C. Gelot, I. Magdalou, and B. Lopez, Replication Stress in Mammalian Cells and Its Consequences for Mitosis, Genes, vol.6, issue.2, pp.267-98, 2015.
DOI : 10.3390/genes6020267

I. Magdalou, B. Lopez, P. Pasero, and S. Lambert, The causes of replication stress and their consequences on genome stability and cell fate, Seminars in Cell & Developmental Biology, vol.30, p.24818779
DOI : 10.1016/j.semcdb.2014.04.035

URL : https://hal.archives-ouvertes.fr/hal-01006536

M. Debatisse, L. Tallec, B. Letessier, A. Dutrillaux, B. Brison et al., Common fragile sites: mechanisms of instability revisited, Trends in Genetics, vol.28, issue.1, p.22094264
DOI : 10.1016/j.tig.2011.10.003

T. Wilhelm, I. Magdalou, A. Barascu, H. Techer, M. Debatisse et al., Spontaneous slow replication fork progression elicits mitosis alterations in homologous recombination-deficient mammalian cells, Proceedings of the National Academy of Sciences, vol.111, issue.2, pp.763-768
DOI : 10.1073/pnas.1311520111

J. Bartkova, Z. Horejsi, K. Koed, A. Kramer, F. Tort et al., DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis, Nature, vol.10, issue.7035, pp.864-870, 2005.
DOI : 10.1093/bioinformatics/14.9.755

D. Micco, R. Fumagalli, M. Cicalese, A. Piccinin, S. Gasparini et al., Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication, Nature, vol.21, issue.7119, pp.638-642, 2006.
DOI : 10.1038/nature05327

V. Gorgoulis, L. V. Vassiliou, P. Karakaidos, P. Zacharatos, A. Kotsinas et al., Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions, Nature, vol.159, issue.7035, pp.907-913, 2005.
DOI : 10.1038/nm0696-682

V. Gorgoulis and T. Halazonetis, Oncogene-induced senescence: the bright and dark side of the response, Current Opinion in Cell Biology, vol.22, issue.6, p.20807678
DOI : 10.1016/j.ceb.2010.07.013

A. Kramer, Centrosome aberrations?hen or egg in cancer initiation and progression? Leukemia, pp.1142-1144, 2005.

E. Nigg, Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer, pp.815-825, 2002.

G. Sluder and J. Nordberg, The good, the bad and the ugly: the practical consequences of centrosome amplification, Current Opinion in Cell Biology, vol.16, issue.1, pp.49-54, 2004.
DOI : 10.1016/j.ceb.2003.11.006

T. Boveri, Zur Frage der Entstehung maligner Tumoren, 1914.

T. Boveri, Concerning the Origin of Malignant Tumours by Theodor Boveri. Translated and annotated by Henry Harris, Journal of Cell Science, vol.121, issue.Supplement 1, p.18089652, 2008.
DOI : 10.1242/jcs.025742

A. Costes and S. Lambert, Homologous Recombination as a Replication Fork Escort: Fork-Protection and Recovery, Biomolecules, vol.3, issue.1, p.24970156
DOI : 10.3390/biom3010039

Y. Hashimoto, A. Chaudhuri, M. Lopes, and V. Costanzo, Rad51 protects nascent DNA from Mre11-depen- dent degradation and promotes continuous DNA synthesis, Nat Struct Mol Biol, 2010.

K. Schlacher, N. Christ, N. Siaud, A. Egashira, H. Wu et al., Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11 Cell, p.21565612

S. Ying, F. Hamdy, and T. Helleday, Mre11-Dependent Degradation of Stalled DNA Replication Forks Is Prevented by BRCA2 and PARP1, Cancer Research, vol.72, issue.11, pp.2814-2821, 2012.
DOI : 10.1158/0008-5472.CAN-11-3417

F. Daboussi, S. Courbet, S. Benhamou, P. Kannouche, M. Zdzienicka et al., A homologous recombination defect affects replication-fork progression in mammalian cells, Journal of Cell Science, vol.121, issue.2, pp.162-166, 2008.
DOI : 10.1242/jcs.010330

URL : https://hal.archives-ouvertes.fr/hal-00282471

O. Hyrien, Mechanisms and consequences of replication fork arrest, Biochimie, vol.82, issue.1, pp.5-17, 2000.
DOI : 10.1016/S0300-9084(00)00344-8

S. Wallace, Biological consequences of free radical-damaged DNA bases, Free Radic Biol Med, pp.1-14, 2002.

P. Girard, M. Pozzebon, F. Delacote, T. Douki, V. Smirnova et al., Inhibition of S-phase progression triggered by UVA-induced ROS does not require a functional DNA damage checkpoint response in mammalian cells, DNA Repair, vol.7, issue.9, pp.1500-1516, 2008.
DOI : 10.1016/j.dnarep.2008.05.004

B. Montaner, O. Donovan, P. Reelfs, O. Perrett, C. Zhang et al., Reactive oxygen-mediated damage to a human DNA replication and repair protein. EMBO Rep, pp.1074-1079, 2007.

I. Onn, N. Milman-shtepel, and J. Shlomai, Redox potential regulates binding of universal minicircle sequence binding protein at the kinetoplast DNA replication origin, Eukaryot Cell. United States, pp.277-287, 2004.

C. Sanders, D. Sizov, P. Seavers, M. Ortiz-lombardia, and A. Antson, Transcription activator structure reveals redox control of a replication initiation reaction, Nucleic Acids Research, vol.35, issue.10, pp.3504-3515, 2007.
DOI : 10.1093/nar/gkm166

M. Wang, J. You, and S. Lee, Role of Zinc-Finger Motif in Redox Regulation of Human Replication Protein A, Antioxidants & Redox Signaling, vol.3, issue.4, pp.657-669, 2001.
DOI : 10.1089/15230860152543005

B. Weiner, H. Huang, B. Dattilo, M. Nilges, E. Fanning et al., An Iron-Sulfur Cluster in the C-terminal Domain of the p58 Subunit of Human DNA Primase, Journal of Biological Chemistry, vol.282, issue.46, pp.33444-33451, 2007.
DOI : 10.1074/jbc.M705826200

C. Gorrini, P. Baniasadi, I. Harris, J. Silvester, S. Inoue et al., BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival, The Journal of Experimental Medicine, vol.439, issue.8, pp.1529-1573, 2013.
DOI : 10.1038/nature10371

A. Barascu, L. Chalony, C. Pennarun, G. Genet, D. Imam et al., Oxidative stress induces an ATM-independent senescence pathway through p38 MAPK-mediated lamin B1 accumulation, The EMBO Journal, vol.313, issue.82, pp.1080-1094, 2012.
DOI : 10.1038/emboj.2011.492

A. Zatterale, F. Kelly, P. Degan, M. Ischia, F. V. Pallard et al., Oxidative stress biomarkers in four Bloom syndrome (BS) patients and in their parents suggest in vivo redox abnormalities in BS phenotype, Clinical Biochemistry, vol.40, issue.15, pp.1100-1103, 2007.
DOI : 10.1016/j.clinbiochem.2007.06.003

L. Andrade, J. Nathanson, G. Yeo, C. Menck, and A. Muotri, Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome, Human Molecular Genetics, vol.21, issue.17, p.22661500
DOI : 10.1093/hmg/dds211

G. Pagano, A. Talamanca, G. Castello, F. V. Pallardo, A. Zatterale et al., Fanconi Anaemia and Oxidative Stress, pp.11-21
DOI : 10.1007/0-387-33776-8_9

X. Zhang, D. Sejas, Y. Qiu, D. Williams, and Q. Pang, Inflammatory ROS promote and cooperate with the Fanconi anemia mutation for hematopoietic senescence, Journal of Cell Science, vol.120, issue.9, pp.1572-1583, 2007.
DOI : 10.1242/jcs.003152

M. Kraakman-van-der-zwet, W. Overkamp, R. Van-lange, J. Essers, A. Van-duijn-goedhart et al., Brca2 (XRCC11) Deficiency Results in Radioresistant DNA Synthesis and a Higher Frequency of Spontaneous Deletions, Molecular and Cellular Biology, vol.22, issue.2, pp.669-679, 2002.
DOI : 10.1128/MCB.22.2.669-679.2002

W. Wiegant, R. Overmeer, B. Godthelp, P. Van-buul, and M. Zdzienicka, Chinese hamster cell mutant, V-C8, a model for analysis of Brca2 function, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.600, issue.1-2, pp.79-88, 2006.
DOI : 10.1016/j.mrfmmm.2006.03.001

P. Bertrand, S. Lambert, C. Joubert, and B. Lopez, Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells, Oncogene, vol.22, issue.48, pp.7587-7592, 2003.
DOI : 10.1038/sj.onc.1206998

S. Lambert and B. Lopez, Characterization of mammalian RAD51 double strand break repair using non-lethal dominant-negative forms, The EMBO Journal, vol.19, issue.12, pp.3090-3099, 2000.
DOI : 10.1093/emboj/19.12.3090

F. Daboussi, J. Thacker, and B. Lopez, Genetic interactions between RAD51 and its paralogues for centrosome fragmentation and ploidy control, independently of the sensitivity to genotoxic stresses, Oncogene, vol.11, issue.22, pp.3691-3696, 2005.
DOI : 10.1038/sj.onc.1207168

K. Das and R. Dashnamoorthy, Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites, AJP: Lung Cellular and Molecular Physiology, vol.286, issue.1, pp.87-97, 2004.
DOI : 10.1152/ajplung.00203.2002

J. Willis, Y. Patel, B. Lentz, and S. Yan, APE2 is required for ATR-Chk1 checkpoint activation in response to oxidative stress, Proceedings of the National Academy of Sciences, vol.110, issue.26, p.23754435
DOI : 10.1073/pnas.1301445110

M. Anglana, F. Apiou, A. Bensimon, and M. Debatisse, Dynamics of DNA Replication in Mammalian Somatic Cells, Cell, vol.114, issue.3, pp.385-394, 2003.
DOI : 10.1016/S0092-8674(03)00569-5

A. Bester, M. Roniger, Y. Oren, M. Im, D. Sarni et al., Nucleotide Deficiency Promotes Genomic Instability in Early Stages of Cancer Development, Cell, vol.145, issue.3, pp.435-446, 2011.
DOI : 10.1016/j.cell.2011.03.044

P. Chabosseau, G. Buhagiar-labarchede, R. Onclercq-delic, S. Lambert, M. Debatisse et al., Pyrimidine pool imbalance induced by BLM helicase deficiency contributes to genetic instability in Bloom syndrome, Nature Communications, vol.200, p.21712816
DOI : 10.1007/s00439-006-0142-0

S. Gay, A. Lachages, G. Millot, S. Courbet, A. Letessier et al., Nucleotide supply, not local histone acetylation, sets replication origin usage in transcribed regions, EMBO reports, vol.7, issue.9, p.20671737
DOI : 10.1016/S1097-2765(00)80277-4

E. Ma, A. Goldar, J. Verbavatz, and M. Marsolier-kergoat, Giant yeast cells with nonrecyclable ribonucleotide reductase, Molecular Genetics and Genomics, vol.70, issue.5, pp.415-425, 2011.
DOI : 10.1007/s00438-011-0613-4

C. Machon, L. Jordheim, J. Puy, I. Lefebvre, C. Dumontet et al., Fully validated assay for the quantification of endogenous nucleoside mono- and triphosphates using online extraction coupled with liquid chromatography???tandem mass spectrometry, Analytical and Bioanalytical Chemistry, vol.169, issue.34, p.24633509
DOI : 10.1007/s00216-014-7711-1

URL : https://hal.archives-ouvertes.fr/hal-01004663

J. Poli, O. Tsaponina, L. Crabbe, A. Keszthelyi, V. Pantesco et al., dNTP pools determine fork progression and origin usage under replication stress, The EMBO Journal, vol.99, issue.4, p.22234185
DOI : 10.1038/emboj.2011.470

URL : https://hal.archives-ouvertes.fr/hal-00677221

R. Fridlich, D. Annamalai, R. Roy, G. Bernheim, and S. Powell, BRCA1 and BRCA2 protect against oxidative DNA damage converted into double-strand breaks during DNA replication, DNA Repair, vol.30, 2015.
DOI : 10.1016/j.dnarep.2015.03.002

F. Liang, M. Han, P. Romanienko, and M. Jasin, Homology-directed repair is a major double-strand break repair pathway in mammalian cells, Proceedings of the National Academy of Sciences, vol.95, issue.9, pp.5172-5177, 1998.
DOI : 10.1073/pnas.95.9.5172

Y. Saintigny, F. Delacote, G. Vares, F. Petitot, S. Lambert et al., Characterization of homologous recombination induced by replication inhibition in mammalian cells, The EMBO Journal, vol.20, issue.14, pp.3861-3870, 2001.
DOI : 10.1093/emboj/20.14.3861

A. Pierce, R. Johnson, L. Thompson, and M. Jasin, XRCC3 promotes homology-directed repair of DNA damage in mammalian cells, Genes & Development, vol.13, issue.20, pp.2633-2638, 1999.
DOI : 10.1101/gad.13.20.2633

B. Freudenthal, W. Beard, L. Perera, D. Shock, T. Kim et al., Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide, Nature, vol.18, issue.7536, pp.635-639, 2015.
DOI : 10.1038/nature13886

H. Niida, M. Shimada, H. Murakami, and M. Nakanishi, Mechanisms of dNTP supply that play an essential role in maintaining genome integrity in eukaryotic cells, Cancer Science, vol.455, issue.12, p.20874841
DOI : 10.1111/j.1349-7006.2010.01719.x

P. Hakansson, A. Hofer, and L. Thelander, Regulation of Mammalian Ribonucleotide Reduction and dNTP Pools after DNA Damage and in Resting Cells, Journal of Biological Chemistry, vol.281, issue.12, pp.7834-7841, 2006.
DOI : 10.1074/jbc.M512894200

X. Michalet, R. Ekong, F. Fougerousse, S. Rousseaux, C. Schurra et al., Dynamic Molecular Combing: Stretching the Whole Human Genome for High-Resolution Studies, Science, vol.277, issue.5331, pp.1518-1523, 1997.
DOI : 10.1126/science.277.5331.1518

F. Daboussi, S. Courbet, S. Benhamou, P. Kannouche, M. Zdzienicka et al., A homologous recombination defect affects replication-fork progression in mammalian cells, Journal of Cell Science, vol.121, issue.2, pp.162-166, 2008.
DOI : 10.1242/jcs.010330

URL : https://hal.archives-ouvertes.fr/hal-00282471

A. Dumay, C. Laulier, P. Bertrand, Y. Saintigny, F. Lebrun et al., Bax and Bid, two proapoptotic Bcl-2 family members, inhibit homologous recombination, independently of apoptosis regulation, Oncogene, vol.122, issue.22, pp.3196-3205, 2006.
DOI : 10.1038/sj.onc.1209344

URL : https://hal.archives-ouvertes.fr/hal-00089781