature of the crack’s propagation is not self-

sufficient to explain completely the experimental asymmetry of the PDF lifetime. This paper shows that the Lambda Distributions are a 
powerful tool for modelling the PDF lifetime, compared with traditional Gaussian or lognormal PDF.

Keywords: Lifetime prediction; Statistical analysis; Numerical simulation; Fatigue crack growth; Paris relationship; Bootstrap technique; Lambda Distribution
1. Introduction

The present work was motivated by a review of articles

dealing with fatigue lifetime modelling. Indeed, on the one

hand, the lifetime data under study are modelled by a two-

parameter Weibull distribution in [1–8]. The authors justify

this choice either by the weakest link assumption or because

this is the most commonly used distribution in fatigue

lifetime modelling. Caron and Ehrlacher [9] use a three-

parameter Weibull Distribution and Nagode and Fajdiga

[10,11] choose multi-modal Weibull Distributions. On the

other hand, the lifetime data under study are modelled by a

Lognormal Distribution in [12–15], and even by a Gaussian

Distribution in Liao et al. [15].

None of the commonly used distributions (Gaussian,

Lognormal or Weibull) is able to model correctly all the

shapes encountered in fatigue lifetime experimental data

meaning that there is no universally admitted distribution
* Corresponding author. Tel.: C33 3 2062 2233; fax: C33 3 2062 2957.

E-mail address: iost@lille.ensam.fr (A. Iost).
family for the modelling of fatigue lifetime. Moreover, the

choice of the distribution used is often either due to

the modelling background of the authors or to the ability

of the considered distribution to fit correctly with the shape

of the data under study. Furthermore, the distributions used

are scarcely compared to others and are not always validated

by statistical tests of adequacy. Therefore, the consequent

variety in fatigue lifetime modelling may lead to dis-

crepancies and comparison difficulties between the results

thus obtained.

The present work aims to present a new alternative

statistical method that avoids the previously cited draw-

backs related to commonly used distributions. Based on a

four parameter family of distributions called the Lambda

Distributions, this study derives from the preliminary results

obtained by the authors [16]. This first article [16] was based

on the results of the fatigue crack growth experiment on an

aluminium alloy obtained by Krausz et al. [17] and shown in

Fig. 1.

This figure illustrates the fact that the behaviour of the

fatigue crack propagation of engineering alloys can be

generally divided into three stages. In stage II, stable fatigue

crack growth conditions prevail and the fatigue

crack growth rate (FCGR) is given by the well known

http://www.elsevier.com/locate/ijfatigue
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Fig. 1. Result of the fatigue crack growth on an aluminium alloy obtained

by [17]. Dispersion on some experimental points can be observed. The Paris

equation is given by ln da/dNZK16.03C2,954 ln((k).
Paris–Erdogan relationship (Paris and Erdogan [18])

da=dN Z CDKn (1)

where C and n are two parameters depending on the material

and on the experimental conditions.

In Bigerelle and Iost [16], the Paris coefficients and the

interval limits [DKI–II, DKII–III] of stage II were determined

combining the Bootstrap analysis and the linear regression

method in the case of the data presented in Fig. 1. The

values of DKI–II and DKII–III were statistically determined by

finding the {i, j, CI, nI, CII, nII, CIII, nIII} values which

minimize the residuals Ri,j defined by
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where (DKk,(da/dN)k) are n experimental data with an

ascending DKk and (i,j) are the indices of the points

bounding the stage II of the fatigue curve. Applying

this method to the experimental results presented in

Fig. 1, the authors found DKI–IIZ2:3 MPa
ffiffiffiffi
m

p
and

DKII–III Z10:9 MPa
ffiffiffiffi
m

p
.

The Lambda Distributions are described in the present

work to propose a new, robust and powerful method to

obtain an accurate and flexible analytical expression of the

fatigue lifetime prediction. This method enables the

calculation of any confidence interval needed and allows a

better understanding of the influence of the considered

parameters. Thus, instead of considering only a single-point

value for each parameter (e.g. the mean initial crack’s

length), the presented method considers the whole
distribution of the studied parameters, through their

associated Lambda Distribution.

Starting from the preliminary results obtained in

Bigerelle and Iost [16], the Lambda Distributions are

combined with the Bootstrap technique to determine firstly

the Probability Density Function (PDF) of the Paris

coefficients C and n. Then the Lambda Distributions are

used in this article to model various shapes of fatigue

lifetime data and turn out to be, in most cases, more accurate

than the usual distributions used (i.e. Gaussian, Lognormal

and Weibull) considering global goodness-of-fit criteria.

Moreover, the adequacy of the Lambda Distribution

modelling was checked and compared to those of other

usual PDF around the distributions’ tails (which are of

particular interest in fatigue lifetime prediction) through the

calculation of some extreme percentiles. Finally, to

investigate the consistency of the distribution with the

physics of the fatigue process, the corresponding hazard

functions were plotted and compared to those of other usual

distributions.
2. Bootstrap technique and Paris coefficients

Roughly speaking, the computer-based Bootstrap

method (CBBM) [16,19,20] allows the replacement of

statistical inference assumptions (therefore limiting the risk

of asserting wrong conclusions) by intensive calculations

while making the most of the power of modern computers.

The main principle of the Bootstrap method consists of

generating a high number B of simulated Bootstrap samples

from the original data points. The original dataset consists in

either experimental or simulated points. A Bootstrap dataset

of size N, noted ðt�1 ; t
�
2 ;.; t�NÞ is a collection of N values

simply obtained by randomly sampling with replacement

from the original data points (t1,t2,.,tN), each of them with

a probability of 1/N. The Bootstrap dataset is, consequently,

composed of elements from the original data points; some

appearing zero time, some appearing one, some appearing

twice, etc. Compared to the usual Monte Carlo and Latin

Hypercube sampling methods, which both sample from an

assumed PDF, the Bootstrap method presents the main

advantage to avoid choosing a priori a PDF for the set of

data points. There is no need to first identify an analytical

PDF before sampling, which avoids the drawbacks related

to the variability of the estimation of the parameters.

In this study, the Bootstrap method is applied to the

linear regression model

ci2½1; p� yi Z xib C3i (3)

where p is the number of experimental measurements, yi

is the ith element of YZln da/dN, xi is ith element of

XZ(ln DK,1), bZ(n, ln C) and 3i is a random noise.

The application of the Bootstrap analysis to the

experimental results presented in Fig. 1 enables us to obtain



a large set of possible pair coefficients (n, ln C). The

histograms related to these parameters are presented in

Fig. 2.
3. The Lambda Distributions

3.1. Definition

In this paragraph, the definition and some properties of

this PDF family are briefly presented without giving any

justification. For more details, the reader should refer to

Karian [21]. The Generalized Lambda Distribution family

with parameters (l1,l2,l3,l4), noted GLD(l1,l2,l3,l4) is

defined firstly by its percentile function

QðyÞ Z Qðy; l1; l2; l3; l4Þ Z l1 C
yl3 Kð1KyÞl4

l2

(4)

with y2[0,1], (l1,l2) are, respectively, the position and

scale parameters and (l3,l4) are, respectively, related to

the skewness (asymmetry) and the kurtosis (flatness) of

the GLD(l1,l2,l3,l4). From the percentile function, the

following PDF can be defined:

f ðxÞ Z f ðQðyÞÞ Z
l2

l3yl3K1 Cl4ð1KyÞl4K1
(5)

The fact that this family of distributions is defined by its

percentile function is fundamental and very useful as far as

Monte Carlo simulations are concerned.

The Lambda Distributions present two main advantages.

On the one hand, as they are defined by four parameters,

they can approach accurately any kind of unimodal

distribution; i.e. they can have various shapes. On the

other hand, their percentile based definition enables easier

and faster Monte Carlo simulations. Nevertheless, it must be

outlined that the definition given above is restricted to

domains where Eq. (5) corresponds to a valid PDF [21],

imposing a careful determination of parameters

(l1,l2,l3,l4). Moreover, while the four parameters definition

of the GLD enables a large flexibility for modelling a wide
ln C
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Fig. 2. Probability density function obtained by the Bootstrap technique on the val

iterations and fitted either by a Gaussian PDF or by a Lambda Distribution.
variety of data sets, it must be stressed that estimating four

parameters usually leads to bigger variability than estimat-

ing fewer parameters. This is particularly true for small

sample sizes, meaning that for some practical cases where

the amount of data is rather reduced, the choice of the

method of determination of the GLD parameters must be

carefully done. As it is a very usual method in distribution

fitting, even for readers less familiar with statistics, only the

method of moments will be presented in this paper.
3.2. The method of moments

This part aims to describe one of the methods available to

determine the parameters (l1,l2,l3,l4), related to a given

histogram of experimental or simulated values that

characterize the population we wish to model. The method

is based on the identification of the data moments with

those of the GLD(l1,l2,l3,l4). The first four moments of

our experimental distribution are usually, as in [21], defined

by:

â1 Z �x Z
Xn

iZ1

xi

n
(6)

â2 Z ŝ2 Z
Xn

iZ1

ðxiK �xÞ2

n
(7)

â3 Z
Xn

iZ1

ðxiK �xÞ3

nŝ3
(8)

â4 Z
Xn

iZ1

ðxiK �xÞ4

nŝ4
(9)

In addition to the domains of validity of Eq. (5), the use

of the method of moments imposes that the first four

moments of the GLD(l1,l2,l3,l4) are defined, which leads to

the condition l3OK1/4 and l4OK1/4. Besides the first

four moments of the GLD(l1,l2,l3,l4) are defined by
n
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the following equations

a1 Z m Z EðXÞ Z l1 C
A

l2

(10)

a2 Z s2 Z E½ðxKmÞ2� Z
BKA2

l2
2

(11)

a3 Z
E½ðxKmÞ3�

s3
Z

CK3AB C2A2

l3
2s3

(12)

a4 Z
E½ðxKmÞ4�

s4
Z

DK4AC C6A2BK3A4

l4
2s4

(13)

with

A Z
1

1 Cl3

K
1

1 Cl4

(14)

B Z
1

1 C2l3

C
1

1 C2l4

K2bð1 Cl3; 1 Cl4Þ (15)

C Z
1

1 C3l3

K
1

1 C3l4

K3bð1 C2l3; 1 Cl4Þ

C3bð1 Cl3; 1 C2l4Þ (16)

D Z
1

1 C4l3

C
1

1 C4l4

K4bð1 C3l3; 1 Cl4Þ

C6bð1 C2l3; 1 C2l4ÞK3bð1 Cl3; 1 C3l4Þ (17)

where b is the Riemann Beta function given by:

bða; bÞ Z

ð1

0

xaK1ð1KxÞbK1 dx (18)

Knowing that an algorithm dedicated to the identification

of the four parameters would be complex and time

consuming, only the two parameters (l3,l4) are first

considered, even though the four moments depend on both

(l3,l4) and (l1,l2). This identification is sufficient because,

once a set of the (l3,l4) parameters is obtained, the
Fig. 3. 3D visualization of the surface s(l3,l4) calculated for th
GLD(l1,l2,l3,l4) is defined for any (a1,a2) [21]. Therefore,

the optimization process can be restricted to the last two

parameters (l3,l4) and the problem finally consists in

minimizing the following surface:

Sðl3; l4Þ Z ða3Kâ3Þ
2 C ða4Kâ4Þ

2 (19)

When the values of (l3,l4) are found so that

GLD(0,1,l3,l4) has its third and fourth moments (a3,a4)

defined, then (l1,l2) can be found solving these two equations

m̂ Z l1 C
A

l2

; ŝ
2 Z

BKA2

l2
2

; (20)

considering that a1Z m̂ and a2Z ŝ2, where m̂ is the estimated

mean and ŝ the estimated standard deviation.

Even if Eq. (19) apparently seems easy to minimize, the

definition of the four moments of the GLD(l1,l2,l3,l4) leads

to heavy calculi and various problems.
3.3. The LambdaFinder software

One of the major difficulties encountered in the

minimization of the surface defined by (19) is due to its

highly non-linear shape. Indeed, this surface has several local

minima and a usual Gauss-like algorithm of gradient may

lead to the determination of wrong values of (l1,l2,l3,l4) that

will correspond to a non-relevant GLD. Thus, the problem

consists in finding an accurate point to initiate the gradient

algorithm. With that aim in view, we resorted to a computer

program called LambdaFinder designed to obtain a three

dimensional visualization of the surface, in order to detect the

potential different minima. Indeed, such a visualization

enables us to avoid initiating the steepest descent algorithm

near a local minimum that would not lead to a relevant

density probability function. Fig. 3 shows one of these

surfaces and highlights its non-linear shape.

The LambdaFinder software is programmed in CCC
language and uses the OpenGL library to perform the 3D

real time visualization of the surface defined in Eq. (19). It

was designed to run easily on a modern personal computer

and to be user-friendly. The flow chart of the LambdaFinder
e histogram of the n values (a) and its 2D projection (b).



Fig. 4. Flow chart of the LambdaFinder software.
algorithm is represented on Fig. 4. After entering the initial

data, their histogram and the corresponding surface (19)

are plotted. The (l3,l4) space is discretized using a sizeable

N!N square grid and a lot of visualization features enable

the user to zoom, rotate and move all over the surface, in

order to obtain a correct idea of the global surface shape and

to locate a relevant initial point.

After finding the initial point with much accuracy thanks

to the visualization of the plotted surface, a steepest descent

algorithm can be processed, taking into account the

restrictions on the definition domains of the GLD(l1,l2,l3,

l4). The Gauss-like algorithm ends when either a given

precision is reached (for example, S(l3,l4)%3) or a given

number of iterations is reached, since the requested precision

may be unreachable for the surface considered. It is necessary

to notice that, when the moment method is used, different

parameter values can give rise to the same moments and so,

even if a set of parameters minimizes the surface defined in

Eq. (19), it may in fact fail to adequately represent the actual

distribution of data. In order to avoid selecting an unsuitable

set of GLD parameters, the LambdaFinder software offers

both qualitative and quantitative validation of the obtained

GLD. Indeed, on the one hand, while plotting the probability
density function of the calculated GLD on the histogram of

the initial data, the LambdaFinder software enables a

qualitative visualization of the adequacy of the obtained

parameters. On the other hand, a quantitative measurement of

the agreement between the initial data and the determined

GLD can be obtained by performing usual goodness-of-fit

tests (which are the c2 and the Kolmogorov–Smirnov tests)

as suggested in the literature [23].

Several additional features are included in the Lambda-

Finder software. One of which is the use of a method based

on the identification of the percentiles instead of the

moments of the GLD to determine the parameters of the

GLD. This method proposed by Karian and Dudewicz

[21,22] enables the identification of those members of the

GLD family that do not possess the first four moments and

yet which may provide superior fit to the data. Moreover,

this method eases some of the computational difficulties

associated with the calculation of the GLD moments. It must

be noticed that the following results were obtained through

the method of moments. Nevertheless, in every cases, the

results were compared with those obtained with the method

of percentiles and the levels of adequacy given by the c2

goodness-of-fit criterium were very close (the c2-value was



a little smaller with the method of moments for some

distributions, and inversely for some others. But these

values remained very similar for both methods).

Further information on the LambdaFinder software and a

demo-version can be sent by mail by the authors upon

request.
3.4. Analytical PDF of the Paris coefficients n and ln C

To determine the analytical PDF of the Paris coefficients

n and ln C, the moments given by Eqs. (6)–(9) were

estimated for the data plotted in the histograms presented in

Fig. 2a and b.

Their values are given by Eq. (21):

â1ðnÞ Z 2:8174; â2ðnÞ Z 0:0927;

â3ðnÞ ZK0:025; â4ðnÞ Z 3:043
(21)

Then, using the expression of the GLD(l1,l2,l3,l4)

moments given in (6)–(9), the LambdaFinder software is

used to perform the minimization procedure on the related

surface defined by Eq. (19). Fig. 3.a presents the 3D surface

obtained from the data of the n values, and Fig. 3b shows its

projected representation in 2D. The minimization leads to

the couple (l3,l4)Z(0.1302,0.1239), and using Eq. (20), the

values (l1,l2)Z(2.08199,2.0292) are obtained. Using the

same procedure, the following parameters (l1,l2,l3,l4)Z
(K15.83,1.1611,0.1080,0.1060) are found for the histogram

of the ln C values. A very good agreement, in both

qualitative (the distribution shape is correctly approxi-

mated) and quantitative (the c2 goodness-of-fit test is

satisfied for the usual values of the a parameter, and the

values of the criterium are reported in Table 1, as detailed

below) ways, between the experimental data and the plotted

GLD(l1,l2,l3,l4) related to both n and ln C histograms can

be noticed in Fig. 2a and b. In Bigerelle [16], these

histograms were modelled by a Gaussian distribution and a

very satisfactory accordance between the analytical PDF

and the experimental histograms was found. Nevertheless,

the results reported in Table 1 reveal that, using the classical

c2 goodness-of-fit criterion, the Lambda Distributions give

an even better modelling of our histograms than under the

assumed Gaussian distribution. Indeed, the c2-values

obtained for a Gaussian modelling are 15 to 55% higher

than those obtained for the Lambda Distribution modelling,

considering the same classes (in number, width, and limits).

The calculated c2-values can be valuably compared in

order to determine the most relevant data modelling. It must
Table 1

Comparison of the goodness-of-fit for GLD (l1,l2,l3,l4) and a Gaussian

distribution with the n and ln C histograms using c2-values

GLD(l1,l2,l3,l4) Gaussian distribution

ln C 82 128

N 38 45
be mentioned that usually, the c2-values cannot be

compared directly for statistical laws having different

number of parameters. However, the very high numbers of

classes used for the experimental histograms led to high and

almost equal degrees of freedom. Thus the direct compari-

son of the c2-values provides a relevant estimation of the

relative quality of fitting.
4. Application to fatigue lifetime prediction

Once all the various materials and structural inputs are

obtained, the fatigue lifetime prediction (FLP) can be

assessed by integrating the Paris relationship. As C and n do

not depend on the initial crack length (ai), a simple closed-

form equation can be obtained for the FLP. By applying the

Irwin criterion, the expression of the stress intensity factor

KZat
ffiffiffiffiffiffi
pa

p
can be obtained, where a is the crack’s length, t

is the loading stress, a is a geometry-load factor related to

the crack’s shape, the structure and the loading type. Then

the integration of the Paris equation gives

Nf Z

ðNf

0

dN Z

ðac

ai

da

CðDKÞn
(22)

and leads to the FLP

Nf Z
1

CðDta
ffiffiffiffi
p

p
Þn

ðac

ai

da

an=2
Z

1

CðDta
ffiffiffiffi
p

p
Þn n

2
K1

� �

!
1

ai

� �n=2K1

K
1

ac

� �n=2K1� 	
for ns2 ð23Þ

where Dt is the stress range during the fatigue cycle. It must

be noticed that Eq. (23) assumes that a remains constant as

the crack grows.

Two cases have to be considered whether the initial

crack’s length is supposed to be known or not. In order to

illustrate our approach, we now propose to search the Nf

PDF on a simple fracture mechanics problem. In the first

case, we will assume that the initial crack’s length ai is

perfectly known, and in the second case, ai will be

considered as a random parameter whose mean is known.
4.1. Engineering problem

Let us consider for example an infinite 7 cm diameter (f)

and 1 cm thick (e) hollow cylinder loaded with a cyclic

differential pressure of 20 Mpa (Dt). The maximal initial

crack’s length located on the inner surface of the cylinder

(ai) is supposed to be 1.5 mm in length. The cylinder, made

of the aluminium alloy [17] for which the distribution of

the parameters of the Paris–Erdogan relationship (1) were

obtained, is considered to be perforated as soon as the crack

reaches the outer surface. Taking aZ0.71, an elementary
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mechanical analysis allows us to know that DK varies

between 3.4 and 8.8 MPa
ffiffiffiffi
m

p
so that the crack’s propagation

can be modelled by the Paris relationship.

4.2. Lifetime prediction

To analyse the influence of the initial crack length

variation on the cylinder’s lifetime, 1,000,000 samples (n,

ln C) have been simulated, using the data shown in Fig. 1.

After introducing these 1,000,000 couples in Eq. (23), the

lifetime prediction histogram can be obtained and is plotted

in Fig. 5.

The mean lifetime prediction is 456,400 cycles with the

98% confidence interval given by [410,677; 500,921] cycles
centile 1%
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Fig. 6. 1 and 99% lifetime histograms obtained by the Bootstrap technique base

prediction modelled with a Lambda Distribution.
(Fig. 6). Using the procedure previously described, it is

possible to determine the associated Lambda Distribution,

so that an analytical expression of the FLP PDF can be

obtained. The minimization procedure ends up in the

following Lambda Distribution GLD [457,441;

0.0000105; 0.1468; 0.1337]. Fig. 5 highlights the fact that

the Lambda Distribution accurately models the data

obtained by the Bootstrap technique. As far as the c2

goodness-of-fit criterion is concerned, the GLD [457,441;

0.0000105; 0.1468; 0.1337] better estimates the data than a

usual Gaussian law (Table 2). Nevertheless, both distri-

butions have the same level of accuracy in this case.

Another way to quantify this goodness-of-fit is to

consider the 1 and 99% centiles. Indeed, such an approach

is a useful validation because lots of calculations are based

on lifetime confidence intervals, as far as fatigue design is

concerned. Therefore it is a major issue to know whether the

used distribution gives correct confidence intervals or not.

With that aim in view 100 series of 100,000 samples have

also been simulated to calculate the 100 corresponding

centiles. It is then possible to draw the PDF associated with

these centiles (Fig. 6) and to calculate their means.

The values of the centiles obtained by the Bootstrap

technique and those modelled by the related Lambda

Distribution were then compared. The shapes of the

centiles’ histograms can be qualitatively said to be very

close, and both are correctly modelled by a Gaussian law.

Furthermore, the 98% symmetric confidence interval

obtained using the Lambda Distribution expression is
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Table 2

Comparison of the goodness-of-fit between GLD (l1,l2,l3,l4) and a

Gaussian distribution for the FLP PDF using c2-values

GLD(l1,l2,

l3,l4)

Gaussian Lognormal Weibull

FLP PDF

for siZ0

14 208 1570 39
[410,514, 501,148], giving an error of less than 0.43%,

which means that the Lambda Distribution models the FLP

PDF with a very high level of accuracy. Moreover, this

agreement between the two methods indicates that the

method used for the identification of the GLD parameters

was quite robust. If the parameters calculated through the

method of moments had suffered from a large variability,

the lifetimes predicted by the GLD modelling would have

been much more different from those obtained through the

Bootstrap technique, especially in the tails of the

distribution.

4.3. Influence of the initial crack length PDF on lifetime

prediction

In the previous case, the initial crack’s length ai was

considered to be perfectly known. Let us now assume that ai

is a random variable the mean of which is perfectly known

( �aiZ1:5 mm in this example). Such a kind of variability

will add another degree of uncertainty to that resulting from

the Paris relationship parameters. It can easily be conceived

that if the initial crack’s length is smaller than the mean

crack’s length considered previously on the same structure,

the lifetime is expected to be longer and vice versa. The

question which arises is to know if the mean lifetime

corresponding to the mean crack’s length is equal to the

mean of the lifetimes calculated for the entire crack’s

population; in other words whether the lifetime calculation

is biased or not.

To deal with the influence of the initial crack’s length on

the FLP PDF, it will be assumed that the initial crack length

population is the consequence of a specific process (e.g.

notch, threading, groove) for which this population obeys a

Gaussian distribution with �ai mean and si standard

deviation. To generate the population the following law is

used

ai Z �aið1 CJsi=100Þ (24)

where J is a standard Gaussian random number obtained

through the Box and Muller transformation [24]. Now, by

introducing the combination (ai, n, ln C) in Eq. (23) and

generating a high number of values, the FLP PDF can be

obtained for different values of the standard deviation si

( �aiZ1:5 mm in this example).

Fig. 7 shows an example of seven modelled lifetime PDF

using Lambda Distributions corresponding to seven values
of standard deviation and Fig. 8 presents the evolution of

their first four moments.

The following observations can be drawn from these

figures:

† The mean lifetime increases whereas the mean initial

crack length remains constant. Moreover, the mode

(maximum of the PDF shown in Fig. 7) decreases by

approximately 20,000 cycles between siZ0 and 0.15,

meaning that for this latter value, the mode of the FLP

PDF does no longer belong to the 68% confidence

interval obtained for siZ0. It highlights the fact that if

the initial crack length variation is not taken into

account, the most probable lifetime value may not

belong to the 68% confidence interval and that the

mean is no longer a relevant indicator, which might

lead to dramatic lifetime prediction mistakes. That is

why it is fundamental to consider the stochastic

variability of the initial crack, in the calculation of a

lifetime prediction through fracture mechanics. Indeed,

every deterministic fracture mechanics model that

skips this kind of variability would be based on

insufficient data and may lead to hazardous lifetime

predictions.

† The lifetime scattering grows exponentially with the

initial crack length standard deviation (Fig. 8b). Such

an evolution can be described by the following

equation obtained by using a non-linear regression
sN Z s0;N Cksn
i with r Z 0:9997 (25)

with s0,NZ19,460 cycles which is the lifetime’s standard

deviation considering no stochastic nature of ai, kZ2.15!
1010 is a scaling coefficient and nZ1.57O1 is a power law

exponent. This last value characterizes the magnitude of the

exponential evolution, with the initial crack length standard

deviation, of the scattering in fatigue lifetime. This result

highlights the particular attention that should be paid to
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Fig. 8. Evolution of the FLP PDF first four moments with an increasing value of the initial crack length standard deviation si.
the control of the initial crack length variation in order to

minimize the scattering of the structure lifetime prediction.

† The higher the initial crack’s length standard deviation,

the more asymmetric the FLP PDF. Fig. 87c shows that

the skewness, initially close to zero, increases much with

si. Moreover, the distribution’s tail becomes longer as

the initial crack length standard deviation increases. In

this case, the experimental asymmetry thus noticed

necessarily results from the stochastic distribution of

initial cracks, and not from an eventual stochastic nature

of the crack’s propagation. We can even go further and

say that taking into account the stochastic nature of

crack’s propagation (n and C coefficients PDF) is

insufficient and cannot render the correct shape of the

FLP PDF if the stochastic nature of the initial crack’s

distribution is not considered.

Fig. 8 shows that the evolutions of the first-four moments

are highly non-linear and highlights the large variation of

the FLP PDF shape due to a mere si increase. The

evolutions of the third and fourth moments of the FLP

PDF cannot easily be deduced from those of the first two

moments. This means that a simple model based on only

these first two moments seems to be insufficient, which

confirms results given in Bigerelle [16].

Fig. 9 shows the evolution of the four parameters of the

Lambda Distribution that models the PDF lifetime. These

four parameters also present non-linear variations with the

initial crack’s length standard deviation si. These results

emphasize the difficulty and inaccuracy in modelling fatigue
lifetime using a distribution defined by only two parameters,

such as a Gaussian law.

In order to illustrate this last observation, Fig. 10.a and b

show the modelling of the FLP PDF by three usual laws

(Gaussian, Lognormal and Weibull laws) for siZ0 and

0.15, respectively. If modelling by a Gaussian or a

Lognormal law looks accurate for siZ0, none of the three

usual laws is able to model accurately the FLP PDF for siZ
0.15. On the contrary, Fig. 11b qualitatively shows that the

Lambda Distribution is still able to model the shape of the

FLP PDF in the latter case. This qualitative observation is

quantitatively confirmed by the results from the c2

goodness-of-fit criterion reported in Table 3. Indeed, for

siZ0, the Lambda Distribution gives a c2-value that is 64%

lower than the Weibull one which is the most accurate of the

three usual fatigue lifetime distributions in this case. For

siZ0.15, the Lambda Distribution gives a c2-value that is

11% lower than the Lognormal one which is the most

accurate of the three usual fatigue lifetime distributions in

this case.

The above results enable us to draw a general remark. As

can be seen on Fig. 10 the Lognormal and Gaussian laws

look qualitatively more able to model accurately the

obtained lifetime data than the Weibull one. Nevertheless,

the c2 goodness-of-fit criterion gives the Weibull law to be

the most adequate. This particular example shows that

comparisons between the adequacies obtained for usual

laws are often ambiguous or contradictory, meaning that

they do not always enable us to conclude. The final choice

among laws often depends on what is the most interesting to

model (either the central tendency or a particular region of



Fig. 10. Modelling of the FLP PDF by the Gaussian, Lognormal (three parameters) and Weibull (three parameters) distributions for (a) siZ0 (b) siZ0.15.
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Table 3

Comparison of the goodness-of-fit between GLD(l1,l2,l3,l4) and a

Gaussian distribution for the FLP PDF using c2-values

GLD(l1,l2,

l3,l4)

Gaussian Lognormal Weibull

FLP PDF

for siZ0.15

8 105 9 68
the data). Contrary to the usual laws, the Lambda

Distributions gave the best qualitative and quantitative

adequacy in every case of this study, giving a good

modelling of both central and extreme data. This latter

statement will be detailed by checking the quality of fit of

the tails of the Lambda Distributions. Indeed, a good fit

around the mean (guided by the bulk of the data) does not

necessarily implies a good fit at the tails. As far as the

authors know, there does not exist a statistical test

universally admitted to account for the ‘goodness-of-fit’ of

the tails. Thus, as a complete study would be needed to

assess the quality of the tails’ modelling by the Lambda

Distributions in a general case, only some results will be

presented in the particular case under study in this article.

To evaluate the adequacy between the Bootstrap lifetimes

data and their modelling by the Lambda Distributions and

to compare it with other usual distributions, several values

of ‘extreme’ percentiles were computed. These results

are shown in Fig. 12 on which the absolute standard

errors ASEZ jðBootstrap valueKestimated valueÞ=Bootstrap
Fig. 12. Values of the Absolute Standard Error ASEZ jðBootstrap valueKestimate

PDF for (a) siZ0, (b) siZ0.05, (c) siZ0.10 and (d) siZ0.15.
valuejare plotted for several usual distributions modelling

and the Lambda Distribution modelling at different values

of si. These standard errors are calculated for different

percentiles characteristic of the distribution tails (i.e. 0.01,

0.1, 1.5 and 10 for the left tail and 90, 95, 99, 99.9 and 99.99

for the right tail). As it can be seen, for every values of si the

Lambda Distribution offers a much better fit of the right tail

than any other usual distribution. Concerning the left tail, it

can be noticed that, even if the Lambda Distribution

modelling does not always offer the best adequacy, it is

never in error of more than 20%, and this, only for the

extreme tails. Nevertheless, it must be outlined that the

quality of fit in the left tail is quite similar and even the most

accurate with the Lambda Distribution for the values 0 and 5

of si.

To complete the comparison between the use of the

Lambda Distributions and other usual distributions to model

fatigue lifetime data, their consistency with the physics of

fatigue process was checked. A usual way used in reliability

analysis to take this into account is to draw the hazard

function of the modelled distribution and to compare it with

the experimental one. In this context, the hazard is defined

as the conditional probability that a component has survived

until time t and fails within tCDt. Practically speaking, the

hazard function h is defined by

hðNÞ Z
PDFðNÞ

1KCDFðNÞ
(26)
d valueÞ=Bootstrap valuej obtained with various usual modelling of the FLP



Fig. 13. Hazard functions obtained with various usual modelling of the FLP PDF and with the Bootstrap data for (a) siZ0, (b) siZ0.05, (c) siZ0.10 and

(d) siZ0.15.
where N is the lifetime (in cycles), and CDF is the

Cumulative Density Function of the fatigue lifetime.

Analytical expressions are known for the usual analytical

probability laws, and Fig. 13 shows the curves obtained in

our particular case. Once more if the ability of the Lambda

Distributions in general reliability analysis were to be

analysed, a complete study would be needed, and this is not

the point of this article. Therefore, only a qualitative

validation and comparison is presented here to show that

there is no major incompatibility related to the use of the

Lambda Distributions.

In fact, in the case where siZ0.15, if the Weibull and the

Gaussian modelling offer a correct fitting with the hazard

function for the left part of the curve, they completely

overestimate the hazard values after 6!106 cycles. On the

contrary, the lognormal modelling, which gave the second

best c2-value, is unable to correctly estimate the left part of

the hazard function, but offers a good approximation of the

right part. Nevertheless, the GLD modelling is the only one

able to render correctly the whole shape of the hazard

function as shown in Fig. 13d. In Fig. 13a and b, i.e. for

siZ0 and 0.05, the GLD modelling seems to be able to

account for the sharp increase of the hazard function for the

high numbers of cycles, even though the Weibull modelling

also offers a globally correct hazard function. Finally, for

siZ0.1, there is clearly no analytical PDF able to render the

whole hazard function obtained for the Bootstrap data. Both

choices of the Weibull and the GLD modelling could be
valuably argued. These examples do not try to quantitatively

account for the best modelling considering a criterion based

on the ability to fit the experimental hazard function,

nevertheless they show that the GLD modelling is definitely

not incompatible with the physics of fatigue. It can even

offer a very good modelling when the other usual

distributions are completely in error (Fig. 13d).

As a final illustration, Fig. 14 represents the evolution

of the 68% confidence interval and its boundaries as

functions of si for the usual Gaussian definition (mGsi)

and for the percentile definition (associated with the

Lambda Distribution). This Figure emphasizes how

hazardous it might be to consider that the FLP PDF

can be modelled by a Gaussian law for the large values

of si. Indeed, as si increases, it can be seen that the

Gaussian confidence interval tends to overestimate the

actual confidence interval, which means that a Gaussian

model may be too optimistic in lifetime prediction. As

already said, as far as fatigue design is concerned,

confidence intervals are of major interest. If the selected

model tends to overestimate these confidence intervals, it

may lead to hazardous conclusions.

Finally, it must be mentioned that only a mere increase of

si was considered in this paper whereas many more

parameters (such as shape, position and orientation factors)

should be introduced to model more accurately the initial

crack’s population. It was shown that a model with only two

parameters is unable to account accurately for the evolution
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of the FLP PDF induced by the variation of a single

parameter in the initial crack’s population. It is reasonable

to conclude that a more complex description of this initial

population would make a two-parameter model of the FLP

PDF even more inaccurate.
5. Conclusion

The Lambda Distributions associated with the Bootstrap

technique were first used to model the Paris coefficients PDF

and turned out to be able to estimate accurately the

experimental values. Then, Lambda Distributions were

used to model the PDF lifetime of a basic structure under

fatigue loading. This family of distributions is shown to be

more suited than the usual Gaussian, Lognormal or Weibull

laws to model the PDF lifetime and to follow accurately the

evolution of its (skewed) shape due to the modification of

initial crack length population. This comparison was drawn

by the means of usual goodness-of fit tests. Moreover, the

quality of fitting at the tails were checked by means of the

calculation of several ‘extreme’ percentiles. The study of

the modelled and experimental hazard functions account for

the consistency of the distributions with the physics of the
fatigue process and the qualitative comparison with usual

distributions still shows that the GLD modelling is definitely

suited to model fatigue lifetime PDF. The experimental

asymmetry of the lifetime PDF is found to result from the

stochastic distribution of initial cracks and not from

the stochastic nature of the crack’s propagation. Despite

the mathematical complexity of the Lambda Distribution

determination, this method is made easy to apply thanks to

the LambdaFinder software we especially designed to

perform such a task. A main advantage of this technique

is to allow the modelling of a large panel of various shapes

and to facilitate Monte Carlo simulations thanks to the

Lambda Distribution definition based on their percentile

function.
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