
HAL Id: hal-01316519
https://hal.science/hal-01316519

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure Architecture for VMI-based Dynamic Malware
Analysis in the Cloud

Benjamin Taubmann, Hans P. Reiser

To cite this version:
Benjamin Taubmann, Hans P. Reiser. Secure Architecture for VMI-based Dynamic Malware Analysis
in the Cloud. Fast Abstract in the 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, Jun 2016, Toulouse, France. �hal-01316519�

https://hal.science/hal-01316519
https://hal.archives-ouvertes.fr


Secure Architecture for VMI-based Dynamic
Malware Analysis in the Cloud

Benjamin Taubmann, Hans P. Reiser
University of Passau

Passau, Germany

Email: {bt,hr}@sec.uni-passau.de

I. INTRODUCTION

A popular approach for automated malware analysis, as
for example used by the Cuckoo Sandbox [1], is to use agents
within the target system of the malware to collect analysis data.
Such agents can easily be detected and attacked by malware.
Virtual machine introspection (VMI) has recently gained much
attention as a more stealthy approach to malware analysis, for
example in DRAKVUF [2] and DECAF [3].

Using VMI requires adequate privileges for accessing
other virtual machines. As a result (almost) all VMI-based
approaches for malware analysis run the analysis tool in a
privileged system domain, such as Dom0 on Xen systems
and the host OS on KVM systems. Modern analysis tools
have a large complexity and thus might contain exploitable
vulnerabilities with a non-negligible probability. Attacks that
exploit analysis tools by manipulating the observed data are
a real threat, as demonstrated by examples such as CVE-
2006-52761. This means that running such analysis tools on a
privileged domain puts the whole system at risk.

We propose a different approach to VMI-based malware
analysis that is more suitable for using in a large scale or even
in a public cloud. Even if the analysis tools using VMI are
faulty, they should not put the whole environment at risk. With
adequate isolation approaches, it is even possible to deploy
customer-defined VMI tools in public cloud environments.

II. RESEARCH GOALS

In this paper, we sketch an outline of our secure archi-
tecture for VMI-based dynamic malware analysis, which is
well-suited for running the analysis on dynamically allocated
cloud resources.

First of all, we aim at obtaining an architecture in which
the analysis tools are fully isolated from the core system
infrastructure, i.e., instead of running such tools in privileged
domains such as Dom0 on Xen systems, we want to run them
in a fully isolated domain, in order to minimize the impact
of a compromised analysis tool. Similarly, we want to support
the simultaneous analysis of multiple virtual machines. In this
case, we additionally want to ensure that one of the analysis
runs cannot influence other analysis. This means that we also
want isolation between multiple analysis instances.

Furthermore, a goal of our architecture is to offer ade-
quate integration into a cloud management infrastructure. A

1http://www.cvedetails.com/cve/CVE-2006-5276/ [accessed 2016-03-21]

cloud client should be able to dynamically allocate resources
required for analysing malware samples running in a different
virtual machine. This allocation requires assigning appropriate
privileges.

Finally, our system aims at jointly analyzing a target VM’s
main memory, disk content and network traffic and combine
these results. This combination enables new features such as
deep process introspection by combining, e.g., symbol infor-
mation from library and executable files from disk with process
memory introspection, and decryption of network traffic using
key information extracted from main memory.

III. ARCHITECTURE

Figure 1 shows an overview of our architecture. From
a top-level perspective, the main features of the architecture
are the isolation between analysis VMs (“Monitor VMs”
and “Sandbox VMs”) and the automated cloud deployment.
Specific analysis components focus on main memory, disk
storage, and network, and combine data from these sources.

A. Isolation

In our architecture, we use dedicated monitoring virtual
machines for analyzing the behaviour of a target virtual
machine on which the malware sample is deployed (sandbox
VM). We use the Xen security modules (XSM) extensions for
controlling the access between virtual machines. XSM is based
on mandatory access control, which implies that a static set of
types for virtual machines and a set of rules for enabling VMI
access from one monitoring VM to one target VM are defined
statically.

This rule set ensures that the virtual machine that runs the
analysis code has access to only a single target VM. Even if,
due to some vulnerability in the analysis code, malware can
compromise the monitoring VM, it cannot easily compromise
other domains or the system’s Dom0.

B. Deployment

A central controller instance orchestrates the analysis of
(potentially many) malware samples on multiple target virtual
machines. Our prototype is based on the OpenNebula cloud
management system, which enables us to automatically deploy
analysis on multiple hosts of a private cloud.

The controller uses the OpenNebula API for launching
monitoring VM and target VM. We have developed extensions
that automatically map a matching pair of XSM labels to both



Sandbox VMs

Memory

Storage

Network

Monitor VMs

OpenNebula

Management

Trace DB

Xen

Kernel Tracing

Process Tracing

Network Tracing
Orchestrate VMs

Fig. 1. Cloud-based architecture for VMI-based dynamic malware analysis. A
central management controller instantiates pairs of sandbox VM and monitor
VM. The monitor combines information obtained at the level of main memory,
disk storage and network traffic of the sandbox VM.

VM instances such that VMI access is enabled from a monitor
VM to the corresponding sandbox VM.

C. Memory

For static memory analysis of the target VM, our archi-
tecture uses well-known memory analysis tools, in particular
Volatility2. These tools mainly focus on extracting information
from the guest operating system, such as extracting lists of
running processes, loaded kernel modules, or active network
connections.

In addition to that, our architecture aims at providing
support for dynamic analysis of the sandbox VM. For that
purpose, it offers basic mechanisms for tracing the execution
of the target VM by injecting software breakpoints and by
tracing memory events.

On top of that, our architecture provides mechanisms for
deep introspection both at the kernel level and application
level. At the kernel level, we can, for example, trace the
execution of selected system calls (“kernel tracing”). At the
application level, we can trace specific functions from the
application or from a library (“process tracing”).

D. Storage

Application-level function tracing requires access to the
function symbols of an application, which are stored as ex-
ported symbols in the executable or library binary on disk, but
not in main memory. In addition to accessing main memory, we
thus need to extract these symbols from files on disk whenever
executable code is loaded from disk storage.

Furthermore, it is a very effective approach to monitor the
file system access of a VM for malware analysis as some
samples store their unpacked version before the execution on
disk. Additionally, the information of accessed files can be
used to determine if the malware decrypts other files or tries
to inject itself into other applications.

2http://www.volatilityfoundation.org [accessed 2016-03-21]

E. Network

The network traffic is a very useful source in order to
analyze the behavior of malware samples. Thus, we store the
traffic for further investigations. Additionally, monitoring the
network traffic allows the reconstruction of a VM state at a
higher level than monitoring low level traces. For example
it is cheaper to monitor the network traffic than monitor all
read and write system calls. Additionally, this approach
is platform independent and does not require any information
how the operating system handles network connections. This
approach was used by TLSkex to trigger memory snapshots
when specific network packets occur [4] in order to extract
TLS session keys from memory.

IV. CONCLUSION

We have presented an architecture that enhances dynamic
malware analysis by combining data from three sources:
target VM main memory, disk storage, and network traffic.
This combination yields additional insights, such as traces of
specific functions of selected applications and the decryption
of network traffic based on key extraction.

Our architecture has security advantages compared to other
state-of-the-art approaches. It uses virtual machine introspec-
tion, and thus our analysis tools are better isolated from
malware than in systems that use in-target agents. It allows
monitoring multiple targets in multiple VMs simultaneously,
but all analysis instances use separate virtual machines and
thus are strongly isolated one from each other. Unlike most
other VMI-based systems, our architecture does not run VMI
analysis code on a privileged domain (such as Dom0 on Xen-
based systems), and thus does not cause any risk even if the
analysis system is compromised.

ACKNOWLEDGMENT

The research leading to these results was supported by the
Bavarian State Ministry of Education, Science and the Arts as
part of the FORSEC research association.

REFERENCES

[1] D. Oktavianto and I. Muhardianto, Cuckoo Malware Analysis. Packt
Publishing, 2013.

[2] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and
A. Kiayias, “Scalability, fidelity and stealth in the drakvuf dynamic
malware analysis system,” in Proceedings of the 30th Annual Computer
Security Applications Conference, 2014.

[3] A. Henderson, A. Prakash, L. K. Yan, X. Hu, X. Wang, R. Zhou, and
H. Yin, “Make it work, make it right, make it fast: Building a platform-
neutral whole-system dynamic binary analysis platform,” in Proceedings
of the 2014 International Symposium on Software Testing and Analysis,
ser. ISSTA 2014. New York, NY, USA: ACM, 2014, pp. 248–258.

[4] B. Taubmann, C. Frdrich, D. Dusold, and H. P. Reiser, “TLSkex: Harness-
ing virtual machine introspection for decrypting TLS communication,”
in Proc. of the DFRWS EU 2016 Annual Conference, 2016.


