Skip to Main content Skip to Navigation
Conference papers

Annotated Bibliographical Reference Corpora in Digital Humanities

Abstract : In this paper, we present new bibliographical reference corpora in digital humanities (DH) that have been developed under a research project, Robust and Language Independent Machine Learning Approaches for Automatic Annotation of Bibliographical References in DH Books supported by Google Digital Humanities Research Awards. The main target is the bibliographical references in the articles of site, an oldest French online journal platform in DH field. Since the final object is to provide automatic links between related references and articles, the automatic recognition of reference fields like author and title is essential. These fields are therefore manually annotated using a set of carefully defined tags. After providing a full description of three corpora, which are separately constructed according to the difficulty level of annotation, we briefly introduce our experimental results on the first two corpora. A popular machine learning technique, Conditional Random Field (CRF) is used to build a model, which automatically annotates the fields of new references. In the experiments, we first establish a standard for defining features and labels adapted to our DH reference data. Then we show our new methodology against less structured references gives a meaningful result.
Document type :
Conference papers
Complete list of metadatas
Contributor : Bibliothèque Universitaire Déposants Hal-Avignon <>
Submitted on : Wednesday, May 18, 2016 - 4:38:17 PM
Last modification on : Wednesday, August 5, 2020 - 3:15:45 AM


  • HAL Id : hal-01317643, version 1


Young-Min Kim, Patrice Bellot, Elodie Faath, Marin Dacos. Annotated Bibliographical Reference Corpora in Digital Humanities. LREC, May 2012, Istanbul, Turkey. ⟨hal-01317643⟩



Record views