Tuning interpolation methods for environmental uni-dimensional (transect) surveys

Abstract : The paper proposes rCV, a new randomized Cross Validation (CV) criterion specially designed for use with data acquired over non-uniformly scattered designs, like the linear transect surveys typical in environmental observation. The new criterion enables a robust parameterisation of interpolation algorithms, in a manner completely driven by the data and free of any modelling assumptions. The new CV method randomly chooses the hold-out sets such that they reflect, statistically, the geometry of the design with respect to the unobserved points of the area where the observations are to be extrapolated, minimizing biases due to the particular geometry of the designs. Numerical results on both simulated and realistic datasets show its robustness and superiority, leading to interpolated fields with smaller error.
Type de document :
Communication dans un congrès
OCEANS 2015, Oct 2015, Washington DC, United States. Proceedings OCEANS 2015, IEEE OES, 2015, <http://www.oceans15mtsieeewashington.org/>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01318124
Contributeur : Maria Joao Rendas <>
Soumis le : jeudi 19 mai 2016 - 11:46:13
Dernière modification le : samedi 21 mai 2016 - 01:05:28

Fichier

Oceans2015_FinalPaper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01318124, version 1

Collections

Citation

You Li, Maria-João Rendas. Tuning interpolation methods for environmental uni-dimensional (transect) surveys. OCEANS 2015, Oct 2015, Washington DC, United States. Proceedings OCEANS 2015, IEEE OES, 2015, <http://www.oceans15mtsieeewashington.org/>. <hal-01318124>

Partager

Métriques

Consultations de
la notice

39

Téléchargements du document

16