The Globus Pallidus Pars Interna in Goal-Oriented and Routine Behaviors: Resolving a Long-Standing Paradox

Camille Piron, PhD, Daisuke Kase, PhD, Meropi Topalidou, BsC, Michel Goillandeau, Hugues Orignac, Tho-Hai N’Guyen, Nicolas Rougier, PhD, and Thomas Boraud, MD, PhD

ABSTRACT: Background: There is an apparent contradiction between experimental data showing that the basal ganglia are involved in goal-oriented and routine behaviors and clinical observations. Lesion or disruption by deep brain stimulation of the globus pallidus interna has been used for various therapeutic purposes ranging from the improvement of dystonia to the treatment of Tourette’s syndrome. None of these approaches has reported any severe impairment in goal-oriented or automatic movement.

Method: To solve this conundrum, we trained 2 monkeys to perform a variant of a 2-armed bandit-task (with different reward contingencies). In the latter we alternated blocks of trials with choices between familiar rewarded targets that elicit routine behavior and blocks with novel pairs of targets that require an intentional learning process.

Results: Bilateral inactivation of the globus pallidus interna, by injection of muscimol, prevents animals from learning new contingencies while performance remains intact, although slower for the familiar stimuli. We replicate in silico these data by adding lateral competition and Hebbian learning in the cortical layer of the theoretical model of the cortex–basal ganglia loop that provided the framework of our experimental approach.

Conclusion: The basal ganglia play a critical role in the deliberative process that underlies learning but are not necessary for the expression of routine movements. Our approach predicts that after pallidotomy or during stimulation, patients should have difficulty with complex decision-making processes or learning new goal-oriented behaviors.

Key Words: primates; decision making; behavioral task; muscimol; habits; reinforcement learning; pallidotomy; DBS

Introduction

In the past 20 years, a large amount of experimental evidence has been accumulated—using behavioral, electrophysiological, and functional imaging methods—about the involvement of the basal ganglia (BG) in goal-oriented and routine behaviors. Oddly enough, clinical investigations do not seem to support these data, even though some of them have been collected in humans using functional MRI. For instance, lesion of the internal part of the globus pallidus (GPi) (the main output structure of the BG) or disruption of its activity by deep brain stimulation has been used to improve dyskinesia in PD, alleviate dystonia, and treat Tourette’s syndrome.
None of these approaches has reported severe impairment in goal-oriented and/or routine movement production. There are various identified factors for this apparent conundrum. The most obvious is a lack of studies that address these questions in patients with lesion or deep brain stimulation of the GPi. A more general reason, which contributes to the previous one, is the fact that the experimental protocols that assess the motor role of the BG are usually based on simple stimulus–response association with no ambiguity. To address the decision mechanism itself, it is necessary to offer more than one option. K-armed bandit paradigms (in most cases, K=2) are an interesting alternative used in experimental psychology and neuroeconomics. In the classical version of the task, the subject must choose repetitively between options for which the outcome (various probability of reward in most of the cases) is not known. The subjects generally assess the outcomes during exploratory trials and an error phase and then choose preferentially, but not exclusively, the option associated with the best outcome in an exploitation phase. This allows testing of a deliberative decision-making process built on an accumulation of evidence (learning). In another version, the value is explicit and the subjects are intensively pretrained. This version allows the assessment of routine behaviors.

To address this contradiction between theory and observation, we designed an experimental paradigm based on a 2-armed bandit task that combines routine choice behavior, deliberative decision making, and procedural learning. The experiment was carried out on nonhuman primates with pharmacological inactivation of the GPi.

Materials and Methods

Animals

Data were obtained from 2 female macaque monkeys (Macaca mulata weighing 4.9 and 5.6 kg, respectively). Experiments were performed during the daytime. Monkeys were living under a 12h/12h diurnal rhythm. Although food access was available ad libitum, the primates were kept under water restriction to increase their motivation to work. A veterinary skilled in healthcare and maintenance in nonhuman primates supervised all aspects of animal care. Experimental procedures were performed in accordance with the Council Directive of 20 October 2010 (2010/63/UE) of the European Community. This project was approved by the French Ethic Comity for Animal Experimentation (50120111-A).

Behavioral Task

The primates were trained daily in the experimental room and familiarized with the setup, which consisted of 4 buttons placed on a board at different locations (0°, 90°, 180°, and 270°) and a further button in a central position, which detects contact with a monkey’s hand. These buttons correspond to the 4 possible display positions of a cursor on a vertical screen. The monkeys were seated in chairs in front of this screen at a distance of 50 cm. The task was monitored using Labview (National Instruments, Austin, Texas) and is shown in Figure 1. Briefly, the monkeys initiated a trial by keeping their hands on the central button, which induced the appearance of the cursor in the central position of the screen. After a random delay (0.5-1.5 s), 2 cues appeared in 2 (of 4) different positions...
determined randomly for each trial. Two experimental conditions were alternated in blocks of 10 trials: the Routine Condition (RC) and the Novelty Condition (NC). In the RC, the animals had been trained (during 8 months for monkey Z and 12 months for monkey F) on the 2 cues used (RC1 and RC2). Each cue had a fixed reward probability ($P_{RC1} = .75$ and $P_{RC2} = .25$). The cue symbol and probability remained unchanged during a session and between sessions. In the NC, 2 new cues were presented (NC1 and NC2). Each cue had a fixed probability of reward ($P_{NC1} = .75$ and $P_{NC2} = .25$). The cue symbol and probability remained the same during a session, but they changed between sessions. Once the cues were shown, the monkeys had a random duration time window (0.5-1.5 s) to press the button associated with 1 cue. It moves the cursor over the chosen cue and they have to maintain the position for 0.5 s to 1.5 s. After this delay, the monkeys were rewarded (0.3 ml of water) or not according to the reward probability of the chosen target. An end-of-trial signal corresponding to the disappearance of the cursor was given, indicating to the monkeys that the trial was finished and they could start a new trial after an intertrial interval between 0.5 s and 1.5 s.

Surgical Procedure

Cannula guides (Plastic One, Roanoke, Virginia) were implanted into the left and right GPi in both animals under general anesthesia (intramuscular ketamine hydrochloride 10–15 mg/Kg [Panpharma, Luitré, France] and intramuscular xylazine 1.5–2.5 mg/Kg [Sigma, St. Louis, Missouri]). Implantation was performed inside a stereotaxic frame (David Kopf Instruments, Tujunga, California) guided by ventriculography and single-unit electrophysiological recordings. A ventriculographic cannula was introduced into the anterior horn of the lateral ventricle and a contrast medium (Omnipaque, Nycomed, Norway) was injected. Corrections in the position of the GPi were performed according to the line between the anterior commissure (AC) and the posterior commissure (PC) line. The theoretical target was antero-posterior (AP): -3.0 mm, lateral (L): 7.0 mm, depth (D): -1.2 mm. A linear 16-channel multielectrode array (Alpha-Omega Engineering, Nazareth-Illit, Israel) was lowered vertically into the brain. Extracellular single-unit activity was recorded from 0 mm to -4 mm relative to the AC–PC line with a wireless recording system (World Precision Instrument, Sarasota, Florida). Injections were made through a 30-gauge cannulae inserted into the guide cannulae targeting left and right GPi. Cannulas were connected to a 25 μl Hamilton syringe by polyethylene cannula tubing (Plastic One).

Data Analysis

Behavioral parameters were acquired and stored using custom interface software coded with Labview (National Instruments, Austin, Texas) to be analyzed offline. Analyses were performed with Igor Pro (WaveMetrics, Lake Oswego, Oregon). The beginning of the session is defined as the first 25 trials, and the end of the session as the last 25 trials. The reaction time is defined as the latency between the appearance of the 2 targets and the release of the central button. The movement time is defined as the latency between the release of the central button and the pressing of the target button. Mean values of reaction times and movement times for each session were obtained by fitting the Gaussian distribution to the distributions of these periods.

Peaks of fitted distributions were used as representative values. For statistic analyses, unless stated otherwise, pooled data are shown as the mean ± standard deviation. We used the multiway repeated-measures analysis of variance (ANOVA) to examine the following 4 conditions: between monkeys (monkey F or Z), periods (start or end of the session), sessions (muscimol or saline), and experimental paradigm (RC or NC). Post hoc comparisons were made using Tukey’s test when the ANOVA showed significant differences. An unpaired t test was used to analyze error rates. In all cases, significance was set at $P < 0.05$.

Model Description

The model is based on previous work with lateral competition and Hebbian learning added in the
cortical layer (Supporting Information Fig. S2). For a comprehensive description, see the Supplementary Materials and Supporting Information Table S1.

Results

A total of 20 sessions (10 for each monkey) with saline injections (saline) and 20 (10 for each monkey) with muscimol injections (muscimol) were performed. The proportion of trials in which the animals chose the optimal target (i.e., RC1 or NC1, respectively) was defined as the success rate normalized by the number of trials in which a choice was made. When a trial was interrupted before a choice had been made and validated, it was counted as an error trial.

We assume that our injection encompassed a significant proportion of the GPi including motor and associative areas (see Supplementary Materials and Supporting Information Fig. S1).

During Control Sessions, Animals Were Able to Maximize in the Routine Condition and to Learn New Values

The mean success rate (for the last 25 trials) was 99.4% ± 3.3% (Fig. 2A,B) (98.8% ± 0.6% for monkey F [Fig. 2C,D] and 100.0% ± 0.0% for monkey Z [Fig. 2E,F]). The difference in success rate between the 2 animals was not significant (unpaired t test). In the NC, both animals learned progressively the difference between the 2 cues (Fig. 2A,C,E). At the beginning of
training, their choices were random. At the end of the session, the animals displayed a preference for NC1, the target associated with the highest reward probability (mean 53.8% ± 4.4% for the first 25 trials and 93.0% ± 2.5% for the last 25 trials, Fig. 2B). There was no significant difference between the performance of the 2 monkeys (48.8% ± 4.1% to 91.2% ± 4.7% for monkey F and 58.8% ± 7.8% to 94.8% ± 2.0% for monkey Z, 3-way ANOVA; \(F_{1,72} = 2.23, P > .05 \) between the 2 animals, \(F_{1,72} = 60.58, P < .01 \) between the beginning and the end of sessions, \(F_{1,72} = 106.08, P < .01 \) between 2 conditions, and \(F_{1,72} = 58.16, P < .01 \) 2-factor interaction between the beginning-end and the 2 conditions, Fig. 2D,F).

Novelty Increases Reaction Time

Mean reaction time in NC was significantly higher than in the RC (respectively 447.6 ms ± 5.6 ms and 418.8 ms ± 4 ms, \(P < .01 \) unpaired \(t \) test, Fig. 3A). There was no significant difference between the 2 animals (457.3 ms ± 8.8 ms and 416.9 ms ± 6.7 ms for monkey F, 437.8 ms ± 6.0 ms and 420.8 ms ± 4.9 ms for monkey Z, respectively, 2-way ANOVA: \(F_{1,36} = 1.32, P > .05 \) between the 2 animals and \(F_{1,36} = 18.11, P < .01 \) between the 2 conditions, Fig. 3B,C). Mean movement time in NC is not significantly modified when compared with RC (respectively 143.9 ms ± 15.2 ms and 138.4 ms ± 14.2 ms, \(P > .05 \) unpaired \(t \) test).

Error Rate Is Low in Both Conditions

The monkeys displayed different types of error, categorized as premature onset error when the animals released the central button before the appearance of the cues, delay error when the animal failed to choose in the time allowed after the appearance of the cues (0.5-1.5 s), irrelevant target when they chose a target button that was not associated with one of the displayed cues, and premature target release error when they released the chosen button before the end of the hold delay period (0.5-1.5 s). After saline injection, in the RC, error rates were less than 5% for each category of error when the results from both monkeys were combined (Fig. 4A) as well as individually for monkey F (Fig. 4C) and monkey Z (Fig. 4E). In the NC, error rates were similarly low (Fig. 4B,D,F).

Inactivation of the GPi Does Not Impair Routine Behavior

After muscimol injections, the success rate did not decrease significantly (mean 97.0% ± 1.8%, Fig. 2A,B) when compared with saline. This result was again consistent for both monkeys (respectively 94.4% ± 3.4% for monkey F and 99.6% ± 0.4% for monkey Z, 3-way ANOVA: \(F_{1,72} = 3.71, P > .05 \) between the 2 animals, \(F_{1,72} = 0.53, P > .05 \) between the beginning and the end of the session, and \(F_{1,72} = 6.71, P < .05 \) between the 2 conditions, Fig. 2C-F).

Inactivation of the GPi Impairs Learning

On the other hand, in the NC, at the end of the session, the animals did not display any preference for either of the 2 targets after the muscimol injections (mean 42.4% ± 4.5% to 52.0% ± 7.0%, \(F_{1,72} = 2.13, P > .05 \), Fig. 2B). This behavior was consistent for both animals (43.2% ± 6.2% to 46.8% ± 9.8% for monkey F and 41.6% ± 7.0% to 57.2% ± 10.2% for monkey Z, 3-way ANOVA: \(F_{1,72} = 1.28, P > .05 \) between the 2 animals, \(F_{1,72} = 24.38, P < .01 \) between the beginning and the end of the session, \(F_{1,72} = 28.11, P < .01 \) between saline and muscimol, Fig. 2D,F).

Inactivation of the GPi Increases Reaction Time

Muscimol injections in the GPi significantly increased the reaction time in both condition RC (452.5 ms ± 4.2 ms) and NC (495.7 ms ± 6.5 ms) when compared with the saline injections (2-way ANOVA: \(F_{1,76} = 47.42, P < .01 \) between the 2 conditions and \(F_{1,76} = 61.24, P < .01 \) between saline and
muscimol, Fig. 3A). This was again consistent for both animals (493.2 ms ± 8.3 ms and 445.7 ms ± 5.6 ms for monkey F and 498.2 ms ± 10.4 ms and 459.3 ms ± 5.8 ms for monkey Z, 3-way ANOVA: F1,72 = 48.44, P < .01 between the 2 conditions, and F1,72 = 62.56, P < .01 between saline and muscimol, Fig. 3B,C). Mean movement time is not significantly modified in both conditions (RC: 154.6 ms ± 11.7 ms and NC: 157.8 ms ± 12.6 ms 2-way ANOVA: F1,76 = 4.72, P > .05).

Inactivation of the GPi Increases Premature Responses

After muscimol injections, premature onset error increased in both RC (1.0% ± 0.2% for saline and 4.3% ± 1.8% for muscimol, P = .079, Fig. 4A) and NC (0.9% ± 0.2% for saline and 4.7% ± 1.5% for muscimol, P < .05, Fig. 4B); although this increase was only significant in the NC condition. There were discrepancies between animals: monkey F showed a significant increase for RC only (0.5% ± 0.1% for saline and 1.5% ± 0.4% for muscimol, P < .05, Fig. 4C), whereas monkey Z showed significant differences for NC (1.2% ± 0.4% for saline and 8.2% ± 2.6% for muscimol, P < .05, Fig. 4F).

The premature target release error also increased in both monkeys when compared with saline injections in both RC (1.7% ± 0.6% for saline and 5.0% ± 0.9% for muscimol, P < .01, Fig. 4A) and NC (2.0% ± 0.6% for saline and 4.2% ± 0.5% for muscimol, P < .01, Fig. 4B). The increase was significant for monkey Z (1.0% ± 0.3% for saline and 3.7% ± 0.9% for muscimol, P < .05 in RC and 1.3% ± 0.3% for saline and 4.1% ± 0.7% for muscimol in NC, P < .01, Fig. 4E,F) but not for monkey F (2.3% ± 1.2% for saline and 6.4% ± 1.6% for muscimol, P = .058 in the RC and 2.6% ± 1.0% for saline and 4.3% ± 0.8% for muscimol, P > .05 in the NC).
P = .22 in the NC, Fig. 4C,D). The other error categories were not significantly modified by injections.

Discussion

We have shown that the disruption of the GPi with bilateral muscimol injections disables the capacity of primates to learn new contingencies. It also delays the reflexive choice of a known target although it does not impair the choice itself.

The effect of GPi inactivation on behavior was originally addressed in the framework of a box-and-arrow type model of the cortex-basal ganglia (CBG) loop and the pathophysiology of motor akinesia and bradykinesia of PD. Previous studies were carried out with muscimol injections, electro-cooling methods, or lesion during motor control tasks. The main observed effect was a slowing in the movement execution. Studies also showed that the GPi encodes motor parameters such as direction tuning curves but that this coding is very sensitive to the context of the motor task. It was then demonstrated that these motor parameters are shaped by the value of the chosen option in multiple-choice decision-making processes. It is likely that this relationship is built—during the learning processes—in the striatum, the main input structure of the GPi. Other studies showed that the neural correlates of learning occurred earlier in the BG when compared with the cortical areas.

Based on these observations, it has been proposed that the CBG network is involved in the decision-making process by comparing the value of the different options in different dimensions (cognitive, motor, etc.) and contributes to the learning of these different values through reinforcement mechanisms. This leads to 2 alternative hypotheses. One holds that the BG support routine/habitual behavior and the PFC deliberative behavior and the other infers that the BG drive learning in the PFC—which in this case is de facto the substrate of routine behavior—and become less engaged as the task is learned.

The task we developed allowed us to disentangle these 2 theories in favor of the BG driving learning in the PFC. In the RC, the decision reflects routine behaviors and the animals almost always select the best option. By contrast, in the NC, the animals have to learn the new values. It takes about 100 trials before they stabilize their behavior and choose the best option in more than 90% of the trials. Reaction times remain longer in NC when compared with RC, probably because the knowledge of value is still not completely consolidated.

Inhibition of the GPi by muscimol impairs the learning of new contingencies. This deterioration confirms that the building of neural coding of values recorded in the BG is essential in the intentional process of reinforcement learning. When feedback to the cortex was suppressed, the animals were not able to develop a preference for any option and continued to choose randomly.

On the other hand, the choice of well-trained options was not impaired. In a recent paper, Desmurget and Turner concluded that BG were not involved in the habitual process per se because inactivation of the GPi slowed movement, but did not impair reaction times and the capacity to produce iteration reaches in a pointing task. However, their task consisted of a cue-initiated sequential task without alternative options. In contrast to the task used in the current study, the animals do not have to make a choice decision. This could explain why, in the present study, the inhibition of the same area of the GPi using the same method showed a significant increase in reaction time in both conditions. Therefore our study broadly confirms that BG are not vital for automatic movement expression but weakens their conclusion regarding the noninvolvement of the BG in habitual decision.
making. Cortical areas need more time to perform decision making when they lack their feedback from BG.

We also observed that inactivation of the Gpi significantly increased premature onset and premature target release errors. This may be related to the impulsivity that has already been observed with disruption of the BG output, notably with deep brain stimulation of the subthalamic nucleus. 38-40

In the past decade, we developed a theoretical model that hypothesized that decision making emerges from competition processes between negative and positive feedback through the CBG loop. 28,29 The model encompasses the motor cortex, the prefrontal cortex, and the corresponding subcortical territories: BG and thalamus (see Supporting Information Fig. S2). Initially, the selection process is driven by noise, but as learning progresses it becomes dependant on learned visual cue values. This model fits well with previous correlative experimental data 41 but also predicted that suppression of the Gpi outputs should impair both reinforcement learning and habits. However, the model originally focused on the BG themselves and deliberately ignored the existence of lateral competition and Hebbian learning in the cortex. We have therefore implemented these features (Supporting Information Fig. S2 and Supplementary Materials).

With the new configuration, the model reproduces the behavior observed in our monkeys. When Gpi is lesioned, CBG feedback is suppressed. The model is then unable to learn new targets, but is still able, albeit slowly, to perform selection when the value of the target has been learned at the cortical level by simple Hebbian mechanisms (Fig. 5). This model also provides an explanation for the increased impulsivity observed after disruption of the Gpi feedback. In this condition, the dynamics of the cortical network are more sensitive to noise and more prone to divergence without the presence of any stimulus (ie, premature movements).

Interestingly, we solved the paradox of the apparent lack of effect on routine behavior of Gpi lesion/disruption for therapeutic issues. 5,6,9 Our results predict that such patients should exhibit difficulties in the learning of a new task, as they do for weathercasting task, for example, 42 while the execution of an already acquired routine should be, at the worst, slowed. Up until now, a single case study seems to confirm our prediction. In a PD patient who underwent unilateral left pallidotomy to relieve dyskinesia, we reported the following:

Whereas movement speed and simple reaction times of the right arm were within the normal range. two main abnormalities were found with the right hand. (a) Implicit sequence learning in a probabilistic serial reaction time task was absent. (b) In a go/no-go task when the percent of no-go trials increased, the RT superiority with the right hand was lost. 43

This single report has to be complemented with more systematic studies using protocols similar to that used in this study, but it opens some future and fruitful perspectives on the physiology and pathophysiology of the BG.

Acknowledgments: We would like to thank A. Leblois, A. Retailleau, Jose Obeso, and D. Hansel for discussions on the project.

References

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.