On the Impact of Modal Depth in Epistemic Planning (Extended Version)
Tristan Charrier, Bastien Maubert, François Schwarzentruber

To cite this version:
Tristan Charrier, Bastien Maubert, François Schwarzentruber. On the Impact of Modal Depth in Epistemic Planning (Extended Version). [Research Report] IRISA, équipe LogicA. 2016. <hal-01315107>

HAL Id: hal-01315107
https://hal.archives-ouvertes.fr/hal-01315107
Submitted on 12 May 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the Impact of Modal Depth in Epistemic Planning
(Extended Version)

Tristan Charrier ∗ Bastien Maubert † François Schwarzentruber ‡

April 2016

Abstract

Epistemic planning is a variant of automated planning in the framework of dynamic epistemic logic. In recent works, the epistemic planning problem has been proved to be undecidable when preconditions of events can be epistemic formulas of arbitrary complexity, and in particular arbitrary modal depth. It is known however that when preconditions are propositional (and there are no postconditions), the problem is between PSPACE and EXPSPACE. In this work we bring two new pieces to the picture. First, we prove that the epistemic planning problem with propositional preconditions and without postconditions is in PSPACE, and is thus PSPACE-complete. Second, we prove that very simple epistemic preconditions are enough to make the epistemic planning problem undecidable: preconditions of modal depth at most two suffice.

1 Introduction

A key objective in artificial intelligence is to develop autonomous agents able to plan their actions towards achieving their goals, and to reason about their own and other agents’ knowledge. Planning, which consists in finding a sequence of actions to reach a given objective from an initial situation, is a central research domain in artificial intelligence. Concerning reasoning about knowledge, dynamic epistemic logic (DEL) is now recognised as a very promising framework [1]. Recently, planning and dynamic epistemic logic have been combined in the so-called epistemic planning problem [2].

In DEL, events can deal with high-order reasoning. For instance we may model the following event:

“Anne receives a letter revealing that ϕ is true and Bob knows that Anne receives the truth value of ϕ but Anne is unsure whether Bob knows that or not.”

In DEL, φ is called a precondition: φ needs to be true for this event to occur, and therefore its occurrence brings the information that φ is true. This event is purely informative, but DEL also allows physical (ontic) effects on the world; these are referred to as postconditions. One natural question is: how does the nesting of knowledge in pre- and postconditions impact the complexity of the epistemic planning problem?

On the one hand, when only propositional preconditions are used, such as $\varphi = “Bob$ is married”, the problem is decidable if postconditions are also propositional [3]. In this case it is in k-EXPSPACE, where k is the maximal modal depth of goal formulas [4]; if there are no

*Université de Rennes 1, IRISA
†University of Naples
‡ENS Rennes
postconditions (events are purely epistemic), the problem is in Expspace \[5\]. On the other hand, epistemic preconditions such as \(\varphi = \text{"Bob considers it possible that Anne knows that Bob does not know that it is raining"}\) yield undecidability: if propositional postconditions are allowed, then the problem is already undecidable with preconditions of modal depth one \[2\]. It is also known to be undecidable without postconditions, if we allow for preconditions of unbounded modal depth \[6\]. See Table 1 for a summary of results about epistemic planning.

In this paper, our contribution is twofold:

1. With propositional preconditions and no postconditions, epistemic planning is in PSPACE (Theorem 1). The key point is that in this case events commute \[7\]. This allows for a succinct representation of tuples of events, and we build upon a model checking procedure from \[8\] to devise a polynomial space decision procedure.

2. Epistemic planning without postconditions is already undecidable with preconditions of modal depth two (Theorem 2). The proof, by reduction from the halting problem for two counter machines, refines the one given in \[6\], which requires preconditions with unbounded modal depth. By designing more involved gadgets to code the configurations and instructions of the machines, we manage to bound the modal depth of preconditions.

We first recall the background on epistemic planning in Section 2. We establish our two contributions, described above, in Section 3 and Section 4 respectively. We briefly discuss future work in Section 5.

2 Background on epistemic planning

In this section, we recall the necessary background about dynamic epistemic logic and epistemic planning.

2.1 Dynamic epistemic logic

Let \(AP\) be a countably infinite set of atomic propositions, and let \(Ag = \{ 1, \ldots, n \}\) be a finite set of agents. The epistemic language \(\mathcal{L}_{\text{EL}}\) is the language of propositional logic extended with one knowledge modality for each agent. Intuitively, \(K_a \varphi\) reads as "agent \(a\) knows that \(\varphi\) holds". The syntax of \(\mathcal{L}_{\text{EL}}\) is given by the following grammar:

\[
\varphi ::= p | \neg \varphi | (\varphi \lor \varphi) | K_a \varphi \quad \text{where} \ p \in AP \text{ and } a \in Ag.
\]

The semantics of \(\mathcal{L}_{\text{EL}}\) is given in terms of epistemic models that represent how the agents perceive the world.

Definition 1 An epistemic model is a tuple \(\mathcal{M} = (W, \{ R_a \}_{a \in Ag}, V)\) where:

- \(W\) is a non-empty finite set of possible worlds,
- \(R_a \subseteq W \times W\) is an accessibility relation for agent \(a\),
- \(V : AP \to 2^W\) is a valuation function.

<table>
<thead>
<tr>
<th>(d)</th>
<th>no postconditions</th>
<th>with postconditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d = 0)</td>
<td>PSPACE-complete</td>
<td>Decidable</td>
</tr>
<tr>
<td>(d \leq 1)</td>
<td>?</td>
<td>Undecidable [2]</td>
</tr>
<tr>
<td>(d \leq 2)</td>
<td>Undecidable</td>
<td>Undecidable</td>
</tr>
<tr>
<td>unbounded</td>
<td>Undecidable [6]</td>
<td>Undecidable</td>
</tr>
</tbody>
</table>

Table 1: Overview (\(d\): modal depth; gray: this paper).
We write $w \in M$ for $w \in W$, $|M|$ for $|W|$, and (M, w) is called a pointed epistemic model. The intended meaning of wR_aw' is that in world w agent a considers that w' might be the actual world.

The semantics of L_{EL} is defined as follows:

- $M, w \models p$ if $w \in V(p)$;
- $M, w \models \neg \varphi$ if it is not the case that $M, w \models \varphi$;
- $M, w \models (\varphi \lor \psi)$ if $M, w \models \varphi$ or $M, w \models \psi$;
- $M, w \models K_a\varphi$ if for all w' s.t. wR_aw', $M, w' \models \varphi$.

Dynamic epistemic logic (DEL) extends epistemic logic with modalities that represent the occurrence of events. In DEL, events are represented by event models that we define below. In general DEL events can bring information and modify the world, and such events are called ontic events [9]; in this work however we focus on purely informative events, called epistemic events [10].

Definition 2 An event model is a tuple $E = (E, \{\rightarrow_a\}_{a \in Ap}, \text{pre})$ where:

- E is a non-empty finite set of possible events,
- $\rightarrow_a \subseteq E \times E$ is an accessibility relation on E for agent a,
- $\text{pre} : E \rightarrow L_{EL}$, is a precondition function.

We write $e \in E$ for $e \in |E|$, and (E, e) is called a pointed event model, where e represents the actual event of (E, e). An event e can occur in a world w of an epistemic model M if, and only if, its precondition is verified, i.e. $M, w \models \text{pre}(e)$, which leads to the following definition:

Definition 3 Given $M = (W, \{R_a\}_{a \in Ap}, V)$ an epistemic model and $E = (E, \{\rightarrow_a\}_{a \in Ap}, \text{pre})$ an event model, the update product of M and E is the epistemic model $M \odot E = (W^\odot, \{R^\odot_a\}_{a \in Ap}, V^\odot)$ where:

$$W^\odot = \{(w, e) \in W \times E \mid M, w \models \text{pre}(e)\},$$

$$R^\odot_a(w, e) = \{(w', e') \in W^\odot \mid wR_aw' \text{ and } e \rightarrow_a e'\},$$

$$V^\odot(p) = \{(w, e) \in W^\odot \mid M, w \models p\}$$

The product of a pointed epistemic model (M, w) with a pointed event model (E, e) is defined as $(M, w) \odot (E, e) := (M \odot E, (w, e))$ if $M, w \models \text{pre}(e)$, otherwise it is undefined.

We now define the syntax and semantics of DEL. The syntax is given by the following grammar:

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \lor \varphi) \mid K_i\varphi \mid (E, e)\varphi,$$

where $p \in Ap$, $i \in Ap$ and (E, e) is a pointed event model.

The semantics is the same as for L_{EL}, with the following additional case:

- $M, w \models (E, e)\varphi$ if $M, w \models \text{pre}(e)$, and $(M, w) \odot (E, e) \models \varphi$.

Example 1 Consider the pointed epistemic model (M, w) in Figure 1(a). Proposition p is true in the actual world w but both agents a, b do not know that p holds: $M, w \models \neg K_1p \land \neg K_2p$. Figure 2(b) shows a pointed event model (E, e) where the precondition of the actual event e is p, and the one of event f is \top. (E, e) represents the event where agent 1 learns that p is true while agent 2 believes that nothing happens. Figure 2(c) shows the product $(M, w) \odot (E, e)$, which represents the situation after event (E, e). Observe that agent 1 knows p and agent 2 does not.

Remark 1 We do not make any assumption on the nature of the accessibility relations in epistemic and event models. In particular we do not assume S5.
2.2 Epistemic planning

Let \(\mathcal{C} \) be a class of pointed event models. The epistemic planning problem restricted to \(\mathcal{C} \) is the following:

Definition 4 (Epistemic planning problem)

- **Input**: a pointed epistemic model \((\mathcal{M}, w)\), a finite set of pointed event models \(E \subseteq \mathcal{C} \), and an epistemic goal formula \(\varphi_g \);
- **Output**: yes if there exists a sequence of pointed event models \((E_1, e_1), \ldots, (E_p, e_p) \in E \) (a plan) such that \(\mathcal{M}, w \models (E_1, e_1) \cdots (E_p, e_p) \varphi_g \); no otherwise.

We now establish the precise complexity of this problem for propositional event models.

3 Propositional preconditions

Let \(\mathcal{C}_0 \) be the class of (pointed) epistemic event models where preconditions are propositional formulas. For instance, the pointed event model depicted in Figure 1(c) is in \(\mathcal{C}_0 \) since both \(p \) and \(\top \) are propositional formulas. The epistemic planning restricted to \(\mathcal{C}_0 \) is known to be \(\text{Pspace} \)-hard \cite{5}. We establish that it is actually \(\text{Pspace} \)-complete.

As pointed out in \cite{7}, epistemic event models with propositional preconditions commute. Formally:

Lemma 1 For all pointed epistemic models \((\mathcal{M}, w)\), for all pointed event models \((E_1, e_1)\) and \((E_2, e_2)\) in \(\mathcal{C}_0 \), \(\mathcal{M} \otimes E_1 \otimes E_2, (w, e_1, e_2) \) exists iff \(\mathcal{M} \otimes E_2 \otimes E_1, (w, e_2, e_1) \) exists, and in that case they are bisimilar.

As a consequence, in the rest of the section, the order in which events are applied in an initial world is indifferent. Only the number of times each event occurs is relevant, and the proof of our result heavily relies on this property.

We first establish a preliminary result on the model checking problem for a dedicated language: we extend the dynamic epistemic language with iterations of event models in \(\mathcal{C}_0 \), that is, constructions of the form \(\langle (E, e) \rangle^\ell \psi \) where \((E, e)\) is a pointed event model in \(\mathcal{C}_0 \) and \(\ell \) is a positive integer. We suppose here that \(\ell \) is written in binary so that this language, called \(\mathcal{L}^\ell_{\mathcal{C}_0} \), is exponentially more succinct than DEL. The size \(|\varphi|\) of a formula \(\varphi \) is defined as usual, with the following additional inductive case: \(|\langle (E, e) \rangle^\ell \psi| = 1 + |E| + |\log_2 \ell| + |\psi|\) (by convention \(|\log_2 0| = 0 \)). Classically, the model checking problem for \(\mathcal{L}^\ell_{\mathcal{C}_0} \) is, given a pointed epistemic model \((\mathcal{M}, w)\) and a formula \(\Phi \in \mathcal{L}^\ell_{\mathcal{C}_0} \), to decide whether \(\mathcal{M}, w \models \Phi \).

Proposition 1 Model checking \(\mathcal{L}^\ell_{\mathcal{C}_0} \) is in \(\text{Pspace} \).
Proof. We design a deterministic algorithm that takes as its input a pointed epistemic model \((\mathcal{M}, u_0)\) and a formula \(\Phi \in \mathcal{L}^d_{\text{E}}\), and decides whether \(\mathcal{M}, u_0 \models \Phi\). Without loss of generality, we suppose that all event models appearing in the formula are the same, noted \(\mathcal{E} = (E, \rightarrow, \preceq)\) (if not, we replace each one by its disjoint union). Let \(e_1, \ldots, e_{|E|}\) be an enumeration of the possible events in \(\mathcal{E}\). By Lemma 1, all permutations of events in a tuple \((w, e_1, \ldots, e_{|E|})\) are equivalent in the sense that either they all are worlds in \(\mathcal{M} \otimes \mathcal{E}\) and they all are bisimilar, or none of them exists: only the number of times each event occurs is relevant. For a world \(w\) and a vector \(\vec{n} = (n_1, \ldots, n_{|E|})\), we thus let \(w \bullet \vec{n}\) denote the representative permutation \((w, e_1, \ldots, e_{|E|}, \ldots, e_{|E|})\).

Let \(\text{mc}\) be the algorithm given in Figure 2 and let \(\emptyset^{|E|}\) denote the null \(|E|\)-vector. We claim that \(\text{mc}(\mathcal{M}, u_0, \mathcal{E}, \emptyset^{|E|}, \Phi)\) returns true iff \(\mathcal{M}, u_0 \models \Phi\). To prove this claim we establish that for all \(w \in \mathcal{M}\), all integers \(n_1, \ldots, n_{|E|}\) and all subformula \(\varphi\) of \(\Phi\), the following property \(P\) holds:

If \(\mathcal{M} \otimes \mathcal{E}^\sum_{i=1}^{n_1} n_i, w \bullet \vec{n}\) exists then \(\text{mc}(\mathcal{M}, w, \mathcal{E}, (n_1, \ldots, n_{|E|}), \varphi)\) returns true iff

\[\mathcal{M} \otimes \mathcal{E}^\sum_{i=1}^{n_1} n_i, w \bullet \vec{n} \models \varphi.\]

Property \(P\) is proven by induction on \(\varphi\). We omit the boolean cases and case \(\langle (\mathcal{E}, e_1)^* \rangle \varphi\) which are trivial.

Case \(K_\varphi\): the algorithm has to check that \(\psi\) holds in all \(a\)-successors of \(w \bullet \vec{n}\) in \(\mathcal{M} \otimes \mathcal{E}^\sum_{i=1}^{n_1} n_i\). Every \(a\)-successor of \(w \bullet \vec{n}\) is a permutation of some \(w \bullet \vec{\ell}\) and is bisimilar to it. We thus need to enumerate all worlds \(u\) and vectors \(\vec{\ell}\) that represent some \(a\)-successor, and verify that \(\psi\) holds in \(w \bullet \vec{\ell}\). Given a tuple \(w \bullet \vec{\ell}\), to check whether it is a permutation of some \(a\)-successor of \(w \bullet \vec{n}\), we first check that it is an existing world in \(\mathcal{M} \otimes \mathcal{E}^\sum_{i=1}^{n_1} n_i\). Since events are purely epistemic and propositional, preconditions of successive events can all be checked in the initial world \(u\). This is done by calling function \(\text{preok}(\mathcal{M}, u, \mathcal{E}, \vec{\ell})\), which checks that for all \(i \in \{1, \ldots, |E|\}\), if \(l_i > 0\) then \(\preceq_i(e_i)\) is true in \(u\). Next, we check that some permutation of \(w \bullet \vec{\ell}\) is indeed \(a\)-related to \(w \bullet \vec{n}\): we should first have \(u \in R_a(w)\); then,
it should be possible to map each occurrence of an event e_i in $w\cdot \vec{n}$ to some occurrence of some a-related event e_j in $w\cdot \vec{\ell}$ so as to form a bijection. Deciding whether such a bijection exists amounts to solving the following integer linear program: checking whether there exist positive integers $(x_{i,j})_{(i,j) \in \{1,\ldots,|E|\} \times \{1,\ldots,|E|\}}$, where $x_{i,j}$ is the number of times e_j is chosen as a-successor for e_i, such that:

$$(S) \left\{ \begin{aligned}
 n_i &= \sum_{j \in \mathcal{R}_a(e_i)} x_{i,j} \quad \text{for all } i \in \{1,\ldots,|E|\}, \\
 \ell_j &= \sum_{i \in \mathcal{R}_a(e_j)} x_{i,j} \quad \text{for all } j \in \{1,\ldots,|E|\}.
\end{aligned} \right.$$

This is done by calling $\text{succ}(\mathcal{E}, a, \vec{n}, \vec{\ell})$.

Spatial complexity. We justify that \mathcal{MC} can be implemented in polynomial space in the size of the input (which is $|\mathcal{M}| + |\Phi|$). The maximal number of nested calls is bounded by $|\Phi|$, so that the number of local variables to be stored is polynomial in $|\Phi|$. We now bound the space needed to store vector \vec{n} in each call, which is in $O(\sum_{i=1}^{|E|} \log_2 n_i)$. Letting ℓ_1, \ldots, ℓ_m be an enumeration of the numbers appearing in Φ, it is clear that $\sum_{i=1}^m n_i \leq \sum_{i=1}^m \ell_i$, and thus for all $i \in \{1, \ldots, |E|\}$, $n_i \leq \sum_{j=1}^m \ell_j$. We obtain

$$|\mathcal{E}| \sum_{i=1}^{|E|} \log_2 n_i \leq |\mathcal{E}| \log_2 \left(\sum_{i=1}^m \ell_i \right).$$

Now, it can be proven by studying the variation of function $f : (x_1, \ldots, x_m) \mapsto \log_2 (\sum_{i=1}^m x_i) - \sum_{i=1}^m \log_2 x_i - \log_2 m$, that since $\ell_i \geq 1$ for all $i \in \{1, \ldots, m\}$, we have

$$\log_2 \left(\sum_{i=1}^m \ell_i \right) \leq \sum_{i=1}^m \log_2 \ell_i + \log_2 m,$$

and because the ceiling of a sum is less than the sum of the ceilings, we get

$$k \left| \log_2 \left(\sum_{i=1}^m \ell_i \right) \right| \leq |\mathcal{E}| \left(\sum_{i=1}^m \left| \log_2 \ell_i \right| + \left| \log_2 m \right| \right).$$

By definition of the size of \mathcal{L}_0^d, formulas, $k = |E| \leq |\Phi|$, $\sum_{i=1}^m \left| \log_2 \ell_i \right| \leq |\Phi|$ and $\left| \log_2 m \right| \leq m \leq |\Phi|$, so that the space used to store \vec{n} is in $O(|\Phi|^2)$. It only remains to note that checking consistency of a system (S) can be done in non-deterministic time polynomial in the number of bits needed to encode \vec{n} and $\vec{\ell}$ \[^{11}\], and therefore in deterministic space polynomial in $|\Phi|$.

We now describe a (non-deterministic) algorithm for the epistemic planning problem, which consists in guessing a plan and then model-check an \mathcal{L}_0^d-formula to check that this plan realizes the goal. The crucial points here are, first, that we can restrict to plans of exponential length, second, that thanks to commutation of events they can be represented in polynomial space, and third, that verifying whether a plan works can be done in polynomial space (Proposition \[^{4}\]).

Theorem 1 The epistemic planning problem restricted to \mathcal{C}_0 is in PSPACE.

Proof We adapt the algorithm given in \[^{3}\] Theorem 5.8. First it is proved in \[^{12}\] that, noting \simeq_d the d-bisimulation\[^{4}\] for event models (see \[^{1}\], \[^{3}\], \[^{12}\]), for every $d \geq 0$, every pointed event model (\mathcal{E}, e) is \simeq_d-stabilizing at iteration $|\mathcal{E}|^d$; formally, $(\mathcal{E}, e_i)^k \simeq_d (\mathcal{E}, e_i)^{k+1}$ for all $k \geq |\mathcal{E}|^d$. Secondly, by Lemma \[^{7}\] event models with propositional preconditions commute. Therefore, the following algorithm correctly solves the epistemic planning problem for event models with propositional preconditions:

Given input $(\langle \mathcal{M}, w \rangle, \{\langle E_1, e_1 \rangle, \ldots, \langle E_m, e_m \rangle\}, \varphi)$:

\[^{4}\]Bisimulation up to modal depth d.

\[^{2}\]Actually a better bound is proved in \[^{3}\].
1. Compute \(d\), the modal depth of the goal formula \(\varphi_g\);
2. For each \(i \in \{1, \ldots, m\}\), non-deterministically guess \(n_i \in \{0, \ldots, |\mathcal{E}_i|d\}\);
3. Accept if \(M, w = (\langle \mathcal{E}_1, e_1 \rangle^{n_1} \cdots \langle \mathcal{E}_m, e_m \rangle^{n_m}) \varphi_g\).

This algorithm is non-deterministic. The first step is clearly performed in space polynomial in the size of the input. Concerning the second point, each \(n_i\) can be exponential in \(d\) and thus in \(|\varphi_g|\), but its binary representation uses polynomial space. Since \((\langle \mathcal{E}_1, e_1 \rangle^{n_1} \cdots \langle \mathcal{E}_m, e_m \rangle^{n_m}) \varphi_g\) is an \(L_{\mathcal{E}_g}^{1/d}\) formula, it follows from Proposition 6 that the last step can also be performed in polynomial space. The epistemic planning problem restricted to \(C_0\) is therefore in \(NPSPACE\) and thus in \(PSPACE\) by Savitch’s theorem [13].

We now turn to the case of modal preconditions with bounded modal depth.

4 Preconditions of bounded modal depth

Let \(C_2\) be the class of event models with preconditions of modal depth at most two. We prove the following theorem by refining the reduction given in [14].

Theorem 2 The epistemic planning problem restricted to \(C_2\) is undecidable.

We first recall the halting problem for two-counter machines, known to be undecidable [14], and then we reduce it to the epistemic planning problem restricted to \(C_2\).

4.1 Two-counter machines

We present two-counter machines as introduced in [14].

Definition 5 A two-counter machine \(M\) is a sequence of instructions \((I_0, \ldots, I_N)\) where

- For \(\ell < N\), \(I_\ell\) is either \(inc(i)\), \(goto(\ell')\) or \(gotocond(i, \ell')\), with \(i \in \{1, 2\}\), \(\ell' \leq N\) and \(\ell \neq \ell'\);
- \(I_N = \text{halt}\).

We call program line a pair \(k;I_k\).

Example 2 The following four programs lines define a two-counter machine \(M_{inc}\):

\[
\begin{align*}
0: & \text{inc}(1) \\
1: & \text{gotocond}(1, 3) \\
2: & \text{goto}(0) \\
3: & \text{halt}
\end{align*}
\]

A configuration of a two-counter machine \(M\) is a triple \((\ell, c_1, c_2)\) where \(\ell \in \{0, \ldots, N\}\) is the program counter and \(c_1, c_2 \in \mathbb{N}\) are the two data counters. Let \(C_M = \{0, \ldots, N\} \times \mathbb{N} \times \mathbb{N}\) be the set of all possible configurations.

The transition function \(\rightarrow_M\) on \(C_M\) is defined as follows. For all \((\ell, c_1, c_2) \in C_M\):

- If \(I_\ell = \text{inc}(1)\), \((\ell, c_1, c_2) \rightarrow_M (\ell + 1, c_1 + 1, c_2)\);
- If \(I_\ell = \text{inc}(2)\), \((\ell, c_1, c_2) \rightarrow_M (\ell + 1, c_1, c_2 + 1)\);
- If \(I_\ell = \text{goto}(\ell')\), \((\ell, c_1, c_2) \rightarrow_M (\ell', c_1, c_2)\);
- If \(I_\ell = \text{gotocond}(1, \ell')\), \((\ell, c_1, c_2) \rightarrow_M \begin{cases} (\ell', 0, c_2) & \text{if } c_1 = 0; \\ (\ell + 1, c_1 - 1, c_2) & \text{otherwise}; \end{cases}\)
- If \(I_\ell = \text{gotocond}(2, \ell')\), \((\ell, c_1, c_2) \rightarrow_M \begin{cases} (\ell', c_1, 0) & \text{if } c_2 = 0; \\ (\ell + 1, c_1, c_2 - 1) & \text{otherwise}. \end{cases}\)
A two-counter machine \(M \) halts if there exist \(c_1, c_2 \) such that \((0, 0, 0) \rightarrow^* M (N, c_1, c_2)\), where \(\rightarrow^* M \) denotes the reflexive transitive closure of \(\rightarrow M \). For instance, the machine \(M_{ex} \) given in Example 2 above does not halt. The halting problem for two-counter machines consists in deciding, given a two-counter machine, whether it halts or not. This problem is well known to be undecidable \([14]\).

4.2 The reduction

We define an effective reduction \(tr \) that, given a two-counter machine \(M \), computes an instance \(tr(M) \) of the epistemic planning problem restricted to \(C_2 \). We fix \(M \) and the rest of the section is devoted to defining \(tr(M) = ((M_0, w_0); E; \varphi_g) \) and justifying its correctness (Proposition 2). As in \([6]\), we only use one agent \(a \) (\(\Box \) stands for \(K_a \) and \(\Diamond \) stands for \(\neg K_a \)) for configurations of \(M \) are represented by pointed epistemic models, and the initial pointed epistemic model represents the initial configuration \((0, 0, 0)\). Each program line \(\ell : I_\ell \) is represented by one or two pointed event model(s), such that a plan corresponds to a sequence of program lines. The goal formula expresses that the final pointed epistemic model represents a halting configuration.

4.2.1 Pointed epistemic models

Let \((\ell, c_1, c_2)\) be a configuration of \(M \). We describe the pointed epistemic model \((M_{\ell,c_1,c_2}, w_{\ell,c_1,c_2})\) (shortened as \((M, w)_{\ell,c_1,c_2}\)) that represents \((\ell, c_1, c_2)\). For instance, Figure 3 shows \((M, w)_{(1,3,2)}\). It is a tree-like structure rooted at \(w_{\ell,c_1,c_2} \). In each world except the root, there is exactly one true atomic proposition, and we call \(p \)-world any world where \(p \) holds. The root \(w_{\ell,c_1,c_2} \) verifies no atomic proposition, and it has three groups of children, one for each counter:

Program counter. For each program line \(\ell' : I_{\ell'} \), \(w_{\ell,c_1,c_2} \) has one reflexive child labeled by proposition \(a_{\ell'} \). The \(a_\ell \)-child of \(w_{\ell,c_1,c_2} \) has a child also labeled by \(a_\ell \), without
any outgoing edge: we say that there is an a_{i}-strip. Intuitively, the a_{i}-strip represents the fact that I_{t} is the next instruction to be executed.

Data counter c_{i}. For each $i \in \{1, 2\}$, $w_{(\ell, c_{1}, c_{2})}$ has a reflexive p_{i}-child that has an irreflexive q_{i}-child, and is followed by a chain of irreflexive p_{i}-worlds of length c_{i}. Intuitively, the number of irreflexive p_{i}-children represents the value of c_{i}.

We define the first component of $\text{tr} (M)$: $(M_{0}, w_{0}) := (M, w)_{(0, 0, 0)}$ as depicted in Figure 4. We call configuration model a pointed epistemic model of the form $(M, w)_{(\ell, c_{1}, c_{2})}$.

4.2.2 Pointed event models

For each program line ℓI_{t} of M where I_{t} is of the form $\text{goto}(\ell')$ or $\text{inc}(i)$, we define a pointed event model $(E_{\ell, I_{t}}, e_{\ell, I_{t}})$ (shortened as $(E, e)_{\ell, I_{t}}$) that mimics the semantics of ℓI_{t} (Figures 6 and 7). For each program line $\ell: \text{gotocond}(i, \ell')$ of M, we define two pointed event models $(E, e)_{\ell, \text{gotocond}(i, \ell')}$ and $(E^{>0}, e^{>0})_{\ell, \text{gotocond}(i, \ell')}$, respectively for the case $c_{i} = 0$ and $c_{i} > 0$ (Figure 10). These pointed event models form the second component of $\text{tr} (M)$:

$$E := \{ (E, e)_{\ell, I_{t}} \mid \ell < N \} \cup \{ (E^{>0}, e^{>0})_{\ell, I_{t}} \mid \ell < N \text{ and } I_{t} = \text{gotocond}(i, \ell') \}.$$

In the model $(M, w)_{(\ell, c_{1}, c_{2})}$ where $\ell < N$, the only pointed event model of E that should be applied is the one representing the behavior of program line ℓI_{t} in configuration (ℓ, c_{1}, c_{2}). This event model is defined as follows:

$$E(\ell, c_{1}, c_{2}) := \begin{cases} (E^{>0}, e^{>0})_{\ell, I_{t}} & \text{if } I_{t} = \text{gotocond}(i, \ell') \text{ and } c_{i} > 0, \\ (E, e)_{\ell, I_{t}} & \text{otherwise}. \end{cases}$$

The product with any other event model from E results in a model that is not valid according to the following definition:

Definition 6 A pointed epistemic model (M, w) is valid if w has an a_{i}-child for each $\ell \in \{0, \ldots, N\}$ and a p_{i}-child for each $i \in \{1, 2\}$.

Example 3 The model shown in Figure 3 corresponding to $(M, w)_{(1, 3, 2)}$, is valid. Note that by definition, every configuration model is valid.

The two models shown in Figure 3 are not valid. Indeed:

- In the model shown in Figure 3(a), the root does not have a a_{1}-child.
- In the model shown in Figure 3(b), the root does not have a p_{1}-child.

Further down, we will define event models of E such that:

Lemma 2 For every configuration (ℓ, c_{1}, c_{2}), it holds that

1. $(M, w)_{(\ell, c_{1}, c_{2})} \otimes E(\ell, c_{1}, c_{2})$ is isomorphic\(^{3}\) to $(M, w)_{(\ell', c_{1}', c_{2}')}$, where $(\ell, c_{1}, c_{2}) \rightarrow_{M}$

\(^{3}\text{More precisely, the reachable parts of the pointed epistemic models are isomorphic.}\)
The product \((\mathcal{M}, w)_{(\ell, c_1, c_2)}\) of any two event models \((\mathcal{M}, w)_{(\ell', c_1', c_2')}\) is isomorphic to \((\mathcal{M}, w)_{(\ell', c_1, c_2)}\): indeed, portion \(\text{repl}(\ell, \ell')\) removes the \(a_\ell\)-strip and adds an \(a_{\ell'}\)-strip in the program counter group (recall that \(\ell \neq \ell'\)).

The product \((\mathcal{M}, w)_{(\ell', c_1', c_2')} \otimes (\mathcal{E}, e)_{\ell' \xrightarrow{\text{goto}} \ell''}\) with \(\ell'' \neq \ell\) is not valid. Indeed, as \((\mathcal{M}, w)_{(\ell', c_1', c_2')}\) does not have an \(a_{\ell'}\)-strip in its program counter group, its \(a_{\ell''}\)-world violates precondition \(a_\ell \land \Box \bot\) in portion \(\text{repl}(\ell, \ell')\). As a consequence, \((\mathcal{M}, w)_{(\ell', c_1', c_2')} \otimes (\mathcal{E}, e)_{\ell' \xrightarrow{\text{goto}} \ell''}\) has no \(a_{\ell'}\)-child at its root and is thus not valid.

Event model for \(\ell : \text{inc}(i)\). Figure 9 shows \((\mathcal{E}, e)_{\ell \xrightarrow{\text{inc}(i)}}\) that mimics the effect of \(\ell : \text{inc}(1)\) (for \(\text{inc}(2)\), the construction is symmetric). Portion \(\text{repl}(\ell, \ell + 1)\) is meant to increment the program counter. Portion \(\text{lengthen}(1)\) (described in Figure 8) is meant to increment the data counter \(c_1\). The intermediate event of precondition \(p_1 \land \Box q_1\) duplicates once the \(p_1\)-child of the root: it adds one \(p_1\)-world at the start of the \(p_1\)-chain. The last group leaves data counter \(c_2\) unchanged.

- The product \((\mathcal{M}, w)_{(\ell+1, c_1+1, c_2)} \otimes (\mathcal{E}, e)_{\ell \xrightarrow{\text{inc}(i)}}\) is isomorphic to \((\mathcal{M}, w)_{(\ell+1, c_1+1, c_2)}\).
For A_{n} of Lemma 2. We now prove point 3 of Lemma 2: such that there is no (ℓ,ℓ').

Event models for $\ell : gotocond(i, \ell')$. Figure 9 describes models $(\mathcal{E}, e)_{(i, \ell', i,\ell')}$ and $(\mathcal{E}^{\geq 0}, e^{\geq 0})_{(i, \ell', i,\ell')}$. They mimic the effect of $\ell : gotocond(1, \ell')$ in case $c_1 = 0$ and case $c_1 > 0$, respectively (for $\ell : gotocond(2, \ell')$, constructions are symmetric).

- $(\mathcal{M}, w)_{(i,\ell_{1},\ell_{2})} \otimes (\mathcal{E}, e)_{(i, \ell', i,\ell')}$ is isomorphic to $(\mathcal{M}, w)_{(i,\ell_{1},\ell_{2})}$: indeed, the precondition $\neg\diamond (p_1 \land \neg\diamond q_1)$ checks that the p_1-chain in the data counter c_1 group is of length 0. Here it is the case, so that the data counter group c_1 remains unchanged. However, when $c_1 > 0$, the p_1-child of the root of $(\mathcal{M}, w)_{(i,\ell_{1},\ell_{2})}$ violates this precondition. It is thus removed, so that the product $(\mathcal{M}, w)_{(i,\ell_{1},\ell_{2})} \otimes (\mathcal{E}, e)_{(i, \ell', i,\ell')}$ is not valid.

- $(\mathcal{M}, w)_{(i,\ell_{1},\ell_{2})} \otimes (\mathcal{E}^{\geq 0}, e^{\geq 0})_{(i, \ell', i,\ell')}$. Indeed, portion shorten(1) (Figure 8) is meant to decrement data counter c_1 by one: precondition $p_1 \land \neg\diamond q_1 \land \diamond \top$ checks that we are in the p_1-chain (p_1), but not at the start ($\neg\diamond q_1$) nor the end ($\diamond \top$) of the chain. The last world of the p_1-chain is thus removed when $c_1 > 0$. When $c_1 = 0$, precondition $\neg\diamond (p_1 \land \neg\diamond q_1)$ is violated by the p_1-child of the root of $(\mathcal{M}, w)_{(i,\ell_{1},\ell_{2})}$: indeed, this precondition checks that the length of the p_1-chain is at least 1. The product $(\mathcal{M}, w)_{(i,\ell_{1},\ell_{2})} \otimes (\mathcal{E}^{\geq 0}, e^{\geq 0})_{(i, \ell', i,\ell')}$ is thus not valid.

- For $\ell'' \neq \ell$, $(\mathcal{M}, w)_{(i,\ell'',\ell_{1},\ell_{2})} \otimes (\mathcal{E}, e)_{(i, \ell', i,\ell')}$ and $(\mathcal{M}, w)_{(i,\ell'',\ell_{1},\ell_{2})} \otimes (\mathcal{E}^{\geq 0}, e^{\geq 0})_{(i, \ell', i,\ell')}$ are not valid.

The explanations above can be shown by applying Definition 3. They prove points 1 and 2 of Lemma 2. We now prove point 3 of Lemma 2.

We first prove the following assertion A_{n} for all $n \geq 1$: for all (ℓ, c_1, c_2), for all $E_1 \otimes \cdots \otimes E_n$, if $(\mathcal{M}, w)_{(i,\ell, c_1, c_2)} \otimes E_1 \otimes \cdots \otimes E_n$ is not valid then there exists $p \in \{a_0, \ldots, a_N, p_1, p_2\}$ such that there is no p-world in $(\mathcal{M}, w)_{(i,\ell, c_1, c_2)} \otimes E_1 \otimes \cdots \otimes E_n$. It is proven by recurrence on $n \geq 1$.

- A_1: if $(\mathcal{M}, w)_{(i,\ell, c_1, c_2)} \otimes E_1$ is not valid, then:
 - Either E_1 contains a repl(ℓ'', ℓ') part such that $\ell'' \neq \ell$, then there is no a_{r}-world in $(\mathcal{M}, w)_{(i,\ell, c_1, c_2)} \otimes E_1$, so we take $p = a_{r}$;
 - Or $I_{p} = gotocond(i, \ell)$ (with $i \in \{1, 2\}$) and E_1 is $(\mathcal{E}, e)_{gotocond(i, \ell')}$ with $c_1 > 0$. In this case, there is no p_{i}-world in $(\mathcal{M}, w)_{(i,\ell, c_1, c_2)} \otimes E_1$, so we take $p = p_{i}$.

Figure 8: Event model portions lengthen(i) and shorten(i).

Figure 9: Event model for $\ell:inc(1)$.
If there is a plan \(q \) (with \(i \in \{1, 2\} \)) and \(E_1 \) is \((\mathcal{E}_{\ell}, e_1)_{\ell, t} \) (1, \ell) with \(c_i = 0 \).

In this case, there is no \(p_i \)-world in \((\mathcal{M}, w)_{(\ell, e_1, c_2)} \otimes E_1\), so we take \(p = p_i \).

In other cases, \((\mathcal{M}, w)_{(\ell, e_1, c_2)} \otimes E_1\) is valid by point 1 of Lemma 2:

1. If \(A_n \Rightarrow A_{n+1} \): We suppose \(A_n \) holds for a given \(n \geq 1 \). For any \(E_{n+1} \in E \), if \((\mathcal{M}, w)_{(\ell, e_1, c_2)} \otimes E_1 \otimes \cdots \otimes E_{n+1} \) is not valid then:
 - Either \((\mathcal{M}, w)_{(\ell, e_1, c_2)} \otimes E_1 \otimes \cdots \otimes E_n \) is valid and by points 1 and 2 of Lemma 2 it is isomorphic to some \((\mathcal{M}, w)_{(\ell', e_1', c_2')}\). We apply \(A_1 \) to conclude.
 - Either \((\mathcal{M}, w)_{(\ell, e_1, c_2)} \otimes E_1 \otimes \cdots \otimes E_n \) is not valid, so by \(A_n \), there exists \(p \) such that there is no \(p \)-world. By Definition 8 because there is no postcondition, there is no \(p \)-world in \((\mathcal{M}, w)_{(\ell, e_1, c_2)} \otimes E_1 \otimes \cdots \otimes E_{n+1} \) either.

To conclude, we have proven that if \((\mathcal{M}, w)_{(\ell, e_1, c_2)} \otimes E_1 \otimes \cdots \otimes E_n \) is not valid, by \(A_n \) there is \(p \in \{a_0, \ldots, a_N, p_1, p_2\} \) that is false in every world. Therefore, for any \(E_{n+1} \), there is no \(p \)-world in \((\mathcal{M}, w)_{(\ell, e_1, c_2)} \otimes E_1 \otimes \cdots \otimes E_{n+1} \), so \((\mathcal{M}, w)_{(\ell, e_1, c_2)} \otimes E_1 \otimes \cdots \otimes E_{n+1} \) is not valid either. This concludes the proof of point 3 of Lemma 2.

4.2.3 Goal formula

The goal formula \(\varphi_g \) in \(tr(M) \) is \(\varphi_{\text{valid}} \land \varphi_{\text{halt}} \), where:

1. \(\varphi_{\text{valid}} := \bigwedge_{t=0}^N a_t \land \Box p_1 \land \Diamond p_2 \); and
2. \(\varphi_{\text{halt}} := \Diamond (a_N \land \Box \perp) \).

Intuitively, formula \(\varphi_{\text{valid}} \) forces the final pointed epistemic model of a plan to be valid (and therefore, by Point 3 of Lemma 2, all intermediate pointed epistemic models of the plan also are valid). Formula \(\varphi_{\text{halt}} \) enforces the final pointed epistemic model to represent a halting configuration \((N, \ast, \ast)\).

Proposition 2 \(M \) halts iff there is a plan for \(tr(M) \).

Proof \(\Rightarrow \) If \(M \) halts, let \((\ell, c_1, c_2)_{t=0}^T \) be the sequence of configurations of the halting execution. We build a plan for \(tr(M) \) by taking the sequence of pointed event models \((\mathcal{E}(\ell, c_1, c_2))_{t=0}^T \). One can prove by recurrence, using point 1 of Lemma 2, that each intermediate product \((\mathcal{M}, w)_{(\ell, e_1, c_2)} \otimes \mathcal{E}(0, 0, 0) \otimes \cdots \otimes \mathcal{E}(\ell, c_1, c_2)\) is isomorphic to \((\mathcal{M}, w)_{(\ell, e_1, c_2)}\). The final product is thus isomorphic to \((\mathcal{M}, w)_{(N, e_1, c_2)}\) for some \(c_1, c_2 \), so that \((\mathcal{M}, w)_{(N, e_1, c_2)} \models \varphi_{\text{halt}}\). In addition, \((\mathcal{M}, w)_{(N, e_1, c_2)}\) is valid, so that \((\mathcal{M}, w)_{(N, e_1, c_2)} \models \varphi_{\text{valid}}\).

\(\Leftarrow \) Suppose that there is a plan \((\mathcal{E}, e_{t=0}^T) \) for \(tr(M) \). As the final product satisfies \(\varphi_{\text{valid}} \), it is valid. Using point 3 of Lemma 1, we can prove by backward recurrence that all intermediate products are valid. By forward recurrence, using points 1 and 2 of Lemma 2, we can prove that each intermediate model is isomorphic to a model of the form \((\mathcal{M}, w)_{(\ell, e_1, c_2)}\), and that the event model applied to it in the plan is \(\mathcal{E}(\ell, c_1, c_2) \). We extract a sequence of configurations \((\ell, c_1, c_2)_{t=0}^T \) that starts with \((0, 0, 0)\) and that, by point 1
of Lemma 2 follows the transition function of \(M \). As the final product satisfies \(\varphi_{\text{halt}} \), it is isomorphic to \((M, w)_{(N, c_1, c_2)}\) for some \(c_1, c_2 \), so that the final configuration is \((N, c_1, c_2)\). Therefore, \(M \) halts.

4.3 Comparison

In [6] the program counter as well as the data counters are represented with chains of worlds, and incrementation, decrementation and replacement of a value by another one are implemented on such chains. While the first two operations can be performed with preconditions of modal depth two, \(\text{repl}(\ell, \ell') \) requires unbounded nesting in general to be implemented on chains. We observed that unlike data counters, the program counter is bounded so that we can avoid chains for its representation, and provide an alternative gadget for \(\text{repl}(\ell, \ell') \) that only uses preconditions of modal depth two.

5 Future work

The natural continuation is to complete Table 1. First, is the epistemic planning problem decidable for preconditions of modal depth one and no postconditions, or do modalities in preconditions immediately bring about undecidability? Second, what is the exact complexity of the problem with propositional pre- and postconditions? It is known to be decidable [3], with a non-elementary upper bound [4] and a \text{PSPACE} lower bound [5]; this a big gap that should be bridged. We would also like to see how different axioms of knowledge affect the picture. Indeed, our proof of undecidability does not work if accessibility relations must be equivalences, but it can surely be adapted to obtain a similar result for preconditions of modal depth three or four. Can we do better? Does the choice of axioms change the border between decidability and undecidability?

Acknowledgment. We warmly thank anonymous reviewers that advised us to add examples in the JELIA version and move a part of the technicalities to this technical report.

References

