From Hammersley's lines to Hammersley's trees

Abstract : We construct a stationary random tree, embedded in the upper half plane, with prescribed offspring distribution and whose vertices are the atoms of a unit Poisson point process. This process which we call Hammersley's tree process extends the usual Hammersley's line process. Just as Hammersley's process is related to the problem of the longest increasing subsequence, this model also has a combinatorial interpretation: it counts the number of heaps (i.e. increasing trees) required to store a random permutation. This problem was initially considered by Byers et. al (2011) and Istrate and Bonchis (2015) in the case of regular trees. We show, in particular, that the number of heaps grows logarithmically with the size of the permutation.
Type de document :
Article dans une revue
Probability Theory and Related Fields, Springer Verlag, 2017, 〈10.1007/s00440-017-0772-2〉
Liste complète des métadonnées
Contributeur : Anne-Laure Basdevant <>
Soumis le : mardi 10 mai 2016 - 09:48:45
Dernière modification le : jeudi 7 février 2019 - 16:23:45
Document(s) archivé(s) le : mardi 15 novembre 2016 - 22:53:00


Fichiers produits par l'(les) auteur(s)




Anne-Laure Basdevant, Lucas Gerin, Jean-Baptiste Gouere, Arvind Singh. From Hammersley's lines to Hammersley's trees. Probability Theory and Related Fields, Springer Verlag, 2017, 〈10.1007/s00440-017-0772-2〉. 〈hal-01313542〉



Consultations de la notice


Téléchargements de fichiers