Annotated Bibliographical Reference Corpora in Digital Humanities

Abstract : In this paper, we present new bibliographical reference corpora in digital humanities (DH) that have been developed under a research project, Robust and Language Independent Machine Learning Approaches for Automatic Annotation of Bibliographical References in DH Books supported by Google Digital Humanities Research Awards. The main target is the bibliographical references in the articles of Revues.org site, an oldest French online journal platform in DH field. Since the final object is to provide automatic links between related references and articles, the automatic recognition of reference fields like author and title is essential. These fields are therefore manually annotated using a set of carefully defined tags. After providing a full description of three corpora, which are separately constructed according to the difficulty level of annotation, we briefly introduce our experimental results on the first two corpora. A popular machine learning technique, Conditional Random Field (CRF) is used to build a model, which automatically annotates the fields of new references. In the experiments, we first establish a standard for defining features and labels adapted to our DH reference data. Then we show our new methodology against less structured references gives a meaningful result.
Type de document :
Communication dans un congrès
LREC, May 2012, Istanbul, Turkey
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01317643
Contributeur : Bibliothèque Universitaire Déposants Hal-Avignon <>
Soumis le : mercredi 18 mai 2016 - 16:38:17
Dernière modification le : mercredi 28 septembre 2016 - 15:53:52

Identifiants

  • HAL Id : hal-01317643, version 1

Collections

Citation

Young-Min Kim, Patrice Bellot, Elodie Faath, Marin Dacos. Annotated Bibliographical Reference Corpora in Digital Humanities. LREC, May 2012, Istanbul, Turkey. <hal-01317643>

Partager

Métriques

Consultations de la notice

50