
HAL Id: hal-01316353
https://hal.archives-ouvertes.fr/hal-01316353v2

Submitted on 24 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

P versus NP
Frank Vega

To cite this version:

Frank Vega. P versus NP. 2016. �hal-01316353v2�

https://hal.archives-ouvertes.fr/hal-01316353v2
https://hal.archives-ouvertes.fr

P versus NP

Frank Vega

vega.frank@gmail.com

Abstract: P versus NP is one of the most important and unsolved problems in com-
puter science. This consists on knowing the answer of the following question: Is P equal
to NP? This incognita was first mentioned in a letter written by Kurt Gödel to John
von Neumann in 1956. However, the precise statement of the P versus NP problem
was introduced in 1971 by Stephen Cook. Since that date, all efforts to find a proof
for this huge problem have failed. It is currently accepted that a positive answer for
P versus NP would have tremendous effects not only in computer science, but also in
mathematics, biology, and so forth. This work is about an interesting class of problems
whose status is unknown: the complexity class NP-complete. If any single NP-complete
problem is in P, then P is equal to NP. Indeed, we show that a known NP-complete
problem belongs to P, and therefore, P = NP.

Key Words: P, NP, NL, verifier

Category: F.1.3

Introduction

P versus NP is a major unsolved problem in computer science [1]. This problem

was introduced in 1971 by Stephen Cook [2]. It is considered by many to be

the most important open problem in the field [1]. It is one of the seven Mil-

lennium Prize Problems selected by the Clay Mathematics Institute to carry a

US$1,000,000 prize for the first correct solution [1].

In 1936, Turing developed his theoretical computational model [2]. The de-

terministic and nondeterministic Turing machines have become in two of the

most important definitions related to this theoretical model for computation. A

deterministic Turing machine has only one next action for each step defined in

its program or transition function [3]. A nondeterministic Turing machine could

contain more than one action defined for each step of its program, where this

one is no longer a function, but a relation [3].

Another huge advance in the last century has been the definition of a com-

plexity class. A language over an alphabet is any set of strings made up of

symbols from that alphabet [4]. A complexity class is a set of problems, which

are represented as a language, grouped by measures such as the running time,

memory, etc [4].

In the computational complexity theory, the class P contains those languages

that can be decided in polynomial time by a deterministic Turing machine [5].

The class NP consists on those languages that can be decided in polynomial

time by a nondeterministic Turing machine [5].

The biggest open question in theoretical computer science concerns the rela-

tionship between these classes:

Is P equal to NP?

In 2002, a poll of 100 researchers showed that 61 believed that the answer

was not, 9 believed that the answer was yes, and 22 were unsure; 8 believed the

question may be independent of the currently accepted axioms and so impossible

to prove or disprove [6].

The NP–complete is an interesting complexity class defined by Cook in his

seminal paper [2]. The class NP-complete is a set of problems of which any other

NP problem can be reduced in polynomial time, but whose solution may still be

verified in polynomial time [5]. If any single NP–complete problem can be solved

in polynomial time, then every NP problem has a polynomial time algorithm

[4].

Another major complexity class is NL. NL is the class of languages that

are decidable on a nondeterministic logspace machine [7]. A logspace machine

is a Turing machine with a read-only input tape, a write-only output tape,

and a read/write work tapes [7]. The work tapes may contain at most O(log n)

symbols [7]. It is known that NL ⊆ P ⊆ NP [3]. Whether NL = P is another

fundamental question that it is as important as it is unresolved [3]. All efforts

to find polynomial time algorithms for the NP–complete problems have failed

[1]. Nevertheless, we prove there exists an NP–complete in NL, and therefore,

P = NP .

1 Theoretical notions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of

finite strings over Σ [2]. A Turing machine M has an associated input alphabet

Σ [2]. For each string w in Σ∗ there is a computation associated with M on input

w [2]. We say that M accepts w if this computation terminates in the accepting

state [2]. Note that M fails to accept w either if this computation ends in the

rejecting state, or if the computation fails to terminate [2].

The language accepted by a Turing machine M , denoted L(M), has associ-

ated alphabet Σ and is defined by

L(M) = {w ∈ Σ∗ : M accepts w}.

We denote by tM (w) the number of steps in the computation of M on input w

[2]. For n ∈ N we denote by TM (n) the worst case run time of M ; that is

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs in

polynomial time if there exists k such that for all n, TM (n) ≤ nk + k [2].

Definition 1. A language L is in class P if L = L(M) for some deterministic

Turing machine M which runs in polynomial time [2].

We state the complexity class NP using the following definition.

Definition 2. A verifier for a language L is a deterministic Turing machine M ,

where

L = {w : M accepts 〈w, c〉 for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial

time verifier runs in polynomial time in the length of w [7]. A verifier uses

additional information, represented by the symbol c, to verify that a string w is

a member of L. This information is called certificate.

Definition 3. NP is the class of languages that have polynomial time verifiers

[7].

An important complexity class is NP–complete [5]. If any single NP–complete

problem can be solved in polynomial time, then every NP problem has a polyno-

mial time algorithm [4]. No polynomial time algorithm has yet been discovered

for an NP–complete problem [1].

A principal NP–complete problem is CLIQUE [8]. An instance of CLIQUE

is an undirected graph G = (V,E), where V is a finite set and E is a binary

relation on V [4]. The set V is called the vertex set of G, and its elements are

called vertices or nodes [4]. The set E is called the edge set of G, and its elements

are called edges [4].

A clique in an undirected graph G = (V,E) is a subset V ′ ⊆ V of vertices,

each pair of which is connected by an edge in E [4]. A clique is a complete

subgraph of G [4]. The size of a clique is the number of vertices it contains. The

formal definition of this problem is

CLIQUE = {(G, k) : G is a graph with a clique of size k}.

Checking whether V ′ is a clique in a graph G = (V,E) can be accomplished in

polynomial time by checking whether, for every pair u, v ∈ V ′, the edge (u, v)

belongs to E.

2 P =? NP

We can give a certificate-based definition for NL [9]. The certificate-based defi-

nition of NL assumes that a logspace machine has another separated read-only

tape [9]. On each step of the machine the machine’s head on that tape can either

stay in place or move to the right [9]. In particular, it cannot reread any bit to

the left of where the head currently is [9]. For that reason this kind of special

tape is called “read once” [9].

Definition 4. A language L is in NL if there exists a deterministic logspace

machine and a with an additional special read-once input tape polynomial p :

N→ N such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) such that M accepts 〈x, u〉

where by M(x, u) we denote the computation of M where x is placed on its

input tape and u is placed on its special read-once tape, and M uses at most

O(log |x|) space on its read/write tapes for every input x.

Theorem 5. P = NP .

Proof. We will show that a certificate u which represents a clique V ′ of size k

on a graph G can be verified by a deterministic logspace machine M using an

additional special read-once input tape, and thereby CLIQUE will be in NL

as a direct consequence of the Definition 4. The logarithmic space algorithm M

that we present for the verification in CLIQUE must accept whenever the input

graph G contains a clique of size k using the certificate u.

Let ck be an array of natural numbers that contains the nodes in the clique

V ′ of size k on a graph G. We assume the ck is provided in ascending order

where in G every vertex v ∈ V is mapped to a single and unique integer between

1 and |V | where | . . . | denotes the cardinality function and V is the vertex set

of G.

Given G, k and ck, the machine M operates as follows. With the first node in

ck, M checks one by one whether this node has an edge with the others elements

in the array. Whenever M checks whether those edges exist, M attempts to

verify whether the array ck is sorted in ascending way by storing the element

that was verified in last step for the comparison to the next one in the following

step. If these verifications fail, M rejects. In addition, M counts the number of

nodes that contains ck and if the number of elements in ck is different to k, it

rejects too. In the meantime, M calculates ck[1]⊕ck[2]⊕ck[3]⊕ . . .⊕ck[k] where

⊕ represents the XOR function [10]. We will denote the value of this calculation

as the binary integer bk. We can make this evaluation in a forward way, that is,

calculating first ck[1]⊕ ck[2] = B and later B ⊕ ck[3] = C, and so on ... until we

reach the last k-th element. Besides, we check whether each node is between 1

and |V |.
Certainly, we can make this whole computation reading at once into the array

ck. In other words, M can verify that the smallest node in V ′ has an edge with

each one of the others vertices in V ′ using the array ck as the first part of the

certificate u on the additional read once tape.

After we store the values of ck[1] and bk on the read/write tapes, then we

continue with the second part of the certificate u, that is another array c(k−1)
of natural numbers that contains the nodes in the clique V ′ but without the

node represented by ck[1]. But now, c(k−1) is sorted in descending way. Then,

we take the first element in c(k−1) and check whether each element starting

from the second in c(k−1) has an edge with this one. If this verification fails, M

rejects. In the same way, M rejects if the number of elements in c(k−1) is not

(k−1) and if they are not in a descending order. At the same time, M calculates

c(k−1)[1]⊕c(k−1)[2]⊕. . .⊕c(k−1)[(k−1)]. We also denote this new value as b(k−1).

The purpose of this evaluation is to compare the result of bk ⊕ b(k−1) with ck[1]

(the first element of ck). In case these values were not equal, then M rejects,

because this would mean c(k−1) will contain at least one different node which is

not in ck. This is supported by the properties of the function XOR which are

quite used for cipher [10]. Likewise, we check whether each node is between 1

and |V |.
Certainly, these properties in the array c(k−1) can be verified through a read-

ing at once on the special tape that contains the certificate u. In other words,

M can verify that the largest node in V ′ has an edge with each one of the oth-

ers vertices in V ′ (ignoring the vertex ck[1] since the edge (ck[1], c(k−1)[1]) was

already checked) using the array c(k−1) as the second part of the certificate u on

the additional read once tape.

Similarly, the array c(k−2) has the nodes in V ′ but without the previous ck[1]

and c(k−1)[1]. However, it is sorted in ascending way again. Consequently, M

will make the same verifications that has been done on the previous arrays of u,

but M uses on this time the last values of c(k−1)[1] and b(k−1) on its read/write

tapes to check whether b(k−1) ⊕ b(k−2) is equal to c(k−1)[1].

To sum up, the certificate u will be a two dimensional array of integers

between 1 and |V | such that u[1] = ck, u[2] = c(k−1), u[3] = c(k−2) and so on

... until the last array c[k] = c1. For each i between 1 and k, the array u[i] will

be sorted in ascending way if i is odd and descending otherwise. Furthermore,

every array u[i] in u must have exactly (k + 1)− i elements.

Here is the algorithm for the verification of (G, k) ∈ CLIQUE through the

described certificate u. Let m be the number of nodes of G:

M = On input (G, k, u)

1. Let previous := 0

2. Let previous-xor-value := 0

3. For i := 1 to k

4. {

5. Let current := u[i][1]

6. Let prior := current

7. Let current-xor-value := current

8. Let parity := (i mod 2)

9. if (current is not a binary integer between 1 and m)

10. {

11. reject

12. }

13. previous-xor-value := previous-xor-value⊕ current

14. For j := 2 to (k + 1)− i

15. {

16. Let next := u[i][j]

17. if ((next is a binary integer between 1 and m)

18. and ((parity = 0 and next < prior)

19. or (parity = 1 and next > prior))

20. and ((current, next) ∈ E))

21. {

22. prior := next

23. current-xor-value := current-xor-value⊕ next

24. previous-xor-value := previous-xor-value⊕ next

25. }

26. else

27. {

28. reject

29. }

30. }

31. if ((u[i][(k + 2)− i] is undefined in u)

32. and ((previous = 0)

33. or (previous = previous-xor-value)))

34. {

35. previous := current

36. previous-xor-value := current-xor-value

37. }

38. else

39. {

40. reject

41. }

42. }

43. accept

This algorithm only needs to store i, j, previous, current, previous-xor-value,

prior, current-xor-value, next and parity at any given time. But, each one of

these variables only uses a logm amount of space, since we can represent them

as binary strings. Hence, M verifies (G, k) using the certificate u in logarithmic

space. In addition, in this algorithm we never go backward on the contiguous

arrays of integers in u. Furthermore, it is quite obvious that u is polynomially

bounded by (G, k), since the size u is lesser than k×(2×logm)×m2. For all these

reasons, we can support that CLIQUE ∈ NL. Since NL ⊆ P , then CLIQUE ∈
P [3]. If any single NP–complete problem can be solved in polynomial time, then

every NP problem has a polynomial time algorithm [4]. Consequently, we can

conclude that P = NP .

Conclusions

After decades of studying the NP problems no one has been able to find a poly-

nomial time algorithm for any of more than 300 important known NP–complete

problems [8]. Even though this proof might not be a practical solution, it shows

in a formal way that many currently mathematical problems can be solved effi-

ciently, including those in NP–complete.

At the same time, this demonstration would represent a very significant ad-

vance in computational complexity theory and provide guidance for future re-

search. On the one hand, it proves that most of the existing cryptosystems such

as the public-key cryptography are not safe [7]. On the other hand, we will be

able to find a formal proof for every theorem which has a proof of a reasonable

length by a feasible algorithm.

References

1. L. Fortnow, The Golden Ticket: P, NP, and the Search for the Impossible, Prince-
ton University Press. Princeton, NJ, 2013.

2. S. A. Cook, The P versus NP Problem, available at http://www.claymath.org/
sites/default/files/pvsnp.pdf (April 2000).

3. C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms,

2nd Edition, MIT Press, 2001.
5. O. Goldreich, P, Np, and Np-Completeness, Cambridge: Cambridge University

Press, 2010.
6. W. I. Gasarch, The P=?NP poll, SIGACT News 33 (2) (2002) 34–47.
7. M. Sipser, Introduction to the Theory of Computation, 2nd Edition, Thomson

Course Technology, 2006.
8. M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, 1st Edition, San Francisco: W. H. Freeman and Company,
1979.

9. S. Arora, B. Barak, Computational complexity: A modern approach, Cambridge
University Press, 2009.

10. R. Churchhouse, Codes and Ciphers: Julius Caesar, the Enigma and the Internet,
Cambridge University Press, 2002.

