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Abstract—The paper proposes rCV, a new randomised Cross
Validation (CV) criterion specially designed for use with data
acquired over non-uniformly scattered designs, like the linear
transect surveys typical in environmental observation. The new
criterion enables a robust parameterisation of interpolation
algorithms, in a manner completely driven by the data and free
of any modelling assumptions. The new CV method randomly
chooses the hold-out sets such that they reflect, statistically, the
geometry of the design with respect to the unobserved points
of the area where the observations are to be extrapolated,
minimising biases due to the particular geometry of the designs.
Numerical results on both simulated and realistic datasets show
its robustness and superiority, leading to interpolated fields with
smaller error.

I. INTRODUCTION

Environmental observation of an extended region A4 is often
accomplished by using a motorised platform equipped of
sensing equipment that performs a trajectory p(-) C A that
“covers” A with a series of nearly paralell line transects. The
trajectory followed by a surface boat during observation of
a lake in Belgium shown in Figure 1' is a representative
example. Sensor acquisition rate and carrier speed, along with
limitations in power and time, result in a much higher sampling
rate along the trajectory of the carrier than the average point
density over A. This apparent in Figure 1, that actually plots
(color coded) the individual sampled values.

The ultimate goal of spatial surveys is to produce a map
of some observed field f(-) over the entire region A4, i.e., to
extrapolate (the term predict” is also used) the point samples
of f(-) taken along the carrier path to the entire surface.

In this paper we address the problem of tuning the param-
eters of the algorithm used to estimate the value of f(-) at
the unobserved points of A, taking into account that the set
of sampled points (the design) may have an arbitrary geom-
etry, in particular the intrinsically one-dimensional geometry
described above. A method widely used by practitioners to
chose algorithm’s parameters is Cross Validation (CV), whose
origins go at least as far as the 1930’s, see the interesting
discussion in [1]. As we show below, CV works well in
the geo-statistical context when the data points are “space
filling”, i.e., uniformly scattered in .4, as in Figure 2. This is
clearly not the case for the uni-dimensional design of Figure
1. This paper presents rCV, a novel randomised version of CV

ICourtesy of VITO.

Fig. 1. Design used for a lake observation (courtesy of VITO).

specially tailored to be robust with respect to strongly “non
space filling” design geometries.

space filing design

Fig. 2. Space filling design.

We start by introducing notation and formulating the algo-
rithm tuning problem (section II) and subsequently present CV
methodologies (section III) pointing out the specific difficulties
that arise for uni-dimensional designs. Section IV presents
rCV, the new randomised CV method that we propose. Finally,
we demonstrate (section V) the advantages of rCV in both



real and simulated datasets, and section VI summarises our
contribution and lists some directions for future work.

II. PROBLEM FORMULATION

Let Y(5) denote the complete set of measures acquired
during a one-dimensional survey done along path p(-) C A

y () ={yx=fPWk)), k=1,...,K}

Let = be the design, i.e., the set of points at which observations
are made

=={pl),k=1,..., K} ,

and denote by &, = p(¢x) a generic point of E.

Let F denote the operator that when applied to the set of
measures Y () generates the field predictions (the extrapola-
tion algorithm):

f(slY ) p) =F (s,Y(K);p) :

As indicated above, F usually depends on a series of pa-
rameters p € R? (for instance, the kernel scale and trend
model for kriging methods, or the number of neighbours or
neighbourhood size in local regression methods) that must be
defined by the user. Choice of p is particularly important when,
as it is often the case in environmental applications, = does
not sample A densely.

Several criteria can be used to measure the quality of spatial
extrapolation. We consider here the most common one, the
Integrated Square Error (ISE), even if the method proposed is
independent of this particular choice:

1
Cise(p; Y)) = MA@i(S;Y(K))ds, (1)

ep(s; Y I) = f(s) = f(s]Y 95 p)

Ideally, one would choose p such that the reconstruction
error is minimal:

p*(Y)) = argmin Cjye (p; YO (2)
p

seA.

Note that C;s. cannot be computed, as it depends on the
field’s values outside the design =, and only estimates of Cj,
based on the available data Y*) can be used to chose p.
Two different frameworks are envisageable: (a) a parametric
stochastic model M () is known to capture the characteristics
of the field f(-) , enabling determination of the expected value
of Cise; (b) Cise must be estimated using only Y ) no addi-
tional knowledge about f(-) being available. Kriging methods
fall under (a), the interpolation algorithm being intrinsincally
tied to a stochastic model of the observed field: data Y (%)
can be used to estimate the model parameters 4(Y (%)), which
determine the optimal (in an expected value sense) estimator
of f(-) at unobserved points of A. Model-based frameworks
are sensitive to the correctness of the assumed models, and for
this reason (b) is often the preferred practitioners’ choice. In
this paper we propose a new estimator of the reconstruction
errror for subsequent selection of the value of p using Cross
Validation, a popular methodology belonging to framework
(b), see the section below.

III. CROSS VALIDATION

Several variants of CV exist [2], but the simple description
below captures the main principle at work behind them all and
is sufficient for the purpose of this paper.

Let &; denote a generic point of Z, Z(~%) a subset of Z that
does not contain & and Y~ the corresponding measures.
A realisation of the interpolation error for algorithm F with
parameters p is obtained by using Y(=%) to estimate the field

at 51
(6 YT =y — f(&[Y D5 p),

Averaging these residuals over & € = yields a CV estimate
of Cl se

&L ez .

‘ =

Cov (plY ")) = Cise (plY 1) = & YY),

3)
that can be used to select p by p* = argmin, Cov (p|Y ).
Different choices for the sets Y(~%) give rise to different
variants of CV, the most common being “leave-one-out,” where
Y0 =y {y}.

As it is obvious from the presentation above, one necessary
condition for Ccy (p]Y ) to be a sensible estimate of
the true error is that the set of “cross-validation residuals”
€ (&is Y (=) be a representative sample of the prediction error
process at unobserved points of A. This is never exactly the
case, and in fact one can show that Coy is in general a con-
servative estimate of the error, i.e., it predicts a performance
poorer than the expected one, and several corrections have
been proposed to eliminate this negative bias. However, it
is customarily accepted that this bias it does not affect the
location of the minimum of Ccy as a function of p, i.e., the
uncorrected CV criterion can safely be used to select the best
interpolating model.

Let us now analyse the impact of the one-dimensional
design geometry on the quality of Ccoy as an estimator of
the true prediction error.

Spatial interpolation is known to be particularly sensitive
to the geometry of = around each reconstructed point. An
additional condition for the validity of Ccy as a proxy of the
interpolation error Cj. is thus that, around each design point
&;, the geometry of the designs Z(~%) be representative of the
spatial distribution of the points of = around generic unob-
served points of A. This is true for “space filling designs?,
where the density of the design points is nearly homogeneous
inside .4, but is violated in the case of uni-dimensional surveys
as the ones considered in this paper.

Consider the extreme case of the leave-one-out CV, where
Y (=9 = Y\ {y;}, that clearly reveals the biasing effect of
uni-dimensional designs =. Points of = are naturally numbered
along the curve p(-). There are two nearest neighboors in the
sets =(—9)_ for each & &1 and &4, at distances d_ =
1€ —&i—1]] = dy = ||€; — &i+1||- The estimates at &; produced

Ii]

1

|5i€

2The exact definition of “’space filling” varies in the literature, but here it is
sufficient to say that points of these designs are as far away from each other
as possible.



by most interpolation algorithms will be strongly determined
by these two points, with an error that will be small if these
distances are small, i.e., when p(-) is densely sampled, as we
consider in this paper.

To facilitate analysis, consider the simple case of a regular
survey with transects of length L spaced D apart. The dis-
tribution of distances of a generic points s € A to = can be

approximated by
D
; de |0, ,
) el

which, for D < L is close to the uniform distribution in
[0, £]. With probability ~ 1 — 26, /D the distance of points
in A to Z will be larger than d_ ~ d, the distance to the
closest points in the leave-one-out hold sets Y (=) leading
to largely optimistic CV estimates of the reconstruction error,
i.e., the CV criterion (3) will be much smaller than the actual
reconstruction error (1).

For model-based estimators, if the model assumed is correct,
the minimum of Cey (+) can still occur, in average, near the
”good value” of parameter p, as our results on simulated data
in section V show. However, in the most likely situation that
the observations do not follow the model for which F has
been designed, standard CV criteria will be unable to capture
the behaviour of the prediction error over the entire range of
possible situations (in terms of distances to the closest data
points). The randomised CV method presented in the next
section overcomes this limitation.

775(d):<1+D—2

IV. RANDOMISED CROSS VALIDATION (RCV)

As mentioned in the previous section the reconstruction
error at a point s € A is highly dependent on the local
geometry of the points of = in the neighborhood of s. In
a first order approach this error is dominated by the distance
of s to its closest point in =, see [3]. This justifies use of the
common minimazx design criterion that minimises C,, 5/ (Z),
the maximum distance between points of .4 and the design =:

Coonr(B) = inls—¢| .
m (2) gﬁgg% &l

This criterion is difficult to compute, requiring a search over
the entire region 4, and the maximim criterion C)y,, is often
used instead. It evaluates a design by the distance between the
closest points of =, which should be as large as possible:

Crm(Z) = min — .
vim (2) 51,52»55”51 A

Maximising this criterion leads to maximally spreading all
points inside A, and is known to push some of the design
points to its boundary, which is certainly not optimal from the
point of view of the C,,; criterion. For designs with good
space filling properties the set of distances {d(¢;, (%), ¢ €
=} is expected to be a typical sample from the distribution
of distances {d(s,E), s € A}, which is a condition for (3) to
yield a valid indication of (1).

It is obvious that dense one-dimensional transect designs
like the ones considered in this paper are not space filling
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Fig. 3. Example of block-out sets Y = (5:7)

under any purely geometric criterion. When = is a regular
sampling of a one-dimensional curve p(¢), Cprp,, will be
trivially equal to the distance between adjacent points, while
Cmar will most likely be equal to D/2 as the approximate
expression for 7= given above shows. That the difference
between C)y,, and C, 5z is large is an indication that standard
CV techniques will fail to provide a valid indication of the
expected performance when extrapolating over the entire A.
Let d(s, =) be the distance between point s € A and Z:

d(s,Z) = min ||s -
(5,8) = min|ls —£[|

and, as before, let m=(d) the probability distribution of d(s, E)
when s ~ U(A), i.e., when s is uniformly distributed in A.

For any s € A and r > 0 let B,.(s) be the ball of radius r
centred at s, and denote by Z~(*") be the sets

== ==2nB,(s)° , 4)
and denote by Y ~(5") the corresponding measures. Notation
A€ denotes complement of set A in A. Figure 3 illustrates
the definition of the sets Y*(S’”, the hold-out sets used in
our randomised CV.



Randomised CV criterion
The randomised CV criterion for the prediction error over
region A using observations Y (%) taken over design Z is

Crov (Y5 =By (u&) ~ F (€¥0,0))"

where the statistical average is computed using distributions
r ~ 7= and £ ~ U(Z), and the hold-out sets Y7 are
defined by (4).

Criterion C,.cy, as equation (5) shows, uses randomly
chosen hold-out sets, that statistically reflect the geometry of
design = with respect to the entire region A: it puts CV in the
geometrical conditions under which extrapolation will actually
be done.

The numerical computation of C,.cy ressorts to stochastic
simulation, the expected value in the definition (5) being
approximated by the empirical average

1 M 2
Crev (Y ") = 3237 (v~ F (&Y~ p))

where y; = y(&;), M « |A| is a large number and the pairs
(&, ;) are independently drawn according to

1) & ~UE)

2) r, = d(Si,E), S ~ U(.A)

The price payed for the robustness of C,.cy is its higher
numerical complexity: the number of criterion evaluations
(predictions) is now of the order of the size of .4, usually much
larger than the size of =, required for instance by leave-one-out
CV. Also, the determination of the distances d(s;, Z), requiring
a minimisation over =, are computationally expensive. Note
that for designs based on paths p(-) ans sets A of simple
geometry, for which 7= can be approximated analytically,
computation of these distances can be avoided.

V. NUMERICAL RESULTS

We compare the performance of several sptatial interpola-
tion methods tuned by the randomised CV proposed in the
paper to the following methods.

1) Usual leave-one-out (LOOCV). This corresponds to
using all other points to estimate each observation, i.e.,
to hold-out sets of the form

=9 =2\ {8} -

Comparison with this criterion will show the importance
of holding out points close to the interpolation point.

2) Fixed distance hold-out (Fix). This is a simplified ver-
sion of rCV, and corresponds to considering hold-out
sets which are of the form

== 5= (&)

This is a standard approach used for correlated data,
where the value of r* is specified by the user, based
on its expectation with respect to the field’s correlation

range, which in general is unknown. We propose instead

to adjust the hold-out distance r* based on the distribu-
tion 7=, and set r* to a fixed quantile « of 7=, i.e., such
that

Prob{d(s,E) <r*} =« .

We used @ = .75 in the numerical results below.
Comparison with this criterion will enable us to assess
the importance of using hold-out sets that reflect 7= (d),
even if in a simplified manner.

3) Variogram (Var). To stress the robustness of the pro-
posed criterion, we also show numerical results for
Kriging, comparing the observed prediction errors of
the optimal Kriging estimator using a range parameter
p chosen by C,.cy to the standard use of variogram
considered by most geo-statistics packages.

A. Simulated Data

This section considers simulated datasets which are reali-
sations of a Gaussian Process (GP) of zero mean and Matérn
correlation function with parameter v = 3/2

Rs.) = o (1 L V3lls s'n) ox ( V3lls - s'n) |
p p

with p = 10. The field is simulated inside a square region
A = [0,60] x [0,60]. Figure 6 shows one of the simulated
fields and the one-dimensional design used in the numerical
results shown below.

Interpolation by both non-parametric (Local Weighted re-
gression, LWR) and parametric (Kriging) methods are studied.

1) LWR: is a common interpolation method that fits simple
local parametric models f(s) = F(s;0(s,p)) to the dataset.
At each point s € A, the parameters 6(s, p) minimise the
weighted average

0(s,p) = argmin Y w(s,&;p) (i — F(s:6))°
0
y; €Y (K)

where the weights w(s,&;;p) are a decreasing function of

s — &]|| such that
Zw(s,i;p) =1.

The local models that are fit are most commonly of polynomial
type, 6 being the coefficients of these polynomials. The
original method [4] considers weighting functions of compact
support, the parameter p being the size of this support, making
at each point a truly local (weighted) fit to a strict subset
of YK)_ Alternatively, we may consider functions of infinite
support, like exponential or Gauss functions, and in this case
p controls the speed with each the w(s, -; p) tends to zero. The
numerical results below use a Gauss weight function.

Figures 4 and 5 illustrate the performances observed in 100
distinct simulations of the model above for quadratic LWR.
The three tuning methods studied here are LOOCV (green),
rCV (red) and the fixed-distance hold-out set (blue). We also
plot (black curve) the ISE values for the best p parameter
that can be adjusted to each of the 100 simulated datasets.



Histograms of ISE values

Best (1)
LOOCY (@)
—— ROV (Y
Flx (4)

10 ,'/\\ /ﬁ\\ | A
/ / X \,\; / \\ /\ \‘
T e
(I T
DM T
!/ \\ \ | S J“ \\\ / d;ws : D i i
/ | | \ 1 %I L i

Fig. 4. ISE for LWR using different tuning methods (one-dimensional design).
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Fig. 5. Tuned LWR parameters (uni-dimensional design).

We can see that rCV consistently leads to better interpolation
performance (lowest ISE), see Figure 4. Average values of
ISE are equal to 0.186 for LOOCYV, 0.131 for rCV and 0.135
for fixed hold-out. The actual minimum of ISE (computed
using knowledge of the entire simulated field) is equal to
0.101. As we see, even the simple hold-out sets using a fixed
distance already lead to a good improvement over LOOCYV,
showing how important it is that the sets =(—%) reflect the
actual geometric conditions under which the dataset will be
interpolated. Figure 5 shows histograms and corresponding
box-plots of the tuned parameters p (in this case the rate of the
Gaussian weight function) for the 100 datasets. As it should be
expected, the rate chosen by LOOCYV is systematically lower
than the rates chosen by the other two methods, leading to a
worst performance when interpolating over distant points. The
“best” p parameters are also shown for comparison.

Figure 7 shows the interpolation results for one of the
sampled fields using the parameters tuned by LOOCV (top)
and rCV (bottom).

2) Kriging: Kriging [5] is a popular geo-statistical interpo-
lation method that implements the optimal mean-square error
estimate of a spatial field based on the assumption that it is a
realisation of a stationary Gaussian Process. Several variants

Fig. 6. Simulated Gaussian field and one-dimensional design.
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Fig. 7. LWR interpolated fields with weight rate chosen by LOOCV (top)
and rCV (bottom). Compare with Figure 6.



Histograms of ISE values
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Fig. 8. ISE values for Kriging, one-dimensional design.

of Kriging exist, considering different modelling approaches
for the mean function of the process. Simple Kriging assumes
a known mean, ordinary kriging a constant unknown mean,
and universal Kriging assumes that the mean function of
the process belongs to the linear span of a finite set of
known functions, most commonly polynomials. The estimator
is linear in the observations, and is fundamentally determined
by the correlation function of the GP. In this paper we studied
ordinary Kriging, considering tuning of the range parameter
p of the Matérn covariance using the variogram, LOOCV and
rCV.

Figure 8 plots the ISE observed for Kriging. It can be seen
that the new criterion leads to slightly better tuning of the
interpolation method, although impact is less in this case,
since the observations are realisation of the assumed stochastic
model: the average ISE over theses 100 realisation is 0.1454
for LOOCYV, 0.1412 for the Variogram and 0.1351 for rCV,
such that, again rCV leads to the best tuning.

Figure 9 shows the ISE for observations over a regular
grid with the same number of points as the previous designs,
showing that randomisation does not lead to ISE increase, even
when its higher numerical complexity is not justified. In fact,
although all three methods lead approximately to the same
performance, as it should be expected since in this case the
inter-design distances reflect well what happens for generic
points of A. Although the designs have the same size, remark
the strong impact of design geometry on the absolute value of
the prediction error.

Figures 10 and 11 show the values of p that were chosen by
the different criteria. For the one-dimensional design (Figure
reffig:line:rg) rCV and Var lead to the values of p closer to
the true one, LOOCYV seriously underestimates p, while for the
regular design (Figure 11) CV is best able to identify the true
model (although this does not map into a better ISE, as Figure
9 shows). The parameter estimates for the regular design shows
similar performance of rCv and LOOC, underestimating the
value of p, while the variogram is not significantly affected
by the change of design geometry.

Histograms of ISE values
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Fig. 9. Values of ISE for Kriging using, regular design.
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Fig. 11. Values of p, Kriging, regular design.



TABLE I
ISE, INTERPOLATION OF FIELD IN FIG. 12.

LWR (linear) | LWR (quad.) Kriging
CvV 0.007536 0.083414 0.003984
CV 0.002778 0.003551 0.002887
fix 0.002947 0.008507 0.003746
Var * * 0.002961
TABLE 11
p, FIELD IN FIG. 12.
LWR (linear) | LWR (quad.) | Kriging
Cv 2.5 10 33
CV 10 26 8.6
fix 7.5 18 16.3
Var * * 9.43
B. Real Data

We also compare rCV to the other methods on a realistic
dataset, produced by the MIRO&CO oceanographic model [6],
that predicts the annual cycle of inorganic and organic carbon
and nutrients, phytoplankton, bacteria and zooplankton under
realistic forcing conditions. The model covers the entire water
column of the Southern Bight of the North Sea. The scalar field
used, see Figure 12, is Chlorophyll,. The uni-dimensional
survey trajectory that has been simulated is the thin black line
in the Figure, that samples the field rather coarsely along a
series of nearly parallel transects. Tables I and II summarise
our results.

The tables show the ISE values and the identified parameters
p for both linear and quadratic LWR and Kriging (using a
Matérn covariance with v = 3.2). For the Kriging estimator,
use of the variogram has also been considered. We can see that
rCV consistently leads to better interpolation performance for
all interpolation methods. The global minimum being achieved
for linear LWR, with an ISE value of 9.7 (the interpolated field
is shown in 13, remark the large errors outside the convex hull
of the design), and it is only slightly degraded for the other
interpolation methods, being highest for quadratic LWR (ISE
= 12.4). Compare with use of standard CV, that may lead to
ISE values up to 291 (quadratic LWR). The fixed CV using
m= is also consistently better than CV, but is less robust than
rCV, leading to an important degradation for quadratic LWR.
The method that is the less sensitive to the tuning method is
Kriging for which the ISE of all methods is in the interval
[10.08,13.91].

Analysis of the parameters identified, Table II, confirms that
standard CV always leads to more local interpolation for this
type of designs (smaller values of p).

VI. CONCLUSION

This paper presents a new Cross Validation Criterion in-
tended to be used on datasets acquired along linear/transect
surveys, a common practice in environmental observation. The
new criterion is a randomised version of standard CV, where
the hold-out sets are randomly chosen in order to statistical
replicate the local geometry of the design around each point in

Fig. 12. Chlorophyll, field produced by model MIRO&CO (courtesy of
MUMM).

Fig. 13. Interpolated field (LWR with linear model, rCV tuning).

the target interpolation region. We formally motivated the new
method, and illustrated its advantage with respect to standard
CV (and even parametric moment-matching techniques like
use of variogram in the context of kriging) in both simulated
and realistic oceanographic data. Future work along the same
line concerns two issues: (i) Crcv () makes sense only in
the context of prediction of spatially stationary fields, and
we are studying how we can apply the same idea to enable
local adjustment of the interpolator parameters, see [7]; (ii)
the numerical complexity of C,.,(-) is much higher than
standard CV, and two directions will be explored to improve
its efficiency: (a) consider analytical approximations to 7= (d),
as outlined in section III, eliminating the need to estimate 7=;
(b) consider “fast CV” approaches, that exploit the recursive
version of some estimators.
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