Free-cut elimination in linear logic and an application to a feasible arithmetic

Patrick Baillot 1, 2 Anupam Das 1, 2
2 PLUME - Preuves et Langages
LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : We prove a general form of 'free-cut elimination' for first-order theories in linear logic, yielding normal forms of proofs where cuts are anchored to nonlogical steps. To demonstrate the usefulness of this result, we consider a version of arithmetic in linear logic, based on a previous axiomatisation by Bellantoni and Hofmann. We prove a witnessing theorem for a fragment of this arithmetic via the 'witness function method', showing that the provably convergent functions are precisely the polynomial-time functions. The programs extracted are implemented in the framework of 'safe' recursive functions, due to Bellantoni and Cook, where the ! modality of linear logic corresponds to normal inputs of a safe recursive program.
Type de document :
Communication dans un congrès
Computer Science Logic 2016, Aug 2016, Marseille, France. LIPIcs-Schloss Dagstuhl, LIPIcs series, Schloss Dagstuh., 62, pp. 40:1-40:18, 2016, Proceedings of Computer Science Logic 2016 (CSL). 〈10.4230/LIPIcs.CSL.2016.40〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01316754
Contributeur : Patrick Baillot <>
Soumis le : mardi 17 mai 2016 - 16:14:16
Dernière modification le : mardi 24 avril 2018 - 13:52:46
Document(s) archivé(s) le : vendredi 19 août 2016 - 17:12:02

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Citation

Patrick Baillot, Anupam Das. Free-cut elimination in linear logic and an application to a feasible arithmetic . Computer Science Logic 2016, Aug 2016, Marseille, France. LIPIcs-Schloss Dagstuhl, LIPIcs series, Schloss Dagstuh., 62, pp. 40:1-40:18, 2016, Proceedings of Computer Science Logic 2016 (CSL). 〈10.4230/LIPIcs.CSL.2016.40〉. 〈hal-01316754〉

Partager

Métriques

Consultations de la notice

776

Téléchargements de fichiers

91