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Density regularity for multidimensional jump diffusions with
position dependent jump rate

Victor Rabiet

May 10, 2016

Résumé

On considère une diffusion X = (Xt)t, avec des sauts, correspondant au générateur infinitésimal
suivant :

Lψ(x) =
1

2

∑
1≤i,j≤d

aij(x)
∂2ψ(x)

∂xi∂xj
+ g(x)∇ψ(x) +

∫
Rd

(ψ(x+ c(z, x))− ψ(x))γ(z, x)µ(dz)

où µ est de masse totale infinie. En notant (Xt(x)) un tel processus partant du point x, et en utilisant
une approche basé sur un Calcul de Malliavin fini-dimensionnel, nous étudions la régularité jointe de
celui-ci dans le sens suivant : on fixe b ≥ 1 et p > 1, K un ensemble compact de Rd, et nous donnons
des conditions suffisantes pour avoir P (Xt(x) ∈ dy) = pt(x, y)dy avec (x, y) 7→ pt(x, y) appartenant à
W bp(K × Rd).

Abstract

We consider a jump type diffusion X = (Xt)t with infinitesimal generator given by

Lψ(x) =
1

2

∑
1≤i,j≤d

aij(x)
∂2ψ(x)

∂xi∂xj
+ g(x)∇ψ(x) +

∫
Rd

(ψ(x+ c(z, x))− ψ(x))γ(z, x)µ(dz)

where µ is of infinite total mass. Denoting (Xt(x)) such process starting from point x, and using an
finite-dimensional Malliavin Calculus based approach, we study the joint regularity in the following
sense : let b ≥ 1, p > 1 and K be a compact set in Rd, then we give sufficient conditions in order to
have P (Xt(x) ∈ dy) = pt(x, y)dy with (x, y) 7→ pt(x, y) in W bp(K × Rd).

Key words : Diffusions with jumps, Malliavin Calculus, Regularity, Density, Finite dimensional Malli-
avin Calculus.
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1 Differential calculus and Integration by part

1.1 Introduction
The purpose of this work is to study the regularity of the density of the following stochastic equation

Xt =x+

m∑
l=1

∫ t

0

σl(Xs) dW l
s +

∫ t

0

b(Xs) ds

+

∫ t

0

∫
E×R+

c(Xs−, z)1{u≤γ(Xs−,z}N(ds,dz,du)

where the existence and uniqueness is proved for example in [10] or Graham [6] (1992).
The way to do so used here is based on a two step strategy. First, we construct an approximation (FM )

of the process Xt (basically given a non-decreasing sequence of subsets
(
BM

)
M∈N∗ , with µ(BM ) < ∞,

recovering E, the approximation FM will be constructed (for each M) from a restriction of the processes
Xt based on the restriction of the random measure N on the subset BM ) verifying an integration by part
formula :

E [ϕ′(FM )] = E [ϕ(FM )HM ] .

This integration by part is obtained within a general framework developed in [3] by V. Bally and E.
Clément, whose main results used in the sequel are presented in this section.

The second step consists in proving the density regularity itself. The idea is to use a certain balance
between the error E [|FM −Xt|] (which tends to 0) and the weight E [|HM |] (which tends to ∞). This
was the strategy used in [3] as well. But here the estimates of E [|HM |] will appear to be more delicate
than the corresponding one in [3] because of the additional Brownian part σ dW . Moreover, the balance
used in [3] was based on a Fourier transform method while here we use the new method developed by V.
Bally and L. Caramellino in [2].

This new method allowed us also to extend the result to the regularity of the density considering
additionally the variation of the starting point of the process, which was fixed in [3] ; the part of [2] used
for our purpose is presented, in this section, subsection 1.6.

1.2 Notations, tools of differential calculus
1.2.1 Notations and differentials operators

We consider a sequence (Vi)i∈N∗ of random variables on a probability space (Ω,F ,P), a σ-algebra G ⊂ F
and a G-measurable random variable J , with values in N. We assume that the variables (Vi) and J satisfy
the following integrability condition :

∀p ≥ 1, E [Jp] + E

[(∑J

i=1
V 2
i

)p]
<∞.

Following Bally and Clément, we will define a differential calculus based on the variables (Vi), conditionally
on G.

First we will define the following set

Definition 1.1 LetM be the class of functions f : Ω× RN∗ → R such that :

• f can be written as

f(ω, v) =

∞∑
j=1

f j(ω, v1, . . . , vj)1{J(ω)=j}

where f j : Ω× Rj → R are G × B(Rj)-measurable functions ;

• there exists a random variable C ∈
⋂
q≥1 Lq(Ω,F ,P) and p ∈ N∗ such that

|f(ω, v)| ≤ C(ω)
(

1 +

(∑J(ω)

i=1
v2
i

)p )
(in other words, conditionally on G, the functions of M have polynomial growth with respect to the
variables (vi)).
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We will define also

• Gi the σ-algebra generated by G ∪ σ(Vj , 1 ≤ j ≤ J, j 6= i),

• (ai(ω)) and (bi(ω)) two sequences of Gi-measurable random variables satisfying

−∞ ≤ ai(ω) < bi(ω) ≤ +∞, ∀i ∈ N∗

• Oi the open set of RN∗ defined by Oi = P−1
i (]ai, bi[), where Pi is the coordinate map RN∗ (ie.

Pi(v) = vi).

We localize the differential calculus on the sets (Oi) by introducing some weights (πi), satisfying the
following hypothesis.

Hypothesis 1.1 For all n ∈ N∗, πi ∈M and

{πi > 0} ⊂ Oi.

Moreover for all j ≥ 1, πji is infinitely differentiable with bounded derivatives with respect to the variables
(v1, . . . , vj).

At last, we associate to these weights πi, the spaces Ckπ ⊂M, k ∈ N∗, defined recursively as follows.

• For k = 1, C1
π denotes the space of functions f ∈ M such that for each i ∈ N∗, f admits a partial

derivative with respect to the variable vi on the open set Oi. We then define

∂πi f(ω, v)
def
= π(ω, v)

∂

∂vi
f(ω, v)

and we assume that ∂πi f ∈M.

• Suppose now that Ckπ is already defined. For a multi-index α = (α1, . . . , αk) ∈ N∗k, we define
recursively ∂πα = ∂πα1

· · · ∂παk and Ck+1
π is the space of functions f ∈ Ckπ such that for every multi-

index α = (α1, . . . , αk) ∈ N∗k we have ∂παf ∈ C1
π. Notice that if ∂παf ∈M for each α with |α| ≤ k.

• Finally we define
C∞π

def
=

⋂
k∈N∗

Ckπ .

Definition 1.2 (Simple functionals) A random variable F is called a simple functional if there exist
f ∈ C∞π such that F = f(ω, V ), where V = (Vi). We denote by S the space of the simple functionals (it
is an algebra) ; moreover, it is worth to notice that, conditionally on G, F = fJ(V1, . . . , VJ).

Definition 1.3 (Simple processes.) A simple process is a sequence of random variables U = (Ui)i∈N∗

such that for each i ∈ N∗, Ui ∈ S. Consequently, conditionally on G, we have Ui = uJi (V1, . . . , VJ). We
denote by P the space of the simple processes and we define the scalar product

〈U, V 〉J =

J∑
i=1

UiVi (∈ S).

We can now define the derivative operator and state the integration by parts formula.

Definition 1.4 (The derivative operator.) We define D : S → P by

DF
def
= (Di F ) ∈ P where Di F

def
= ∂πi f(ω, v).

Notice that Di F = 0, for i > J .

Definition 1.5 (Malliavin covariance matrix ) For F = (F 1, . . . , F d) ∈ Sd, the Malliavin covari-
ance matrix is defined by

σk,k
′
(F ) = 〈DF k,DF k

′
〉J =

J∑
i=1

Di F
k Di F

k′

4



We denote

Λ(F ) = {detσ(F ) 6= 0} and γ(F )(ω) = σ−1(F )(ω), ω ∈ Λ(F )

In order to derive an integration by parts formula, we need some additional assumptions on the random
variables (Vi). The main hypothesis is that conditionally on G, the law of the vector (V1, . . . , VJ), admits
a locally smooth density with respect to the Lebesgue measure on RJ .

Hypothesis 1.2 1. Conditionally on G, the vector (V1, . . . , VJ) is absolutely continuous with respect
to the Lebesgue measure on RJ and we denote by pJ the conditional density.

2. The set {pJ > 0} is open in RJ and on {pJ > 0}, ln pJ ∈ C∞π .

3. For all q > 1, there exists a constant Cq such that

(1 + |v|q)pJ ≤ Cq

where |v| stands for the euclidean norm of the vector (v1, . . . , vJ).

Assumption 3) implies in particular that conditionally on G, the functions of M are integrable with
respect to pJ and that for f ∈M :

EG [f(ω, V )] =

∫
RJ
fJ × pJ(ω, v1, . . . , vJ) dv1, . . . ,dvJ .

Definition 1.6 (The divergence operator) Let U = (Ui)i∈N∗ ∈ P with U ∈ S. We define δ : P → S
by

δi(U)
def
= −(∂vi(πiUi) + Ui1{pJ>0}∂

π
i ln pJ) (1.1)

δ(U) =

J∑
i=1

δi(U) (1.2)

For F ∈ S, we then define
L(F )

def
= δ(DF ) (1.3)

1.3 Duality and integration by parts formulae

1.4 IPP
The duality between δ and D is given by the following proposition.

Proposition 1.1 Assuming the two preceding hypothesis, then for all F ∈ S and for all U ∈ P we have

EG [〈DF,U〉J ] = EG [Fδ(U)].

Lemma 1.2 Let φ : Rd → R be a smooth function and F = (F 1, . . . , F d) ∈ Sd. Then φ(F ) ∈ S and

Dφ(F ) =

d∑
r=1

∂rφ(F ) DF r. (1.4)

If F ∈ S and U ∈ P, then
δ(FU) = Fδ(U)− 〈DF,U〉J .

Moreover, for F = (F 1, . . . , F d) ∈ Sd, we have

Lφ(F ) =

d∑
r=1

∂rφ(F )LF r −
d∑

r,r′=1

∂r,r′φ(F )〈DF r,DF r
′
〉J .

We can now state the main results of this subsection.

Theorem 1.3 Assuming the two preceding hypothesis, let F = (F 1, . . . , F d) ∈ Sd, G ∈ S and φ : Rd → R
be a smooth bounded function with bounded derivatives. Let Λ ∈ G, Λ ⊂ Λ(F ) such that

E
[
|det γ(F )|p1Λ

]
<∞, ∀p ≥ 1.

Then,
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1. for every r = 1, . . . , d,
EG [∂rφ(F )G]1Λ = EG [φ(F )Hr(F,G)]1Λ

with

Hr(F,G) =

d∑
r′=1

δ(Gγr
′,r(F ) DF r

′
) =

d∑
r′=1

(
Gδ(γr

′,r(F ) DF r
′
)− γr

′,r〈DF r
′
,DG〉J

)
; (1.5)

2. for every multi-index β = (β1, . . . , βq) ∈ {1, . . . , d}q

EG [∂βφ(F )G]1Λ = EG [φ(F )Hq
β(F,G)]1Λ (1.6)

where the weights Hq are defined recursively by (1.5) and

Hq
β(F,G) = Hβ1

(
F,Hq−1

(β2,...,βq)
(F,G)

)
. (1.7)

1.5 Estimations of Hq

In order to estimate the weights Hq appearing in the integration by parts formulae of the previous
subsection, we first need to define iterations of the derivative operator. Let α = (α1, . . . , αk) be a multi-
index, with αi ∈ {1, . . . , J}, for i = 1, . . . , k and |α| = k.

For F ∈ S we define recursively

Dk
(α1,...,αk) F

def
= Dαk

(
Dk−1

(α1,...,αk−1) F
)

and Dk F
def
=
(

Dk
(α1,...,αk) F

)
αi∈{1,...,J}

.

Notice that Dk F ∈ RJ⊗k, and consequently we define the norm of Dk F as

∣∣Dk F
∣∣ def

=

√√√√ J∑
α1,...,αk=1

∣∣Dk
(α1,...,αk) F

∣∣2. (1.8)

Moreover we introduce the following norms, for F ∈ S :

|F |1,l
def
=

l∑
k=1

∣∣Dk F
∣∣ and |F |l

def
= |F |+ |F |1,l =

l∑
k=0

∣∣Dk F
∣∣. (1.9)

For F = (F1, . . . , Fd) ∈ Sd :

|F |1,l
def
=

d∑
r=1

∣∣F r∣∣
1,l

and |F |l
def
=

d∑
r=1

∣∣F r∣∣
l
,

and, similarly, for F =
(
F r,r

′)
r,r′=1,...,d

|F |1,l
def
=

d∑
r,r′=1

∣∣F r,r′ ∣∣
1,l

and |F |l
def
=

d∑
r,r′=1

∣∣F r,r′ ∣∣
l
.

Notation 1.4 • In the sequel, we will generally denote simply Dk
α by Dα (where α is a multi-index

of length k).

• We will also use the following generalisation for F ∈ Sd and G ∈ Sd×k : we will simply set

Dα F
def
=
(

Dα Fi

)
1≤i≤d

and DkG
def
=
(

DkGi,j

)
1≤i≤d
1≤j≤k

.

6



1.5.1 Differentiability lemmas

In this subsection we will use directly the notations from Section 2 defined in 2.9 and 2.10, where we will
apply the previous general differential framework.

In order to express the form of the different multi-derivatives we will use in the next section, let us set
the following notations :

• if F ∈ Sd, we will denote the n-th derivative

D(kn,rn)

(
D(kn−1,rn−1)

(
· · ·
(

D(k1,r1)(F )
))

by
Dα(F )

with α = (α1, . . . , αn) and, for all i ∈ {1, . . . , n}, αi
def
= (ki, ri) ;

• for 1 ≤ l ≤ n, we denote by

Mn(l) =
{
M = (M1, . . . ,Ml),

⋃
i∈J1,lK

Mi = {1, . . . , n} and Mi ∩Mj = ∅, for i 6= j
}

;

the set of the partitions of length l of {1, . . . , n}.

Remark 1.5 The multi-derivatives defined above are not commutative : in general

D(k,r)

(
D(m,n)(F )

)
6= D(m,n)

(
D(k,r)(F )

)
.

We can now state :

Lemma 1.6 Let A,B ∈ S, φ : Rd → R and c : Rd×Rd → R be smooth functions and F = (F 1, . . . , F d), G =
(G1, . . . , Gd) ∈ Sd. Then

1. for every (k, r) ∈ J1, JK× J1, dK,

Dk,r(AB) = Dk,r(A)B +ADk,r(B) ; (1.10)

and for every α = (α1, . . . , αn), with αi
def
= (ki, ri) ∈ J1, JK× J1, dK,

Dα(AB) =
∑

αi⊕αj=α
αi,αj ordered

Dαi ADαj B ; (1.11)

(by “ordered” we mean that if αi = (αi1 , . . . , αik), then i1 < · · · < ik)

2. for every α = (α1, . . . , αn), with αi
def
= (ki, ri) ∈ J1, JK× J1, dK,

Dα φ(F ) =

n∑
l=1

∑
β=(β1,...,βl)
βi∈J1,dK

∑
M∈Mn(l)

∂βφ(F ) DM1(α) Fβ1
· · ·DMl(α) Fβl (1.12)

= Tα
(
φ
)
(F ) +∇φ(F ) Dα F, (1.13)

where

• for M = (M1, . . . ,Ml) ∈Mn(l), if Mj = (i1, . . . , ir) ⊆ {1, . . . , n},

Mj(α)
def
= (αi1 , . . . , αir ),

• and

Tα
(
φ
)
(F )

def
=

n∑
l=2

∑
β=(β1,...,βl)
βi∈J1,dK

∑
M∈Mn(l)

∂βφ(F ) DM1(α) Fβ1 · · ·DMl(α) Fβl (1.14)

7



3. for every α = (α1, . . . , αn), with αi
def
= (ki, ri) ∈ J1, JK× J1, dK, and using the same notations,

Dα c(F,G) =

n∑
l=1

∑
β=(β1,...,βr,β

′
r+1,...,β

′
l)

βi∈J1,dK, β′j∈Jd+1,2dK

∑
M∈Mn(l)

∂βc(F,G) DM1(α) Fβ1 · · ·DMr(α) Fβr

×DMr+1(α)Gβ′r+1
· · ·DMl(α)Gβ′l

=Uα(c)(F,G) +∇fc(F,G) Dα F +∇gc(F,G) DαG.

Remark 1.7 The non-symmetric form (1.13) is used in the sequel in recurrence’s purpose : all the
elements Mi(α) from Tα are such that |Mi(α)| < α so the degree of derivation of DMi(α) is strictly
inferior to the one of Dα itself.

With the same notations :

Lemma 1.8 Let φ : Rd → R a smooth function and F = (F 1, . . . , F d) ∈ Sd, α a multi-index and
n

def
= |α|. Then there exists Cn,p,d > 0 such that

|Dα φ(F )|2p ≤ Cn,p,d
(
|φ|n(F )

)2p n∑
l=0

∑
M∈Mn(l)

(
|DM1(α) F |2pd + · · ·+ |DMl(α) F |2pd

)
(1.15)

with |φ|n(F )
def
= sup|β|≤n |∂βφ(F )|.

Proof :
From Lemma 1.6 we have

Dα φ(F ) =

n∑
l=1

∑
β=(β1,...,βl)
βi∈J1,dK

∑
M∈Mn(l)

∂βφ(F ) DM1(α) Fβ1
· · ·DMl(α) Fβl .

It follows

|Dα φ(F )| ≤ Cn|φ|n(F )

n∑
l=1

∑
β=(β1,...,βl)
βi∈J1,dK

∑
M∈Mn(l)

|DM1(α) Fβ1
| · · · |DMd(α) Fβl |

|Dα φ(F )|2p ≤ Cn,p
(
|φ|n(F )

)2p n∑
l=1

∑
β=(β1,...,βl)
βi∈J1,dK

∑
M∈Mn(l)

|DM1(α) Fβ1
|2p · · · |DMd(α) Fβl |2p

Now1

|DM1(α) F |2p · · · |DMl(α) F |2p ≤
1

d

(
|DM1(α) F |2pd + · · ·+ |DMd(α) F |2pd

)
,

so

|Dα φ(F )|2p ≤ Cn,p,d
(
|φ|n(F )

)2p n∑
l=1

∑
M∈Mn(l)

(
|DM1(α) F |2pd + · · ·+ |DMd(α) F |2pd

)
.

•

We will also need an extended version of the first item of Lemma 1.6 :
1Since, if a1, . . . , an ∈ R∗+, it is well-known that n

√∏n
i=1 ai ≤

1
n

∑n
i=1 ai,

n∏
i=1

ai ≤
1

nn

( n∑
i=1

ai

)n
≤

1

nn
nn−1

n∑
i=1

ani ,

so
n∏
i=1

ai ≤
1

n

n∑
i=1

ani .
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Lemma 1.9 Let A,B ∈ Sd×d. Then for every (k, r) ∈ J1, JK× J1, dK,

Dk,r(AB) = Dk,r(A)B +ADk,r(B) ; (1.16)

and for every α = (α1, . . . , αn), with αi
def
= (ki, ri) ∈ J1, JK× J1, dK,

Dα(AB) =
∑

αi⊕αj=α
αi,αj ordered

Dαi ADαj B ; (1.17)

(by “ordered” we mean that if αi = (αi1 , . . . , αik), then i1 < · · · < ik).

Proof : Let A = (Ai,j)1≤i,j≤d and B = (Bi,j)1≤i,j≤d with Ai,j , Bi,j ∈ S. Then,

Dk,r(AB) = Dk,r

(( d∑
m=1

Ai,mBm,j
)

1≤i,j≤d

)
=
(( d∑

m=1

Dk,r

(
Ai,mBm,j

))
1≤i,j≤d

)
=
(( d∑

m=1

Dk,r

(
Ai,m

)
Bm,j +Ai,m Dk,r

(
Bm,j

))
1≤i,j≤d

)
(using (1.10))

= Dk,r(A)B +ADk,r(B).

But the proof of (1.17) only requires an induction over the formal relation (1.16) (and does not need
any commutativity in the product of A by B). •

Corollary 1.10 Let A = (Ai,j)1≤i,j≤d, B = (Bi,j)1≤i,j≤d with Ai,j, Bi,j ∈ S and l ∈ N∗. Then there
exists Cl > 0 such that

|AB|l ≤ Cl|A|l|B|l. (1.18)

We also have the following result proven in [3] (Lemma 8) :

Lemma 1.11 Let φ : Rd → R be a C∞ function and F ∈ Sd then for all l ≥ 1 we have

|φ(F )|1,l ≤ |∇φ(F )||F |1,l + Cl sup
2≤β≤l

|∂βφ(F )||F |l1,l−1.

Result that we will essentially use in this work through this corollary :

Corollary 1.12 Let φ : Rd → R be a C∞ bounded function with bounded derivatives of any order and
F ∈ Sd then for all l ≥ 1 there exists Cφ,l > 0 such that

|φ(F )|l ≤ Cφ,l
(
1 + |F |l + |F |ll−1

)
. (1.19)

1.5.2 Some bounds on Hq

The further theorem, proven in [3], gives some estimates for the weights Hq in terms of the derivatives of
G, F , LF and γ(F ).

Theorem 1.13 For F ∈ Sd, G ∈ S and for all q ∈ N∗ there exists a universal constant Cq,d such that
for every multi-index β = (β1, . . . , βq)∣∣∣Hq

β(F,G)
∣∣∣ ≤ Cq,d|G|q(1 + |F |q+1)(6d+1)q

|detσ(F )|3q−1

(
1 + |LF |qq−1

)
.

Remark 1.14 In the sequel, we will simply denote Hq
β(F, 1) by Hq

β(F ).

1.6 Interpolation method : notations and theoretical result
All this subsection is directly taken from the article of Bally and Caramelino [2].
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1.6.1 Notations and definitions

Let us define for ξ and γ some multi-indexes

xγ
def
=

d∏
i=1

xγii (1.20)

fξ,γ(x)
def
= xγ∂ξf(x) (1.21)

‖f‖k,l,p =
∑

0≤|γ|≤l

∑
0≤|ξ|≤k

‖fξ,γ‖p (1.22)

For all γ such that |γ| ≤ l,

|xγ | def
=

d∏
i=1

|xi|γi ≤
d∏
i=1

|x|γi ≤ |x|
∑
γi ≤ (1 + |x|)l

so
‖f‖k,l,p ≤ Cd

∑
0≤|ξ|≤k

‖(1 + |x|)l∂ξf(x)‖p. (1.23)

Since in the sequel we will have to bound the quantity ‖fM‖2m+q,2m,p, let us notice that we have directly

‖fM‖2m+q,2m,p ≤ Cd
∑

0≤|ξ|≤2m+q

(∫
Rd×Rd

[
(1 + |(x, y)|2m)∂ξ

(
fM (x, y)

)]p
dxdy

) 1
p

. (1.24)

Moreover, we will define a distance between two measures µ and ν in the following way :

dk(µ, ν)
def
= sup

{∣∣∣ ∫ φ dµ−
∫
φdν

∣∣∣ : φ ∈ C∞(Rd),
∑

0≤|ξ|≤k

‖∂ξφ‖∞ ≤ 1
∣∣∣}. (1.25)

Remark 1.15 Here, we will only use the case k = 1, which is called the bounded variation distance (or,
also, the Fortet-Mourier distance).

1.6.2 Main result

Theorem 1.16 Let q, k ∈ N, m ∈ N∗, p > 1 and set

η >
q + k + d/p∗

2m
. (1.26)

We consider a non negative finite measure µ and a family of finite non negative measures

µδ(dx) = fδ(x) dx, δ > 0.

We assume that there exist C, r > 0 such that

λq,m(δ)
def
= sup

δ≤δ′≤1
‖fδ′‖2m+q,2m,p ≤ Cδ−r

and moreover, with η given in (1.26),

λq,m(δ)ηdk(µ, µδ) ≤ C. (1.27)

Then µ(dx) = f(x) dx with f ∈W q,p.

10



2 Regularity of the Density

2.1 Introduction
As we briefly mentioned in the introduction of the last section, the main purpose of this second part is
to study the regularity of the law of the random variable Xt solution of the following stochastic equation
with jumps :

Xt = x+

∫ t

0

σ(Xs) dWs +

∫ t+

0

∫
E×R+

c(z,Xs−)1{u≤γ(z,Xs− )}N(ds,dz,du) +

∫ t

0

g(Xs) ds (2.28)

(again, for the existence and the uniqueness of such stochastic equation see [6]).
Our global aim is to give sufficient conditions in order to prove that the law of Xt is absolutely

continuous with respect to the Lebesgue measure and has a smooth density. That was the point of the
study made in [3] as well, with an equation of this type but without the Brownian part.

But, here, we will not only consider the existence and the regularity of the density y 7→ pXt(y) (defined
by PXt(dy) = pXt(y) dy) with a given starting point x ∈ Rd : we will consider instead the behaviour of
(x, y) 7→ pXxt (y) (with PXxt (dy) = pXxt (y) dy where Xx

t stands for the solution of (2.28) starting at x).
This joint density regularity property, in addition to being obviously a stronger result, will allow us

(and it was, at first, one of the motivations to extend the result obtained for the regularity of y 7→ pXxt (y))
to obtain an interesting application concerning the Harris-recurrence of the process (section 5).

2.2 Hypothesis and notations
Let us recall that the associated intensity measure of the counting measure N is given by

N̂(dt,dz,du) = dt× µ(dz)× 1{0,∞}(u) du

where (z, u) ∈ X = Rd × R+ and µ(dz) = h(z) dz.
In this subsection we make the following hypothesis on the functions γ, g, h and c.

Hypothesis 2.1 We assume that γ, g, h and c are infinitely differentiable functions in both variables z
and x. Moreover we assume that

• g and its derivatives are bounded ;

• lnh has bounded derivatives ;

• both γ and ln γ have bounded derivatives.

Hypothesis 2.2 We assume that there exist two functions γ, γ : Rd → R+ such that

C ≥ γ(z) ≥ γ(z, x) ≥ γ(z) ≥ 0, ∀x ∈ Rd

where C is a constant.

Hypothesis 2.3 1. We assume that there exists a non negative and bounded function c : Rd → R+

such that
∫
Rd c(z)µ(dz) <∞ and

|c(z, x)|+ |∂βz ∂αx c(z, x)| ≤ c(z), ∀z, x ∈ Rd.

We need this hypothesis in order to estimate the Sobolev norms.

2. There exists a measurable function ĉ : Rd → R+ such that
∫
Rd ĉ(z)µ(dz) <∞ and

||∇xc× (Id +∇xc)−1(z, x)|| ≤ ĉ(z), ∀z, x ∈ Rd.

In order to simplify the notations we assume that ĉ(z) = c(z).

3. There exists a non negative function c : Rd → R+ such that, for all z ∈ Rd,
d∑
r=1

〈∂zrc(z, x), ξ〉2 ≥ c2(z)|ξ|2, ∀ξ ∈ Rd

and we assume that there exists θ ∈ R∗+ such that

lim inf
a→∞

1

ln a

∫
{c2≥ 1

a}
γ(z)µ(dz) = θ. (2.29)

11



Remark : assumptions 2) and 3) give sufficient conditions to prove the non degeneracy of the Malliavin
covariance matrix as defined in the previous section.

2.3 Main result
We are now able to state the density property of Xx

t and the joint regularity (in x and y) of it : we
fix q ≥ 1 and p > 1, K a compact set of Rd, and we will give sufficient conditions in order to have
PXxt (dy) = pXxt dy with (x, y) 7→ pXxt ∈W

q,p(K × Rd).

Theorem 2.1 Let q, p ≥ 1. We assume that hypotheses 2.1, 2.2 and 2.3 hold.
Let

(
BM

)
M∈N∗ such that

⋃
M∈N∗ BM = E and, for all i ∈ N∗

Bi ⊂ Bi+1 and µ(Bi) < +∞.

Let K a compact set of Rd and (with p∗ such that 1
p + 1

p∗ = 1)

η >
q + 1 + d/p∗

2
. (2.30)

If there exists C, r > 0 such that
µ(BM )6(d+q+3)3 ≤ CMr (2.31)

and if

lim sup
M

(
µ(BM )6(d+q+3)3η

(∫
BcM

c(z)γ(z) dµ(z) +

√∫
BcM+1

c2(z)γ(z) dµ(z)
))

< +∞, (2.32)

then, for t > 4d(3q′−1)
θ , with q′ = d+ q + 2, and for every x ∈ K, the law of Xx

t is absolutely continuous
with respect to the Lebesgue measure, ie. PXxt (dy) = pXxt (y) dy, and the function (x, y) 7→ pXxt (y) belongs
to W q,p(K × Rd).

Remark 2.2 The quantity η and the related condition 2.30, come directly from the main theorem of the
interpolation method (Theorem 1.16), in the particular case k = 1, as we stated in Remark 1.15, and with
m = 1 (this last choice is discussed in Remark 2.12).

Remark 2.3 If θ = ∞, then, for all t > 0, the law of Xx
t is absolutely continuous with respect to the

Lebesgue measure and the density pXxt belongs to W q,p(K × Rd).

Remark 2.4 Recalling that (cf. Brézis [5], p.168, Corollaire IX.13, for example), with k def
=
[
q − d

p

]
,

we have (with O ∈ Rn an open ball), W q,p(O) ⊂ Ck(O), in the sense that each element of W q,p(O)
has a Ck representative, this theorem can also be used to characterize the Ck behaviour of the function
(x, y) 7→ pXxt (y) (as we will briefly see in the examples at 2.3.1).

Notation 2.5 In the sequel, since x will belong to a fixed compact set, we will often write simply Yt
instead of Y xt for any process Y starting at x, if this precision is not strictly needed (that is why the
starting point will never explicitly appear within the Section 3 but will be always used in Section 4).

Before starting the proof itself, we will first try to give a sketch of the strategy that we will use. The
global idea is articulated in two steps :

1. to obtain an integration by part formula on an appropriate approximation of the process Xt ;

2. to use this last result to prove the regularity of the density.

The terms from the condition (2.32) are a direct consequence of this pattern.
For the first step, and first of all, given a non-decreasing sequence of subsets

(
BM

)
M∈N∗ , with µ(BM ) <

∞, recovering E, we construct (for each M) an approximation XM
t of the process Xt based on the

restriction NM of the random measure N on the subset BM .
Using a similar result as the Lemma ??, given in the first part of this work, we can then say that the

L1-distance between these two processes is bounded as follows :

∀t ≤ T, E
[∣∣Xt −XM

t

∣∣] ≤ CT ∫
BcM

c(z)γ(z)µ(dz),

12



which explains the presence of the term
∫
BcM

c(z)γ(z) dµ(z) in the condition (2.32).
Since µ(BM ) < +∞, the random measure NM may be represented as a compound Poisson process

(where the jump times will be denoted by TMk , k ∈ N) and the Poisson part of process XM
t could

be expressed as a sum ; nevertheless, because of the indicator function from the original equation, the
coefficients of the equation verified by XM

t are still (for the Poisson part) discontinuous and therefore, we
cannot use directly the differential calculus presented earlier. Instead we prove that XM

t has the same
law as the process X

M

t which verifies an equation with smooth coefficients.
At this point, one would like to obtain an integration by part formula for X

M

t , but there remains one
last difficulty : it is clear that, for t < TM1 (the first jump of NM ), the random measure NM produces no
noise, and consequently there is no chance to use it for an integration by part (the Malliavin covariance
matrix being, of course, degenerated).

That is why one last process will be introduced :

FM
def
= X

M

t +
√
UM (t)×∆,

where ∆ Gaussian and where UM (t) is defined by UM (t) = t
∫
BcM+1

c2(z)γ(z) dµ(z).

The L1-distance between FM and X
M

t is then bounded, for t ≤ T , by

KT

√∫
BcM+1

c2(z)γ(z) dµ(z),

which gives a natural interpretation for the last term of the condition (2.32).
We are now able to obtain an integration by part formula for the process FM :

E [ϕ′(FM )] = E [ϕ(FM )HM ] . (IM )

The second step consists in proving the density regularity. The idea is to use a certain balance
between the error E [|FM −Xt|] (which tends to 0) and the weight E [|HM |] (which tends to ∞). This
was the strategy used in [3] as well. But here the estimates of E [|HM |] have been more delicate then the
corresponding one in [3] because of the additional brownian part σ dW . Moreover, the balance used in [3]
was based on a Fourier transform method while here we use the new method developed in [2].

This new method allows us also to extend the result to the regularity of the density considering
additionally the variation of the starting point of the process, which was fixed in [3] ; finally, we give an
application of this improvement since we can then consider a regenerative scheme to obtain an interesting
result concerning the Harris-recurrence of the process (section 5).

2.3.1 Examples

In this example we assume that h = 1 so µ(dz) = dz and γ(z) is equal to a constant γ > 0. We then have

µ(BM ) = rdM
d

where rd is the volume of the unit ball in Rd. We will also assume that x is in some compact set
K

def
= B(0, R), R > 0.
We will consider two types of behaviour for c.

i) Exponential decay : we assume that c(z) = e−a|z|
c

for some constants 0 < b ≤ a and c > 0. We
then have ∫

{c2> 1
u}
γ(z) dµ(dz) = γ

rd

(2a)
d
c

× (lnu)
d
c .

we then deduce for the constant θ (definied in (2.29))

θ = 0 if c > d,

θ =∞ if 0 < c < d, (2.33)

θ =
γrd

2a
if c = d.

If c > d, hypothesis 2.3.3 fails, which is coherent with the result of Bichteler, Gravereaux and Jacod
in [4]. Now observe that∫

BcM

c(z)γ(z) dµ(z) +

√∫
BcM+1

c2(z)γ(z) dµ(z) ≤ Ke−ξM
c

13



for some ξ > 0, so the condition (2.32) is always well verified.
When 0 < c < d, since θ =∞, for every t > 0, (x, y) 7→ pXxt (y) belongs to W∞,p(K ×Rd) (∀p ≥ 1),
which implies, according to the Remark 2.4, that (x, y) 7→ pXxt (y) can be considered as an element
of C∞(K × Rd).
If c = d, then appears a more particular behaviour and it is interesting to compare the result
obtained here with the example from [3] (recalling that, in this last case, Xt does not possess a
Brownian part, though), assuming here, for that sake, that x is fixed, k ∈ N and p > 1 :

[3] Present work

Domain t > 8da
γrd

(3d+ 2) t > 8da
γrd

(
3d
(

1 + 1
p

)
+ 3k + 8

)
Regularity of pXt Ck with Ck with

k ≤ 1
3

(
1 +

γrd
8da t

)
− d k ≤ 1

3

(
1 +

γrd
8da t

)
− d
(

1 + 1
p

)
− 2

Remark 2.6 In fact, in this work, (x, y) 7→ pXxt (y) belongs to W q,p(K × Rd) (∀p ≥ 1) with

q ≤ 1

3

(
1 +

γrd

8da
t
)
− d− 2,

so, using again the Remark 2.4, (x, y) 7→ pXxt (y) can be considered as an element of Ck(K × Rd),
with

k
def
=
[
q − d

p

]
≤ q − d

p
≤ 1

3

(
1 +

γrd

8da
t
)
− d
(

1 +
1

p

)
− 2.

In particular it requires, at least, q ≥ d
p to obtain some regularity.

ii) Polynomial decay : We assume now that c(z) = b
1+|z|v and c(z) = a

1+|z|v for some constants 0 <

a ≤ b and v > d. We have here∫
{c2> 1

u}
γ(z) dµ(dz) = γrd × (a

√
u− 1)

d
v ,

so θ = lim supu→∞
1

lnuγrd(a
√
u − 1)

d
v = ∞ and then, in this case, the regularity result stands for

every t > 0.
A simple computation gives us the following bounds :∫

BcM

c(z)γ(z) dµ(z) ≤ C

Mv−d and
∫
BcM+1

c2(z)γ(z) dµ(z) ≤ C

M2v−d .

So with C and r > 0 such that µ(BM )6(d+q+3)3 ≤ CMr (condition (2.31)), we have

µ(BM )6(d+q+3)3η
(∫

BcM

c(z)γ(z) dµ(z) +

√∫
BcM+1

c2(z)γ(z) dµ(z)
)

≤ C ′Mrη
( 1

2Mv−d +
1

2M2v−d

)
≤ C ′Mrη−v+d.

Hence, the condition (2.32) is true if

η ≤ v − d
r

and, since here µ(BM ) = rdM
d, (2.31) gives r = 6d(d + q + 3)3 and, with (2.30), we have the following

condition :
q + 1 + d/p∗

2
≤ v − d

r
.

Finally, with v such that

v > 6d(d+ q + 3)3 q + 1 + d

2
, (2.34)

(x, y) 7→ pXxt (y) belongs to W q,p(K × Rd), for all p ≥ 1.
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2.4 Approximation of Xt

In order to prove that the processXt, solution of (2.28), has a smooth density, we will apply the differential
calculus and the integration by parts formula from Section 1. But since the random variable Xt cannot be
viewed as a simple functional, the first step consists in approximating it. We describe in this subsection
our approximation procedure. We consider a non-negative and smooth function ϕ such that ϕ(z) = 0 for
|z| > 1 and

∫
Rd ϕ(z) dz = 1. And for M ∈ N, we denote

ΦM (z) = ϕ ∗ 1BM

with BM = {z ∈ Rd : |z| < M}. Then ΦM ∈ C∞b and we have 1BM−1
< ΦM < 1BM+1

. We denote by
XM
t the solution of the equation

XM
t = x+

∫ t

0

σ(XM
s ) dWs +

∫ t

0

∫
E

cM (z,XM
s−)1{u≤γ(z,XMs−)}N(ds,dz,du) +

∫ t

0

g(XM
s ) ds. (2.35)

where
cM (z, x)

def
= c(z, x)ΦM (z).

If we set
NM (ds,dz,du)

def
= 1BM+1

(z)× 1[0,2C](u)N(ds,dz,du),

since {u < γ(z,XM
s−)} ⊂ {u < 2C̄} and ΦM (z) = 0 if |z| > M + 1,we may replace N by NM in the above

equation and consequently XM
t is solution of the equation

XM
t = x+

∫ t

0

σ(XM
s ) dWs +

∫ t

0

∫
E

cM (z,XM
s−)1{u≤γ(z,XMs−)} dNM (s, z, u) +

∫ t

0

g(XM
s ) ds.

Since the intensity measure N̂M is finite, we may represent the random measure NM by a compound
Poisson process. Let

λM
def
= 2C̄ × µ(BM+1) = t−1 E [NM (t, E)]

and let JMt a Poisson process of parameter λM . We denote by TMk , k ∈ N, the jump times of JMt . We
also consider two sequences of independent random variables (ZMk )k∈N and (Uk)k∈N, respectively in Rd
and R+, which are independent of JMt and such that

ZMk ∼
1

µ(BM+1)
1BM+1

(z)µ(dz), and Uk ∼
1

2C̄
1[0,2C̄](u) du.

Then, the last equation may be written as

XM
t = x+

∫ t

0

σ(XM
s ) dWs +

JMt∑
k=1

cM (ZMk , XM
TMk −

)1(Uk,∞)(γ(ZMk , XM
TMk −

)) +

∫ t

0

g(XM
s ) ds. (2.36)

The random variable XM
t solution of (2.36) is a function of (Z1, . . . , ZJMt ) but it is not a simple

functional, as defined in Section 1, because the coefficient cM (z, x)1{u≤γ(z,x)} is not differentiable with
respect to z. In order to avoid this difficulty we use the following alternative representation. Let z∗M ∈ Rd
such that |z∗M | = M + 3. We define

qM (z, x)
def
= ϕ(z − z∗M )θM,γ(x) +

1

2Cµ(BM+1)
1BM+1

(z)γ(z, x)h(z) (2.37)

θM,γ(x)
def
=

1

µ(BM+1)

∫
{|z|≤M+1}

(
1− 1

2C
γ(z, x)

)
µ(dz). (2.38)

We recall that ϕ is the function defined at the beginning of this subsubsection : a non-negative and
smooth function with

∫
ϕ = 1 and which is null outside the unit ball. Moreover from Hypothesis 2.2,

0 ≤ γ(z, x) ≤ C and then

1 ≥ θM,γ(x) ≥ 1

2
. (2.39)

From this last inequality it is easy to deduce the following result :

Lemma 2.7 Let qM defined as in (2.37). Then ln qM has bounded derivatives of any order.
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By construction the function qM satisfies
∫
qM (z, x) dz = 1. Hence we can check that (cf. appendix

A.4 for a proof)

E
[
f(XM

TMk −
) |XM

TMk −
= x

]
=

∫
Rd
f(x+ cM (z, x))qM (z, x) dz. (2.40)

From the relation (2.40) we construct a process (X
M

t ) equal in law to (XM
t ) in the following way.

Let 0 ≤ u ≤ v and y ∈ Rd, we denote by Ψu,v(y) the solution of

Ψu,v(x) = y +

∫ v

u

σ(Ψu,s(y)) dWs +

∫ v

u

g(Ψu,s(y)) ds.

We assume that the times Tk, k ∈ N are fixed and we consider a sequence (zk)k∈N with zk ∈ Rd. Then
we define xt, t ≥ 0 by x0 = x and, if xTk is given, then

xt = ΨTk,t(xTk), Tk ≤ t < Tk+1, (2.41)

xTk+1
= xT−k+1

+ cM
(
zk+1, xT−k+1

)
.

We note that for Tk ≤ t < Tk+1, xt is a function of x, z1, . . . , zk. Notice also that xt solves the equation

xt = x+

∫ t

0

σ(xs) dWs +

JMt∑
k=1

cM (zk, xT−k
) +

∫ t

0

g(xs) ds.

We consider now a sequence of random variables (Zk), k ∈ N∗, independent of the Brownian motion Wt,
and we denote Gk = σ(Tp, p ∈ N) ∨ σ(Zp, p ≤ k) and

X
M

t = xt(Z1, . . . ZJMt ). (2.42)

We assume that the law of Zk+1 conditionally on Gk is given by

P(Zk+1 ∈ dz | Gk) = qM (z, xT−k+1
(Z1, . . . Zk)) dz = qM (z,X

M

T−k+1
) dz. (2.43)

Then X
M

t satisfies the equation

X
M

t = x+

∫ t

0

σ(X
M

s ) dWs +

JMt∑
k=1

cM (Zk, X
M

T−k
) +

∫ t

0

g(X
M

s ) ds (2.44)

and X
M

t has the same law as XM
t . Moreover we can prove a bit more.

Lemma 2.8 For a locally bounded and measurable function ψ : Rd → R let

St(ψ) =

JMt∑
k=1

(ΦMψ)(Zk), St(ψ) =

JMt∑
k=1

(ΦMψ)(Zk)1{γ(Zk,XM
T
−
k

)>Uk},

then (X
M

t , St(ψ))t≥0 has the same law as (XM
t , St(ψ))t≥0.

Proof : Observing that (X
M

t , St(ψ))t≥0 solves a system of equations similar to (2.44), but in dimension
d + 1, it suffices to prove that (X

M

t )t≥0 has the same law as (XM
t )t≥0, which is done in detail in the

appendix A.5. •

2.5 The integration by part formula

The random variable X
M

t constructed previously is a simple functional but unfortunately its Malliavin
covariance matrix is degenerated. To avoid this problem we use a classical regularization procedure.
Instead of the variable X

M

t , we consider the regularized one FM defined by

FM
def
= X

M

t +
√
UM (t)×∆, (2.45)

where ∆ is a d-dimensional standard Gaussian variable independent of the variables (Zk)k≥1 and (Tk)k≥1

and UM (t) is defined by

UM (t) = t

∫
BcM+1

c2(z)γ(z) dµ(z). (2.46)
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Notation 2.9 We observe that FM ∈ Sd where S is the space of simple functionals for the differential
calculus based on the variables (Zk)k≥1 with Z0 = (∆r)1≤r≤d and Zk = (Z

r

k)1≤r≤d and we are now in the
framework of the previous section (subsection 1.2) by taking G def

= σ(Tk, k ∈ N) and defining the weights
(πk) by setting πr0 = 1 and

πrk
def
= φM (Z̄k) (2.47)

for 1 ≤ r ≤ d.

Conditionally on G, the density of the law of (Z1, . . . , ZJMt ) is given by

pM (ω, z1, . . . , zJMt ) =

JMt∏
j=1

qM
(
zj ,ΨTj−1,Tj (X

M

Tj−1
)
)

(2.48)

where X
M

Tj−1
is a function of zi, 1 ≤ i ≤ j − 1 (moreover, we can notice that ΨTj−1,Tj (X

M

Tj−1
) = X

M

Tj−) ;
we can check that pM satisfies the Hypothesis 1.2 of Section 1.

Notation 2.10 To clarify the notation, the derivative operator can be written in this framework for
F ∈ S by DF = (Dk,r F ) where Dk,r = πrk∂Zrk

for k ≥ 0 and 1 ≤ r ≤ d. Consequently we deduce that

Dk,r F
r′

M = Dk,rX
M,r′

t , for k ≥ 1 and D0,r F
r′

M =
√
UM (t)δr,r′ with δr,r′ = 0 if r 6= r′, δr,r′ = 1 otherwise.

The Malliavin covariance matrix of X
M

t is equal to

σ
(
X
M

t

)
i,j

=

JMt∑
k=1

d∑
r=1

Dk,r Dk,rX
M,i

t X
M,j

t

for 1 ≤ i, j ≤ d and finally the Malliavin covariance matrix of FM is given by

σ
(
FM
)

= σ
(
X
M

t

)
+ UM (t)× Id .

Using the results of Section 1, we can state an integration by part formula and give a bound for the weight
Hq(FM , 1) in terms of the Sobolev norms of FM , the divergence LFM and the determinant of the inverse
of the Malliavin covariance matrix detσ

(
FM
)
.

The control of these last three quantities is rather technical and is studied in detail in the next section.
Since we are looking here also for the regularity with respect to the starting point x, and in order

to use the Interpolation method (cf. 1.6) we will have to look a little bit further. It is clear, from its
definition, that the law PFxM of F xM possesses a smooth density : PFxM (dy) = pFxM (y) dy. We will then
define

fM (x, y)
def
= ΨK(x)pFxM (y) (2.49)

where ΨK is a smooth version with bounded derivatives of any order of the indicator function 1K , and
study its behaviour with respect to the norm defined by (1.22). More precisely, we will admit for the
moment the following result (for the proof, see subsection 4.3) :

Lemma 2.11 Let q ∈ N, m ∈ N∗, p > 1. Then

‖fM‖2m+q,2m,p ≤ Cµ(BM )6(d+2m+q+1)3 (2.50)

where C does not depend on M .

2.5.1 Proof of the main result

To do so, as we said earlier, we will use a more powerful method then the usual “balance” that can be
made, with some reasonable conditions, when an integration by part formula is available for a convergent
sequence of processes (for a more detailed explanation, see [2], from which this new tool is taken) : here,
we will use the Theorem 1.16, taken directly from this last cited article.
Proof : Let t > 4d(3q′−1)

θ , with q′ = d+ 2 + q, and let us define the measure µX defined by (where PXxt
is the law of Xx

t )
µX(dx,dy)

def
= ΨK(x)PXxt (dy) dx (2.51)

where ΨK is a smooth version with bounded derivatives of any order of the indicator function 1K . A
natural approximation of µX(dx, dy) would then be ΨK(x)pXMt (x, y) dxdy. But in order to use the
Malliavin calculus developed in this work, it is more convenient to use, instead of XM

t , the approximation
(in law) FM of it. Let us recall that
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• FM
def
= X

M

t +
√
UM (t) × ∆, where ∆ is Gaussian and where UM (t) is defined by UM (t) =

t
∫
BcM+1

c2(z)γ(z) dµ(z)

• fM
def
= ΨK(x)pFMt (x, y).

We will then use the Theorem 1.16, with δ
def
= M−1 (to be rigorous with the notations, we should

define and work with f̃δ
def
= fM , but we will simply use fM ).

On one hand, using Lemma 2.11 with m = 1, we find that

‖fM‖2+q,2,p ≤ Cµ(BM )6(d+q+3)3 (2.52)

where C does not depend on M .
On the other hand, using the definition (1.25) of the distance dk in the case k = 1 :

d1(µX , fM )
def
= sup

g∈C∞(Rd×Rd)
‖g‖∞,‖∇g‖∞≤1

∣∣∣ ∫∫
Rd×Rd

g(x, y)µX(dx, dy)−
∫∫

Rd×Rd
g(x, y)fM (x, y) dx dy

∣∣∣
=

∫
Rd

ΨK(x)
(

E
[
g(x,Xt(x)

]
− E

[
g(x, FMt (x)

])
dx

≤
∫
Rd

ΨK(x) E
[∣∣Xt(x)− FMt (x)

∣∣]dx

so

d1(µX , fM ) ≤ CK
(∫

BcM

c(z)γ(z) dµ(z) +

√∫
BcM+1

c2(z)γ(z) dµ(z)
)
. (2.53)

It follows that, with the conditions (2.31) and (2.32), the conditions of the Theorem 1.16 are well
verified and we can directly conclude. •

Remark 2.12 Let us give a quick explanation why we only considered the case where the parameter m
is equal to 1. This parameter was made to loosen up the lower bound condition for η in Theorem 1.16
(roughly speaking this lower bound is a O

(
1
m

)
) which could help to obtain a better condition from (1.27).

But, the upper bound obtained for ‖fM‖2m+q,2m,p with respect to m, is a O(m3), so we lose here completely
the possible advantage of taking m > 1.

3 Bounding of the weights Hq
β(FM)

3.1 Introduction
In this section we consider that the starting point x is fixed.

The final result of that part is to bound the quantity Hq
β(FM ) ; to do so, we will use the bounding

given by the Theorem 1.13, which implies :∣∣∣Hq
β(FM )

∣∣∣ ≤ Cq,d 1

|detσ(FM )|3q−1

(
1 + |FM |q+1)(6d+1)q

)(
1 + |LFM |qq−1

)
,

and so will be brought to bound, in particular, on one hand ‖ 1
|det σ(FM )|‖p, which will be done at Lemma

3.14 and, on the other hand ‖|FM |n‖p and ‖|LFM |n‖p (where ‖.‖p is the Lp-norm). To do this last thing,
because of the similar structure of the linear equations verified by the different processes involved here, we
will develop in the first place a way to bound this type of processes, in a recursive way (which is natural,
since we want, in particular, to bound successive derivatives of our process). Moreover, this theoretical
result will be helpful in the Section 4, when we will study further the density continuity of the process Xt.

The upper bound of this quantity allows us to prove, under some similar conditions to (2.32), the
existence of a regular density for Xt : (with q ≥ 1 and p > 1 fixed) we have PXt(dy) = pXt dy with
pXt ∈ W q,p(Rd) (using a Fourier transform method as in [3], or some weaker version of the interpolation
method (cf. [2]) quoted here). In this sense, this section is “self-contained” ; that is one of the reasons
why we give the Lemma 3.15. The other reason (and it is globally true for the whole section) is to show a
pattern of the proof, in a simpler case, which will be used again in the more general Lemma 2.11 (proved
in the subsection 4.3).

Even though, to conclude in the general case (joint regularity), we need some further results, made
in the next section, the main part of the needed techniques is presented in this one, with less heavier
notations, since the starting point x is momentarily put aside.

18



Notations

• In all the sequel we will denote by EW the expectation with respect to the Brownian motion ; i.e.
conditionally with respect to the Poisson measure.

• As we have already pointed out in 2.5, in all this section, since x will belong to a fixed compact set,
we will always write Yt instead of Y xt for any process Y starting at x.

3.2 An upper bound lemma for a family of linear SDE’s
In this subsection we give Lp bounds for the solution of a family of linear equations which represent the
general framework in which the Malliavin derivatives fit.

Hypothesis

We fix a finite set I and we consider the multi-indexes of the type α def
= (α1, . . . , αn), with αi ∈ I. We

define and denote the length of α by |α| def
= n. We also consider the void multi-index α = ∅ and in this

case we put |α| def
= 0.

Then we denote
An

def
= {α def

= (α1, . . . , αn) : αi ∈ I}

the set of multi-indexes of length n and define then

A
def
=
⋃
n∈N

An

and
nk

def
= #{α ∈ A, |α| ≤ k}

(since I is finite, nk is a defined finite number).
We define a family of process (V

α

t )t≥0, α ∈ A in the following way.

• If |α| = 0 we put V
0

t
def
= X

M

t with X
M

t solution of the equation (2.44) :

X
M

t = x+

∫ t

0

σ(X
M

s ) dWs +

JMt∑
k=1

cM (Zk, X
M

T−k
) +

∫ t

0

g(X
M

s ) ds.

• Suppose now that we have already defined V
α
for |α| < n− 1. We denote by

V (k−1)(t)
def
=
(
V
β

t

)
|β|≤k−1

(so V (0)(t) = (V
0

t ) = (X
M

t ), a family of d-dimensional one element). Then let V
α
be, for |α| = n,

the solution of

V
α

t = V
α

0 +

∫ t

0

Gα
(
V (k−1)(s)

)
dWs +

JMt∑
j=1

dαj
(
Zj , V (k−1)(T

−
j )
)

+

∫ t

0

gα
(
V (k−1)(s)

)
ds

+

m∑
l=1

∫ t

0

ραl (V
0

s)V
α

s dW l
s +

JMt∑
j=1

βα
(
Zj , V

0

T−j

)
V
α

T−j
+

∫ t

0

bα(V
0

s)V
α

s ds, (3.54)

with the functions Gα : Rd×nk−1 → Rd×m, dαj : Rd ×Rd×nk−1 → Rd, gα : Rd×nk−1 → Rd, ραl : Rd →
Rd×d, βα : Rd × Rd → Rd×d, bα : Rd → Rd×d and the following Hypothesis :

Hypothesis 3.1 1. There exist w ∈ N and K ∈ R+ such that, for all v ∈ Rnk−1 and z ∈ Rd,

|Gα(v)| ≤ K(1 + |v|)w, |gα(v)| ≤ K(1 + |v|)w, (3.55)

and
|βα(z, v)| ≤ β(z), |dαj (z, v)| ≤ Kc(z)(1 + |v|)w (∀j ∈ N), (3.56)

with, for all n ∈ N,
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•
∫
Rd c(z)

nµ(dz) <∞ ;

•
∫
Rd β(z)nµ(dz) <∞

2. bounding conditions :

• ρ def
= sups∈Rd supα∈A sup1≤l≤m |ραl (s)| <∞ ;

• b def
= sups∈Rd supα∈A |bα(s)| <∞.

Lemma 3.1 Let p ∈ N∗. We assume that the Hypothesis 3.1 holds and we set

Θp,k(t) = sup
α∈A
|α|≤k

EW

[
|V αt |2p

]
.

For all T > 0, there exists a constant CT,p,k (which does not depend on M nor on the set A, and, in
particular, does not depend on the size of I) such that

E
[
Θp,k(t)

]
≤ CT,p,k. (3.57)

Proof : In order to use stochastic calculus, we will come back to the process XM
t , so, with the same

notations as before, and
V(k)(t)

def
=
(
V βt

)
|β|≤k

with the convention V 0
t

def
= XM

t (so V(0)(t) = XM
t ), V αt is then defined as a solution of the following SDE

(where k = |α|):

V αt = V α0 +

∫ t

0

Gα
(
V(k−1)(s)

)
dWs +

JMt∑
j=0

dαj
(
Zj , V(k−1)(T

−
j )
)
1{Uj≤γ(Zj ,XMTj−

)} +

∫ t

0

gα
(
V(k−1)(s)

)
ds

+

m∑
l=1

∫ t

0

ραl (V 0
s )V αs dW l

s +

JMt∑
j=0

βα
(
Zj , V

0
T−j

)
1{Uj≤γ(Zj ,XMTj−

)}V
α
T−j

+

∫ t

0

bα(V 0
s )V αs ds. (3.58)

In order to express the first compound Poisson process with an integral with respect to the Poisson
measure, we put (with the convention T0 = 0)

eαs
(
z, v)

def
=

∞∑
j=1

1]Tj−1,Tj ](s)d
α
j (z, v)

from (3.56) it is clear that,
|eαs
(
z, v)| ≤ Kc(z)(1 + |v|)w. (3.59)

Therefore

V αt = V α0 +

∫ t

0

Gα
(
V(k−1)(s)

)
dWs +

JMt∑
j=0

eα
T−j

(
Zj , V(k−1)(T

−
j )
)
1{Uj≤γ(Zj ,XMTj−

)} +

∫ t

0

gα
(
V(k−1)(s)

)
ds

+

m∑
l=1

∫ t

0

ραl (V 0
s )V αs dW l

s +

JMt∑
j=0

βα
(
Zj , V

0
T−j

)
1{Uj≤γ(Zj ,XMTj−

)}V
α
T−j

+

∫ t

0

bα(V 0
s )V αs ds

= V α0 +

∫ t

0

Gα
(
V(k−1)(s)

)
dWs +

∫ t

0

∫
E

eαs−
(
z, V(k−1)(s

−)
)
1{u≤γ(z,XMs−)}N(ds,dz,du) +

∫ t

0

gα
(
V(k−1)(s)

)
ds

+

m∑
l=1

∫ t

0

ραl (V 0
s )V αs dW l

s +

∫ t

0

∫
E

βα
(
z, V 0

s−

)
1{u≤γ(z,XMs−)}V

α
s−N(ds,dz,du) +

∫ t

0

bα(V 0
s )V αs ds.

From Lemma 2.8, V αt and V
α

t are sharing the same law, so we will prove that, for all k ≥ 0,

E
[

sup
α∈A
|α|≤k

EW
[
|V αt |2p

] ]
≤ CT,p, (3.60)

which will be shown by recurrence on k.
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• For k = 0, V 0
t = XM

t , it is the Proposition B.1.

• For k ≥ 1, we first simplify the notations by writing :

Gα(s)
def
= Gα

(
V(k−1)(s)

)
, gα(s)

def
= gα

(
V(k−1)(s)

)
,

ραl (s)
def
= ραl (V 0

s ), bα(s)
def
= bα(V 0

s ),

hα(s−, z, u)
def
= eαs−

(
z, V(k−1)(s

−)
)
1{u≤γ(z,XMs−)}, βα(s−, z, u)

def
= βα

(
z, V 0

s−

)
1{u≤γ(z,XMs−)},

which gives

V αt = V α0 +

∫ t

0

Gα(s) dWs +

∫ t

0

∫
E

hα(s−, z, u)N(ds,dz,du) +

∫ t

0

gα(s) ds

+

m∑
l=1

∫ t

0

ραl (s)V αs dW l
s +

∫ t

0

∫
E

βα(s−, z, u)V αs−N(ds,dz,du) +

∫ t

0

bα(s)V αs ds.

In order to use the recurrence hypothesis, we bound the coefficients of this last equation in the following
way : with

hk(s)
def
= K(1 + |V(k−1)(s)|)w

and
ξ(z, u)

def
= (c(z) + β(z))1{u≤γ(z)}

we have (according to the hypothesis 3.1)

sup
α∈A
|α|≤k

Gα(s) ≤ hk(s) and hk(s)
def
= sup

α∈A
|α|≤k

gα(s) ≤ hk(s)

and (using (3.59) and (3.56))

∀s, z, u, |hα(s−, z, u)| ≤ hk(s−)ξ(z, u) and |βα(s−, z, u)| ≤ ξ(z, u). (3.61)

At last, we have to notice, using the recurrence hypothesis for k − 1, that, for all n ∈ N∗,

sup
0≤s≤T

E
[
|hk(s)|n

]
<∞; (3.62)

this last result comes directly from the following bounding :

E
[
|V(k−1)(s)|2m

]
= E

[
EW

[
|V(k−1)(s)|2m

]]
≤ K E

 ∑
β∈Ak−1

EW

[
|V βs |2m

]
≤ K ′

√
E
[(

sup
β∈Ak−1

EW

[
|V βt |2m

] )2]
≤ K ′

√
CT,m,k−1 <∞.

Step 1

In order to use the Itô’s formula, we will first have to localize our problem by using the sequence
(τMK )K∈N∗ of stopping times defined by

τMK (k)
def
= inf{t > 0 : sup

s≤t

∑
|α|≤k

|V αs | ≥ K}. (3.63)

Let us prove that a.s. limK→∞ τMK =∞.
From the hypothesis made on the coefficients of V αt , it is clear that, for all t ≥ 0,∑

|α|≤k

E
[

sup
s≤t
|V αs |

]
≤ ∞. (3.64)
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We have, for t ≥ 0

lim
K→∞

P(τMK < t) = lim
K→∞

P(sup
s≤t

∑
|α|≤k

|V αs | > K)

≤ lim
K→∞

1

K
E
[

sup
s≤t

∑
|α|≤k

|V αs |
]

= 0.

(τMK )K∈N∗ tends to ∞ in probability and so, there exists a subsequence (that we will continue to denote
by (τMK )K∈N∗) which tends to ∞ a.s.

In this case we have
|V αt |2p1τMK >t ↑ |V αt |2p a.s.

so
EW

[
|V αt |2p1τMK >t

]
↑ EW

[
|V αt |2p

]
a.s.

and
sup
α∈A
|α|≤k

EW
[
|V αt |2p1τMK >t

]
↑ sup

α∈A
|α|≤k

EW
[
|V αt |2p

]
a.s.

If we admit for the moment that there exists a constant Cp,T,k which does not depend on K and M
and such that, for all 0 ≤ t ≤ T ,

E
[

sup
α∈A
|α|≤k

EW

[
|V αt∧τMK |

2p
] ]
≤ CT,p,k (3.65)

The monotone convergence theorem implies then

E
[

sup
α∈A
|α|≤k

EW
[
|V αt |2p

]]
= sup

K
E
[

sup
α∈A
|α|≤k

EW
[
|V αt |2p1τMK >t

]
= sup

K
E
[

sup
α∈A
|α|≤k

EW
[
|V αt∧τMK |

2p
]]
≤ CT,p,k.

Step 2

We have to establish now (3.65).
For a single component we have (omitting for a moment the parameter α in order to simplify the

notations)

V it = V i0 +

m∑
l=1

∫ t

0

Gil(s) dW l
s +

∫ t

0

∫
E

hi(s−, z, u)N(ds,dz,du) +

∫ t

0

gi(s) ds

+

m∑
l=1

d∑
h=1

∫ t

0

ρlih(s)V hs dW l
s +

d∑
h=1

∫ t

0

∫
E

βih(s−, z, u)V hs−N(ds,dz,du) +

d∑
h=1

∫ t

0

bih(s)V hs ds

Then, applying Itô’s formula with f(x) = x2p

(V it∧τMK
)2p = (V i0 )2p +

m∑
l=1

∫ t∧τMK

0

2p(V is )2p−1
(
Gil(s) +

d∑
h=1

ρlih(s)V hs

)
dW l

s

+ 2p

∫ t∧τMK

0

(V is )2p−1
(
gi(s) +

d∑
h=1

bih(s)V hs

)
ds

+ p(2p− 1)

m∑
l=1

∫ t∧τMK

0

(V is )2p−2
(
Gil(s) +

d∑
h=1

ρlih(s)V hs

)2

ds

+

∫ t∧τMK

0

∫
E

(
V is− + hi(s

−, z, u) +

d∑
h=1

βih(s−, z, u)V hs−
)2p

− (V is−)2pN(ds,dz,du)
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We take now the expectation with respect to the Brownian motion (i.e. conditionally with respect to
all the others random quantities) :

EW

[
(V it∧τMK

)2p
]

= EW

[
(V i0 )2p

]
+ 2p

∫ t∧τMK

0

EW

[
(V is )2p−1

(
gi(s) +

d∑
h=1

bih(s)V hs

)]
ds

+ p(2p− 1)

m∑
l=1

∫ t∧τMK

0

EW

[
(V is )2p−2

(
Gil(s) +

d∑
h=1

ρlih(s)V hs

)2]
ds

+

∫ t∧τMK

0

∫
E

EW

[(
V is− + hi(s

−, z, u) +

d∑
h=1

βih(s−, z, u)V hs−
)2p

− (V is−)2p
]
N(ds,dz,du).

Since s ≤ t ∧ τMK , we have Xs = Xs∧τMK , and obviously t ≤ t ∧ τMK , so we have

EW

[
|V it∧τMK |

2p
]

= EW

[
|V i0 |2p

]
+ 2p

∫ t

0

EW

[
|V is∧τMK |

2p−1
(
|gi(s)|+

d∑
h=1

|bih(s)||V hs∧τMK |
)]

ds

+ p(2p− 1)

m∑
l=1

∫ t

0

EW

[
|V is∧τMK |

2p−2
(
|Gil(s)|+

d∑
h=1

|ρlih(s)||V hs∧τMK |
)2]

ds

+

∫ t∧τMK

0

∫
E

EW

[∣∣∣(V is− + hi(s
−, z, u) +

d∑
h=1

βih(s−, z, u)V hs−
)2p

− (V is−)2p
∣∣∣]N(ds,dz,du).

Since ∣∣∣(V is− + hi(s
−, z, u) +

d∑
h=1

βih(s−, z, u)V hs−
)2p

− (V is−)2p
∣∣∣

=
∣∣∣ 2p∑
k=1

(
2p

k

)(
hi(s

−, z, u) +

d∑
h=1

βih(s−, z, u)V hs−
)k
V is−

2p−k
∣∣∣

≤
2p∑
k=1

(
2p

k

)(
|h|(s−, z, u) + |β|(s−, z, u)|V |s−

)k|V |s−)2p−k

= (|V |s− + |h|(s−, z, u) + |β|(s−, z, u)|V |s−)2p − |V |2ps− ,

it follows (with ρ def
= supl |ρl|)

EW [(V it∧τMK
)2p] ≤EW [|V0|2p] + 2p

∫ t∧τMK

0

EW [|Vs|2p−1(|g|(s) + |b|(s)|Vs|)] ds

+ p(2p− 1)

∫ t∧τMK

0

EW [|Vs|2p−2(|G|(s) + ρ(s)|Vs|)2] ds

+

∫ t∧τMK

0

∫
E

EW [(|Vs− |+ |h|(s−, z, u) + |β|(s−, z, u)|Vs− |)2p − |Vs− |2p]N(ds,dz,du).

Then (writing again from now on the parameter α, in order to see clearly which components depend
of it or not), we have (using, among others things, the inequality (3.61))

EW [|V αt∧τMK |
2p] ≤EW [|V α0 |2p] + 2p

∫ t∧τMK

0

EW [|V αs |2p−1(hk(s) + b|V αs |)] ds

+ p(2p− 1)

∫ t∧τMK

0

EW [|V αs |2p−2(hk(s) + ρ|V αs |)2] ds

+

∫ t∧τMK

0

∫
E

EW [(|V αs− |+ hk(s−)ξ(z, u) + ξ(z, u)|V αs− |)
2p − |V αs− |

2p]N(ds,dz,du).

(Notice that, since V αt is an adapted process, |V α0 | is a constant, so EW [|V α0 |2p] = |V α0 |2p.)
To bound the first integral, using the elementary inequality

∀x, y ≥ 0, ∀u, v > 0 xuyv ≤ xu+v + yu+v, (3.66)
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we notice that :

||V αs |2p−1hk(s) + b|V αs |2p| ≤ hk(s)2p + |V αs |2p + b|V αs |2p

= hk(s)2p + (1 + b)|V αs |2p,

and, similarly, for the second one,

|V αs |2p−2(hk(s) + ρ|V αs |)2 ≤ 2hk(s)2p + 2|V αs |2p + 2ρ2|V αs |2p

= 2hk(s)2p + 2(1 + ρ2)|V αs |2p.

It follows that,

2p

∫ t∧τMK

0

EW [|V αs |2p−1(hk(s) + b|V αs |)] ds+ p(2p− 1)

∫ t∧τMK

0

EW [|V αs |2p−2(hk(s) + ρ|Vs|)2] ds

≤ Cp
∫ t∧τMK

0

EW [hk(s)2p] ds+ C ′p

∫ t∧τMK

0

EW [|V αs |2p] ds.

For the third integral, we will see that

(|V αs− |+ hk(s−)ξ(z, u) + ξ(z, u)|V αs− |)
2p − |V αs− |

2p ≤ ξ(z, u)P (ξ(z, u))
(
|V αs− |

2p + (hk(s−))2p
)

(3.67)

where P is a polynomial function.
Let us prove now (3.67) : if u, v ≥ 0,∣∣u2p − v2p

∣∣ ≤ |u− v|(u+ v)2p−1, (3.68)

so, it follows that, for a, b, c ≥ 0 :

(a+ c(b+ a))2p − a2p ≤ c(b+ a)(a(2 + c) + cb)2p−1

≤ 22p−1c(b+ a)(a2p−1(2 + c)2p−1 + (cb)2p−1)

≤ 22p−1c(a2p(2 + c)2p−1 + a(cb)2p−1 + ba2p−1(2 + c)2p−1 + c2p−1b2p)

using (3.66), we have

a(cb)2p−1 ≤ a2p + (cb)2p and ba2p−1(2 + c)2p−1 ≤ a2p + b2p(2 + c)2p(2p−1)

which brings to

(a+ c(b+ a))2p − a2p ≤ 22p−1c
[
a2p(2 + (2 + c)2p−1) + b2p(c2p−1 + c2p + (2 + c)2p(2p−1))

]
,

or, more generally, to
(a+ c(b+ a))2p − a2p ≤ cP (c)

[
a2p + b2p)

]
, (3.69)

where P ∈ R[X], which proves (3.67).
Gathering all those results,

EW [|V αt∧τMK |
2p] ≤EW [|V α0 |2p] + Cp

∫ t∧τMK

0

EW [hk(s)2p] ds+ C ′p

∫ t∧τMK

0

EW [|V αs |2p] ds

+

∫ t∧τMK

0

∫
E

ξ̄P (ξ̄) EW [h̄2p
k (s−)]N(ds,dz,du) +

∫ t∧τMK

0

∫
E

ξ̄P (ξ̄) EW [|V αs− |
2p]N(ds,dz,du).

We then have, directly, with Θp,k(t ∧ τMK )
def
= sup α∈A

|α|≤k
EW

[
|V α
t∧τMK

|2p
]
,

Θp,k(t ∧ τMK ) ≤Θp,k(0) + Cp

∫ t∧τMK

0

EW [hk(s)2p] ds+ C ′p

∫ t∧τMK

0

Θp,k(s) ds

+

∫ t∧τMK

0

∫
E

ξ̄P (ξ̄) EW [h̄2p
k (s−)]N(ds,dz,du) +

∫ t∧τMK

0

∫
E

ξ̄P (ξ̄)Θp,k(s−)N(ds,dz,du),

(3.70)
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Since s ≤ t ∧ τMK , we have, for any process Y , Ys = Ys∧τMK , and obviously t ≤ t ∧ τMK , so we have

Θp,k(t ∧ τMK ) ≤Θp,k(0) + Cp

∫ t

0

EW [hk(s ∧ τMK )2p] ds+ C ′p

∫ t

0

Θp,k(s ∧ τMK ) ds

+

∫ t

0

∫
E

ξ̄P (ξ̄) EW [h̄2p
k ((s ∧ τMK )−)]N(ds,dz,du) +

∫ t

0

∫
E

ξ̄P (ξ̄)Θp,k((s ∧ τMK )−)N(ds,dz,du),

(3.71)

Step 2

The last step is to bound
E [Θp,k(t)] .

By setting

R1
def
=

∫
ξ̄P (ξ̄) duµ(dz)

we have (using the isometry in F 1
p , cf. (??))

E
[
Θp,k(t ∧ τMK )

]
≤E

[
Θp,k(0)

]
+ Cp E

[ ∫ t

0

EW [hk(s ∧ τMK )2p] ds
]

+ C ′p E
[ ∫ t

0

Θp,k(s ∧ τMK ) ds
]

+ E
[ ∫ t

0

∫
E

ξ̄P (ξ̄) EW [h̄2p
k ((s ∧ τMK )−))]N(ds,dz,du)

]
+ E

[ ∫ t

0

∫
E

ξ̄P (ξ̄)Θp,k((s ∧ τMK )−))N(ds,dz,du)
]

= E
[
Θp,k(0)

]
+ Cp

∫ t

0

E[hk(s ∧ τMK )2p] ds+ C ′p

∫ t

0

E[Θp,k(s ∧ τMK )] ds

+R1

∫ t

0

E[h̄2p
k ((s ∧ τMK )−))] ds+

∫ t

0

E[Θp,k((s ∧ τMK )−))] ds

= E
[
Θp,k(0)

]
+ (Cp +R1)

∫ t

0

E[hk(s ∧ τMK )2p] ds+ (C ′p +R1)

∫ t

0

E[Θp,k(s ∧ τMK )] ds

With Ap(T )
def
= E

[
Θp,k(0)

]
+ (Cp +R1)

∫ T
0

E[hk(s)2p] ds, which, by virtue of (3.62), is a finite quantity,
the Gronwall’s lemma gives here :

E
[
Θp,k(t ∧ τMK )

]
≤ Ap(T ) exp[(C ′p +R1)t]

which proves the assertion (3.65).
•

To bound (in Lp, p ≥ 1) the Sobolev norm
∣∣X̄M

t

∣∣
l
, we will proceed by recurrence on l ∈ N∗, and we will

show in detail the case corresponding to the first order norm, since in this particular case, the structure
of the general method already appears with lesser notations than used in the general case.

In all the following we will set
Ak(L)

def
= (J1, LK× J1, dK)k

and
A(L)

def
=

⋃
k∈N∗

Ak(L).

We will also need the following lemma’s :

Lemma 3.2 Let n, p ≥ 1 and F ∈ Sd. Then

E
[
|DnF |2p

]
≤ dnp

√
E
[
(JMt )2np

]
sup
L

√
E
[

max
α∈An(L)

EW
[
|Dα F |4p

]]
.

Proof : By definition
E
[
|DnF |2p

]
= E

[( ∑
α∈(J1,JMt K×J1,dK)n

|Dα F |2
)p]

;
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on the other hand
E
[
|DnF |2p

]
= sup

L
E
[
|DnF |2p 1JMt ≤L

]
and

E
[
|DnF |2p 1JMt ≤L

]
= E

[( ∑
α∈(J1,JMt K×J1,dK)n

|Dα F |2
)p
1JMt ≤L

]

≤ E
[
(dJt)

n(p−1)
∑

α=((kn,rn),...,(k1,r1))∈An(L)

|Dα F |2p
n∏
i=1

1ki≤JMt ≤L

]
≤ E

[
(dJt)

n(p−1)
∑

α∈An(L)

EW
[
|Dα F |2p

]]
≤ E

[
dnpJnpt max

α∈An(L)
EW

[
|Dα F |2p

]]
≤ dnp

√
E
[
(JMt )2np

]√
E
[

max
α∈An(L)

EW
[
|Dα F |4p

]]
.

•

Lemma 3.3 Let j ≥ 1. Then there exists C|α| > 0 such that

|Dα Z̄j | ≤ C|α|.

Proof : For |α| = 1, α = (k, r) and (recalling that πrk = φM (Z̄k))

Dk,r Z̄j =



πrk∂Z̄rk Z̄
1
j

...
πrk∂Z̄rk Z̄

r
j

...
πrk∂Z̄rk Z̄

d
j

 =



0
...

φM (Z̄k)δk,j
...
0

 (3.72)

so |Dk,r Z̄j | ≤ ‖φ‖∞ = 1.
Since φ has bounded derivatives of any order, the recursive differentiation of (3.72) gives the general

bounding property ; although this recursive differentiation is rather clear, we show the case |α| = 2, to
highlight the mechanism of it :

let α = ((m,n)(k, r)), then (using (3.72)),

Dα Z̄j = Dm,n Dk,r Z̄j =



0
...

πnm∂Z̄nm
(
φM (Z̄k)

)
δk,j

...
0


with

πnm∂Z̄nm
(
φM (Z̄k)

)
δk,j = φM (Z̄m)∂nφM (Z̄k)δm,kδk,j ,

and a derivative of higher order will be of the following form :

Dα Z̄j =



0
...∑

c
∏
∂βφM (Z̄l)

)
...
0

 .

so (since the sum and the product are finite),

|Dα Z̄j | ≤
∑

c
∏
‖∂βφ‖∞

def
= C|α|.
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•

Recalling the following notation (cf. subsection 1.5.1) : for 1 ≤ l ≤ n,

Mn(l)
def
=
{
M = (M1, . . . ,Ml),

⋃
i∈J1,lK

Mi = {1, . . . , n} and Mi ∩Mj = ∅, for i 6= j
}
,

we have, in fact, a more precise result :

Lemma 3.4 Let k ≥ 1 and α = ((kn, rn), . . . , (k1, r1)).

Dα Z̄
r
k = δkn,k · · · δk1,kδr1,rfα(Z̄k) (3.73)

where (with r def
= (rn, . . . , r2))

fα(Z̄k)
def
=

∑
β=(β1,··· ,βn)∈Mn−1(n)

cβ

n∏
i=1

∂βi(r)φM (Z̄k) (3.74)

with

• cβ ∈ N ;

• we denote againMn−1(n), but, here, we allow βi to be empty.

Proof : By induction over the length k of α. •

3.3 First order norm
Proposition 3.5 If p ≥ 1, for all T > 0, exists a constant CT,p > 0 such that

∀t ∈ [0, T ], ||D1X̄M
t ||2p ≤ CT,p

√
‖JMT ‖2p. (3.75)

Proof :
First, from Lemma 3.2, we have

E
[∣∣D1X̄M

t

∣∣2p] ≤ dp√E
[
(JMT )2p

]
sup
L

√
E
[

max
α∈A1(L)

EW
[
|Dα X̄M

t |4p
]]

Hence, to conclude, it remains to bound, independently of L, the quantity E
[

maxα∈A1(L) EW
[
|Dα X̄

M
t |4p

]]
.

Recalling that X̄M
t solves the following diffusion equation :

X̄M
t = x+

∫ t

0

σ(X̄M
s ) dWs +

JMt∑
j=1

cM (Z̄j , X̄
M
Tj−) +

∫ t

0

g(X̄M
s ) ds,

we have

Dk,r X̄t = ∇zcM (Z̄k, X̄
M
Tk−) Dk,r Z̄k +

m∑
l=1

∫ t

Tk

∇σl(X̄M
s ) Dk,r X̄

M
s dW l

s

+

JMt∑
j=k+1

∇xcM (Z̄j , X̄
M
Tj−) Dk,r X̄

M
Tj−

+

∫ t

Tk

∇xg(X̄M
s ) Dk,r X̄

M
s ds.

We can then apply the bounding Lemma 3.1 with α = (k, r) and V
α

t
def
= Dk,r X̄t, since the Hypothesis

3.1 are well verified, for we have (α = (k, r))

Gα = 0, dαj
(
Zj , V (0)(T

−
j ) = ∂zrcM (Z̄j , X̄

M
Tj−)ΦM (Z̄j)δk,j , gα = 0

ραl (V
0

s)V
α

s = ∇σl(X̄M
s ), βα

(
Zj , V

0

T−j

)
V
α

T−j
= ∇xcM (Z̄j , X̄

M
Tj−) Dk,r X̄

M
Tj−,
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bα(V
0

s)V
α

s = ∇xg(X̄M
s ) Dk,r X̄

M
s

with (using Lemma 3.3)

|∂zrcM (Z̄j , X̄
M
Tj−)ΦM (Z̄j)δk,j | ≤ C1c

(
Z̄j
)

and |∇xcM (Z̄j , X̄
M
Tj−)| ≤ c

(
Z̄j
)
,

which completes the proof.
•

3.4 Norm of higher order

Following the very same path as before, we find, recalling that λM
def
= 2c̄µ(EM ) (where E1 is chosen in

order to have µ(E1) > 0)

Proposition 3.6 If p ≥ 1 and l ∈ N∗, there exists a constant Cp,l,T > 0 such that

∀t ∈ [0, T ],
∥∥ ∣∣X̄M

t

∣∣
l

∥∥
2p
≤ Cp,l,T (1 +

√
‖(JMT )l‖2p), (3.76)

and, consequently, there exists a constant C ′p,l,T > 0 such that2

∀t ∈ [0, T ],
∥∥ ∣∣X̄M

t

∣∣
l

∥∥
2p
≤ C ′p,l,T

√
(λM )l. (3.77)

Proof : We have

E
[∣∣X̄M

t

∣∣2p
l

]
≤ Cp

l∑
k=0

E
[∣∣DkX̄M

t

∣∣2p]
and, using Lemma 3.2,

Cp

l∑
k=0

E
[∣∣DkX̄M

t

∣∣2p] ≤ Cp l∑
k=0

dkp
√

E
[
(JMT )2kp

]
sup
L

√
E
[

max
α∈Ak(L)

EW
[
|Dα X̄M

t |4p
]]
.

So, if we admit for a moment that, for k ∈ J0, lK, supL

√
E
[

maxα∈Ak(L) EW
[
|Dα X̄M

t |4p
]]
≤ Ck,p, then

E
[∣∣X̄M

t

∣∣2p
l

]
≤ Cp

l∑
k=0

dkp
√

E
[
(JMT )2kp

]
Ck,p ≤ Cp,l,T (1 +

√
E
[
(JMT )2lp

]
) (3.78)

which proves the proposition.
Hence, to conclude, it remains to bound, independently of L, the quantity E

[
maxα∈Ak(L) EW

[
|Dα X̄

M
t |4p

]]
,

which will be done by recurrence on |α| in the next lemma.
•

Lemma 3.7 Let p ≥ 1, and n ∈ N and ; there exists Cn,p such that

sup
L

E
[

max
α∈A(L)
|α|≤n

EW
[
|Dα X̄

M
t |2p

]]
≤ Cn,p. (3.79)

Proof :
The case |α| = 1 is corresponding to the first order norm case.
Else, starting again from

X̄M
t = x+

∫ t

0

σ(X̄M
s ) dWs +

JMt∑
j=1

cM (Z̄j , X̄
M
Tj−) +

∫ t

0

g(X̄M
s ) ds,

2We note, indeed, that JMt ∼ P(tλM ) which implies E
[
JMt

n]
= P (tλM ), where P is polynomial of degree n : when M

is growing, (for t ≤ T ), we have
E
[
JMt

n
]
= O

(
λnM
)
.
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we have (using Lemma 1.6, with

∑
(1)

def
=

k∑
l=2

∑
β=(β1,...,βl)
βi∈J1,dK

∑
M∈Mk(l)

and
∑
(2)

def
=

k∑
l=1

∑
β=(β1,...,βr,β

′
r+1,...,β

′
l)

βi∈J1,dK, β′j∈Jd+1,2dK

∑
M∈Mk(l)

,

where k def
= |α|, in order to shorten the equation)

Dα X̄
M
t =

m∑
l=1

∫ t

0

Dα(σl(X̄
M
s )) dW l

s +

JMt∑
j=1

Dα(cM (Z̄j , X̄
M
Tj−)) +

∫ t

0

Dα(g(X̄M
s )) ds

=

m∑
l=1

∫ t

0

∑
(1)

∂βσl(X̄
M
s ) DM1(α)(X̄

M
s )β1

· · ·DMl(α)(X̄
M
s )βl +∇σl(X̄M

s ) Dα(X̄M
s ) dW l

s

+

JMt∑
j=1

∑
(2)

∂βcM (Z̄j , X̄
M
Tj−) DM1(α) Z̄

β1

j · · ·DMr(α) Z̄
βr
j ×DMr+1(α)(X̄

M
Tj−)d−β′r+1

· · ·DMl(α)(X̄
M
Tj−)d−β′l

+∇zcM (Z̄j , X̄
M
Tj−) Dα(Z̄j) +∇xcM (Z̄j , X̄

M
Tj−) Dα(X̄M

Tj−)

+

∫ t

0

∑
(1)

∂β(g(X̄M
s )) DM1(α)(X̄

M
s )β1 · · ·DMl(α)(X̄

M
s )βl +∇g(X̄M

s ) Dα(X̄M
s ) ds (3.80)

Then we apply the upper bound Lemma 3.1 with V
α

t
def
= Dα X̄t (and consequently V (k−1)(t) =(

Dβ X̄t

)
|β|<|α|

). Using Lemma 3.3, it follows that the Hypothesis 3.1 are well verified ; for example :

Gαl
(
V (k−1)(s)

)
= Gαl

((
Dβ X̄t

)
|β|<|α|

)
def
=
∑
(1)

∂β(σl(X̄
M
s )) DM1(α)(X̄

M
s )β1

· · ·DMl(α)(X̄
M
s )βl

so there exists w ∈ N such that
|Gα(v)| ≤ K(1 + |v|)w;

and

dαj
(
Zj , V (k−1)(T

−
j )
)

= dαj
(
Zj ,

(
Dβ X̄T−j

)
|β|<|α|

)
def
=
∑
(2)

∂βcM (Z̄j , X̄
M
Tj−) DM1(α) Z̄

β1

j · · ·DMr(α) Z̄
βr
j ×DMr+1(α)(X̄

M
Tj−)d−β′r+1

· · ·DMl(α)(X̄
M
Tj−)d−β′l .

Notice that it is legitimate to consider each DMu(α) Z̄
βu
j as a function of j and Z̄j since, using directly the

Lemma 3.4
DMu(α) Z̄

βu
j = δ(Mu(α))1n,j

· · · δ(Mu(α))11,j
δ(Mu(α))21,βu

fα(Z̄j)

where fα is defined in (3.74).
Since, from the Lemma 3.3, every |DMi(α) Z̄

γi
j | is bounded, there comes an inequality of the form

|dαj (Zj , V (k−1)(T
−
j ))| ≤ Kc(Zj)(1 + |V (k−1)(T

−
j )|)w,

and likewise to the other quantities.
•

3.5 Operator L
Proposition 3.8 For p ≤ 1, and all l ∈ N∗, it exists NT,l,p > 0 such that∥∥|L X̄M

t

∣∣
l

∥∥
2p
≤ NT,l,p

(
λM
)(l+2)2

, (3.81)

with λM = µ(EM ).
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Proof :
In the following Cp, Cl, Cp,l are “flying constants” which may change during the calculation ; we have

L(F ) = −
JMt∑
k=1

d∑
r=1

∂k,r(πk,r) Dk,r F + Dk,r(Dk,r F ) + Dk,r ln pJ Dk,r F, (3.82)

hence, using the fact that |.|l is a norm (and with |AB|l ≤ Cl|A|l|B|l : cf. 1.10)

|L(F )|l ≤
JMt∑
k=1

d∑
r=1

|∂k,r(πk,r) Dk,r F |l + |Dk,r(Dk,r F )|l +

JMt∑
k=1

d∑
r=1

|Dk,r ln pJ Dk,r F |l

≤ Cl
JMt∑
k=1

d∑
r=1

|∂k,r(πk,r)|l|Dk,r F |l +

JMt∑
k=1

d∑
r=1

|Dk,r(Dk,r F )|l + Cl

JMt∑
k=1

d∑
r=1

|Dk,r ln pJ ||Dk,r F |l

≤ Cl
JMt∑
k=1

d∑
r=1

|∂k,r(πk,r)|2l + |Dk,r F |2l +

JMt∑
k=1

d∑
r=1

|Dk,r(Dk,r F )|l + Cl

JMt∑
k=1

d∑
r=1

|Dk,r ln pJ |2l + |Dk,r F |2l

≤
JMt∑
k=1

d∑
r=1

|Dk,r(Dk,r F )|l + Cl(|πk,r|2l+1 + | ln pJ |2l+1 + 2|F |2l+1)

(the last inequality follows from the fact that
∑JMt
k=1

∑d
r=1 |Dk,r G|2l =

∑JMt
k=1

∑d
r=1

∑
|α|≤l |Dα Dk,r G|2 ≤∑

|α|≤l+1 |DαG|2 = |G|2l+1), which implies :

|L(F )|2pl ≤ Cp, l
(( JMt∑

k=1

d∑
r=1

|Dk,r(Dk,r F )|l
)2p

+ |πk,r|4pl+1 + |F |4pl+1 + | ln pJ |4pl+1

)

≤ Cp, l
((
JMt

JMt∑
k=1

d∑
r=1

|Dk,r(Dk,r F )|2l
)p

+ |πk,r|4pl+1 + |F |4pl+1 + | ln pJ |4pl+1

)
≤ Cp, l

((
JMt
)p|F |2pl+2 + |πk,r|4pl+1 + |F |4pl+1 + | ln pJ |4pl+1

)
.

And, finally (noticing that, as a consequence of Lemma 3.3, |πk,r|4pl+1 ≤ Cl,p),

E
[
|L(F )|2pl

]
≤ Cp, l

(
1 +

√
E
[(
JMt
)2p]√

E
[
|F |4pl+2

]
+ E

[
|F |4pl+1

]
+ E

[
| ln pJ |4pl+1

])
(3.83)

We put F = X̄M
t . Let us recall that, from (3.78)

E
[∣∣X̄M

t

∣∣4n
l+1

]
≤ Cp,l,T (1 +

√
E
[
(JMT )4n(l+1)

]
) ≤ C ′p,l,T

√
λM )4n(l+1).

Then, if we admit for the moment Lemma 3.9, we obtain the following upper bound :

E
[
|L(X̄M

t )|2pl
]
≤ NT,l,p

(
λM
)2p(l+2)2

,

which ends the proof. •

Hence, all that remains is to prove the following result :

Lemma 3.9 Let l, n ∈ N.
E
[
| ln pJ |2nl+1

]
≤ CqM ,l,n,T

(
µ(EM )

)n(l+2)2

.

Proof :
We recall that

ln pJ =

JMT∑
j=1

ln qM (Z̄j , X̄
M
Tj−),
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and recalling that ln qM has bounded derivatives of any order, using Lemma 2.7, which implies, by corollary
1.12, the existence of CqM ,l > 0 such that

|qM (F )|l+1 ≤ CqM ,l
(
1 + |F |l+1 + |F |l+1

l

)
we have,

| ln pJ |l+1 ≤
JMT∑
j=1

| ln qM (Z̄j , X̄
M
Tj−)|l+1

≤ CqM ,l
JMT∑
j=1

1 + |(Z̄j , X̄M
Tj−)|l+1 + |(Z̄j , X̄M

Tj−)|l+1
l

≤ CqM ,l
(
JMT +

JMT∑
j=1

|Z̄j |l+1 + |X̄M
Tj−|l+1 + 2l(|Z̄j |l+1

l + |X̄M
Tj−|

l+1
l )

)

≤ C ′qM ,l
(
JMT +

JMT∑
j=1

|X̄M
Tj−|l+1 + |X̄M

Tj−|
l+1
l

)
it directly follows

E
[
| ln pJ |2nl+1

]
≤ CqM ,l,n

(
E
[(
JMT
)2n]

+ E
[(
JMT

JMT∑
j=1

|X̄M
Tj−|

2
l+1 + (|X̄M

Tj−|
l+1
l )2

)n])

≤ CqM ,l,n
(

E
[(
JMT
)2n]

+ E
[(
JMT

)n( JMT∑
j=1

|X̄M
Tj−|

2
l+1 + |X̄M

Tj−|
2(l+1)
l

)n])

≤ CqM ,l,n
(

E
[(
JMT
)2n]

+

√
E
[(
JMT

)2n]√√√√√E
[( JMT∑

j=1

|X̄M
Tj−|

2
l+1 + |X̄M

Tj−|
2(l+1)
l

)2n])
Our aim is then to bound the second term of the rhs of this last inequality.
We have

|X̄M
Tj−|

2
l+1 =

∑
|α|≤l+1

|Dα X̄
M
Tj−|

2

and from (3.80) we know that we can put V
α

t
def
= Dα X̄t with V

α

t defined in (3.54) ; then, there exists a
process V αt with the same law and verifying (3.58). So :

E
[( JMT∑

j=1

|X̄M
Tj−|

2
l+1

)2n]
= E

[( JMT∑
j=1

∑
|α|≤l+1

|Dα X̄
M
Tj−|

2
)2n]

= E
[( JMT∑

j=1

∑
|α|≤l+1

|Dα X̄
M
Tj−|

2
)2n]

= E
[( JMT∑

j=1

∑
|α|≤l+1

|V αTj−|
2
)2n]

= E
[( JMT∑

j=1

∑
|α|≤l+1

|V αTj−|
2
)2n]

≤ Cn
√

E
[(
JMT
)4n−2

]√√√√√E
[ JMT∑
j=1

( ∑
|α|≤l+1

|V αTj−|2
)2n]

.
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In the same way,

E
[( JMT∑

j=1

|X̄M
Tj−|

2(l+1)
l

)2n]
≤ C ′n

√
E
[(
JMT
)4n−2

]√√√√√E
[ JMT∑
j=1

( ∑
|α|≤l

|V αTj−|2
)2n(l+1)]

.

But, using the F 1
p isometry, with v, w ∈ N∗,

E
[ JMT∑
j=1

( ∑
|α|≤v

|V αTj−|
2
)w]

= E
[ ∫ t

0

∫
EM×[0,2C̄]

( ∑
|α|≤v

|V αs− |
2
)w
N(ds,dz,du)

]
= 2C̄µ(EM ) E

[ ∫ t

0

( ∑
|α|≤v

|V αs− |
2
)w

ds
]

= 2C̄µ(EM ) E
[ ∫ t

0

( ∑
|α|≤v

|V αs− |2
)w

ds
]

= 2C̄µ(EM ) E
[ ∫ t

0

|X̄M
s− |

2w
v ds

]
= 2C̄µ(EM )

∫ t

0

E
[
|X̄M

s |2wv
]

ds.

Now from (3.78) we have

E
[∣∣X̄M

t

∣∣w
v

]
≤ Cp,l,T (1 +

√
E
[
(JMT )vw

]
)

Gathering these results, we obtain :

E
[
| ln pJ |2nl+1

]
≤ CqM ,l,n,T

(
E
[(
JMT
)2n]

+

√
E
[(
JMT

)2n](
µ(EM ) E

[(
JMT
)4n−2

]√
E
[
(JMT )4n(l+1)l

]) 1
4
)

Since (for t ≤ T ),
E
[
JMt

n
]

= O
M→+∞

(
λnM
)
,

we have

E
[
| ln pJ |2nl+1

]
≤ CqM ,l,n,T

(
µ(EM )

) 1
4
(
µ(EM )

)2n−1+
n(l+1)l

2 ≤ CqM ,l,n,T
(
µ(EM )

)n(l+2)2

•

3.6 The covariance matrix
3.6.1 Preliminaries

We consider a Poisson point measure N(ds,dz,du) on Rd × R ; with compensator µ(dz) × 1(0,∞)(u) du

and two non-negative measurable functions f, g : Rd → R+. For a measurable set B ⊂ Rd we denote
Bg = {(z, u) : z ∈ B, u < g(z)} ⊂ Rd × R+, and we consider the process

Nt(1Bgf)
def
=

∫ t

0

∫
Bg

f(z)N(ds,dz,du).

Moreover we note νg(dz) = g(z)µ(dz) and

αg,f (s) =

∫
Rd

(1− e−sf(z)) dνg(dz), βB,g,f (s) =

∫
Bc

(1− e−sf(z)) dνg(dz)

We have the following result.

Lemma 3.10 Let φ(s) = E
[
e−sNt(1Bg f)

]
the Laplace transform of the random variable Nt(1Bgf) then

we have
φ(s) = e−t(αg,f (s)−βB,g,f (s)).
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Proof : From Itô’s formula we have

exp(Nt(1Bgf)) = 1−
∫ t

0

∫
Rd×R+

exp(−s(Nr−(1Bgf)))(1− exp(−sf(z)1Bg (z, u))) dN(r, z, u)

and consequently

E
[
exp(Nt(1Bgf))

]
= 1−

∫ t

0

E
[
exp(−s(Nr−(1Bgf)))

]
dr

∫
Rd×R+

(1− exp(−sf(z)1Bg (z, u)))µ(dz) du.

But∫
Rd×R+

(1− exp(−sf(z)1Bg (z, u)))µ(dz) du =

∫
Rd×R+

1Bg (z, u)(1− exp(−sf(z)))µ(dz) du

=

∫
Rd
1B(z)(1− exp(−sf(z)))

∫
R+

1{u<g(z)}µ(dz) du

=

∫
B

(1− exp(−sf(z)))g(z)µ(dz) = αg,f (s)− βB,g,f (s),

It follows that
E
[
exp(Nt(1Bgf))

]
= exp(−t(αg,f (s)− βB,g,f (s))).

�

We consider an abstract measurable space E, a measure ν on this space and a non-negative measurable
function f : E → R+, such that

∫
f dν <∞. For t > 0 and p ≥ 1 we notice

αf (t) =

∫
E

(1− e−tf(a)) dν(a), and Ipt (f) =

∫ +∞

0

sp−1e−tαf (s) ds.

Lemma 3.11 1. Suppose that for p ≥ 1 and t > 0

lim inf
u→∞

1

lnu
αf (u) >

p

t
(3.84)

then
Ipt (f) <∞.

2. A sufficient condition for (3.84) is

lim inf
u→∞

1

lnu
ν
(
f ≥ 1

u

)
>
p

t
. (3.85)

In particular, if lim infu→∞
1

lnuν
(
f ≥ 1

u

)
=∞, then ∀p ≥ 1 and ∀t > 0,

Ipt (f) <∞.

We notice that if ν is finite then (3.85) cannot be satisfied.

Proof : 1) From (3.84) one can find ε > 0 such that as s goes to infinity sp−1e−tαf (s) ≤ 1
s1+ε and

consequently Ipt (f) <∞.

2) With the notation n(dz) = ν ◦ f−1(dz), we have

αf (u) =

∫ +∞

0

(1− e−uz) dn(z) =

∫ +∞

0

e−yn
(y
u
,∞
)

dy.

Using Fatou’s lemma and (3.85), we obtain

lim inf
u→∞

1

lnu

∫ +∞

0

e−yn
(y
u
,∞
)

dy ≥
∫ +∞

0

e−y lim inf
u→∞

1

lnu
n
(y
u
,∞
)

dy >
p

t
.

�
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We consider the Poisson point measureN(ds,dz,du) on Rd×R+ with compensator µ(dz)×1(0,∞)(u) du.
We recall that

Nt(1Bgf)
def
=

∫ t

0

∫
Bg

f(z)N(ds,dz,du),

for f , g : Rd → R+ and Bg = {(z, u) : z ∈ B, u < g(z)} ⊂ Rd × R+ and that (with νg(dz)
def
= g(z)µ(dz))

αg,f (s) =

∫
Rd

(
1− e−sf(z)

)
dνg(dz), βB,g,f (s) =

∫
Bc

(
1− e−sf(z)

)
dνg(dz).

We have the following result (with Γ(p) =
∫ +∞

0
sp−1e−s ds).

Lemma 3.12 Let Ut = t
∫
Bc
f(z) dνg(z), then, for all p ≥ 1,

E

[
1(

Nt(1Bgf) + Ut
)p
]
≤ 1

Γ(p)

∫ ∞
0

sp−1 exp(−tαg,f (s)) ds. (3.86)

If it is supposed that, for some 0 < θ ≤ ∞,

lim inf
a→∞

1

ln a
νg

(
f ≥ 1

a

)
= θ, (3.87)

then for every t > 0 and p ≥ 1 such that p
t < θ

E

[
1(

Nt(1Bgf) + Ut
)p
]
<∞.

Proof : By a change of variables we obtain for every λ > 0,

λ−pΓ(p) =

∫ +∞

0

sp−1e−λs ds.

Taking the expectation in the previous equality with λ = Nt(1Bgf) + Ut we obtain

E

[
1(

Nt(1Bgf) + Ut
)p
]

=
1

Γ(p)

∫ +∞

0

sp−1 E
[
exp(−s(Nt(1Bgf) + Ut))

]
ds.

Now from Lemma 3.10 we have

E
[
exp(−sNt(1Bgf))

]
= exp(−t(αg,f (s)− βB,g,f (s))).

Moreover, from the definition of Ut one can easily verify that exp(−sUt) ≤ exp(−tβB,g,f (s)) and then

E
[
exp(−s(Nt(1Bgf) + Ut))

]
≤ exp(−tαg,f (s))

this completes the proof of (3.86). The second part of the lemma follows directly from Lemma 3.11.
�

3.6.2 The Malliavin covariance matrix

In this subsection, we prove, under some additional assumptions on p and t, that E
[

1
|det σ(FM )|p

]
is

bounded (uniformly on M), for the Malliavin matrix σ(FM ) defined at the definition 1.5.
From the diffusion equation (2.44)

X̄M
t = x+

∫ t

0

σ(X̄M
s ) dWs +

JMt∑
j=1

cM (Z̄j , X̄
M
Tj−) +

∫ t

0

g(X̄M
s ) ds,

let us consider the tangent flow

YMt = Id +

m∑
l=1

∫ t

0

∇σl(X̄M
s )YMs dW l

s +

JMt∑
j=1

∇xcM (Z̄j , X̄
M
Tj−)YMTj− +

∫ t

0

∇xg(X̄M
s )YMs ds.
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We then define the following process (with ∇xcj = ∇xcM (Z̄j , X̄
M
Tj−)) :

ŶMt
def
= Id−

m∑
l=1

∫ t

0

ŶMs ∇σl(X̄M
s ) dW l

s−
JMt∑
j=1

ŶMTj−∇xcj(Id +∇xcj)−1+

∫ t

0

ŶMs

(1

2

m∑
l=1

∇σl(X̄M
s )2−∇xg(X̄M

s )
)

ds.

Lemma 3.13 We have, for all t ≥ 0,
YMt ŶMt = Id . (3.88)

Proof : The proof is postponed in the Appendix C. •

Lemma 3.14 Assuming hypothesis 2.1, 2.2, 2.3 we have, for p ≥ 1, T > t > 0 such that 2dp
t < θ

E

[
1

|det σ(FM )|p
]
≤ Cp, (3.89)

where the constant Cp does not depend on M .

Proof :
Since

Dk,r X̄t = ∇zcM (Z̄k, X̄
M
Tk−) Dk,r Z̄k +

m∑
l=1

∫ t

0

∇σl(X̄M
s ) Dk,r X̄

M
s dW l

s

+

JMt∑
j=k+1

∇xcM (Z̄j , X̄
M
Tj−) Dk,r X̄

M
Tj− +

∫ t

0

∇xg(X̄M
s ) Dk,r X̄

M
s ds.

We have

YMt = YMTk +

m∑
l=1

∫ t

Tk

∇σl(X̄M
s )YMs dW l

s +

JMt∑
j=k+1

∇xcM (Z̄j , X̄
M
Tj−)YMTj− +

∫ t

Tk

∇xg(X̄M
s )YMs ds

and, with Ak = ∇zcM (Z̄k, X̄
M
Tk−) Dk,r Z̄k,

YMt ŶMTk Ak = YMTk Ŷ
M
Tk︸ ︷︷ ︸

=Id

Ak +

m∑
l=1

∫ t

Tk

∇σl(X̄M
s )YMs ŶMTk Ak dW l

s

+

JMt∑
j=k+1

∇xcM (Z̄j , X̄
M
Tj−)YMTj−Ŷ

M
Tk
Ak +

∫ t

Tk

∇xg(X̄M
s )YMs ŶMTk Ak ds.

Then
Dk,r X̄t = YMt ŶMTk Ak = YMt ŶMTk ∇zcM (Z̄k, X̄

M
Tk−) Dk,r Z̄k.

Therefore

d∑
r=1

〈Dk,r X̄t, ξ〉2 =

d∑
r=1

〈YMt ŶMTk ∇zcM (Z̄k, X̄
M
Tk−) Dk,r Z̄k, ξ〉2

=

d∑
r=1

π2
k〈∂zrcM (Z̄k, X̄

M
Tk−), (YMt ŶMTk )∗ξ〉2

≥
d∑
r=1

1BM−1
(Z̄k)〈∂zrc(Z̄k, X̄M

Tk−), (YMt ŶMTk )∗ξ〉2

since πk ≥ 1BM−1
(Z̄k) and cM = c on BM−1 ; using Hypothesis 2.3 item 3., it follows that

ρt ≥ inf
|ξ|=1

JMt∑
r=1

1BM−1
(Z̄k)c2(Z̄k)|(YMt ŶMTk )∗ξ|2 ≥ (||YMTk Ŷ

M
t ||)−2

JMt∑
r=1

1BM−1
(Z̄k)c2(Z̄k).
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With σ(FM ) = σ(X̄M
t ) + UM (t), we have3

E

[∣∣∣∣ 1

det σ(FM )

∣∣∣∣p] ≤ E

[∣∣∣∣ 1

ρt + UM (t)

∣∣∣∣dp
]
≤ E

( 1 + (||YMTk Ŷ
M
t ||)2∑JMt

r=1 1BM−1
(Z̄k)c2(Z̄k) + UM (t)

)dp
Now observe that the denominator of the last fraction is equal in law to

JMt∑
r=1

1BM−1
(Zk)c2(Zk)1

Uk<γ
(
Zk,XMTk−

) + UM (t) ≥ Nt(1BMγ c
2) + UM (t),

with BMγ = {(z, u) : z ∈ BM−1, u < γ(z)}. Assuming Hypothesis 2.3 item 3., we can apply Lemma 3.12

with f = c2 and dν(z) = γ(z)µ(dz). This gives p′ ≥ 1 such that p′

t < θ

E

( 1

Nt(1BMγ c
2) + UM (t)

)p′ ≤ Cp′ .
Finally, since the moments of ||ŶMt || are bounded uniformly onM , the result follows from Cauchy-Schwarz
inequality :

E

[
1

|det σ(FM )|p
]
≤ Cp.

•

3.7 Bounding the weights

Lemma 3.15 Let q, p ∈ N∗ and T > 0. For T > t > 0 with 4d(3q−1)
t < θ, there exists a constant Cp,q,T

such that
‖Hq

β(FM )‖p ≤ Cp,q,Tλq
2(4q+6d+9)
M . (3.90)

Proof : Let q ∈ N∗ and β = (β1, . . . , βq) a multi-index. We have to bound Hq
β(FM )

def
= Hq

β(FM , 1) ;
from Theorem 1.13 there exists a universal constant Cq,d such that (recalling that FM ∈ Rd)∣∣∣Hq

β(FM )
∣∣∣ ≤ Cq,d 1

|detσ(FM )|3q−1

(
1 + |FM |q+1)(6d+1)q

)(
1 + |LFM |qq−1

)
.

So ( for T > t > 0 such that 2d(6q−2)
t < θ ; Cq will be, in the following lines, a “ flying constant”)

E
[
Hq
β(FM )

]
≤ Cq,d

√
E

[
1

|detσ(FM )|6q−2

]√
E
[(

1 + |FM |q+1)(6d+1)q
)2(

1 + |LFM |qq−1

)2]
≤ Cq

(
E
[(

1 + |FM |q+1)(6d+1)q
)4]

E
[(

1 + |LFM |qq−1

)4] ) 1
4

since we know that, from Lemma 3.14, for p ≥ 1 and T > t > 0 such that 2dp
t < θ,

E

[
1

|det σ(FM )|p
]
≤ Cp.

But, from (3.76) and (3.81), there exists Cq,T > 0 such that

E
[
(|FM |q+1)4q(6d+1)

]
≤ Cq,Tλ2(q+1)q(6d+1)

M and E
[
|LFM |4qq−1

]
≤ Cq,Tλ4q(q+1)2

M ,

so (since q ≥ 1, q2 ≥ q(q+1)
2 ),

E
[
Hq
β(FM )

]
≤ Cp,q,Tλ

(q+1)q
2 (6d+1)

M λ
q(q+1)2

M .

•

3If a, b, c and d are non-negative real numbers,
1

a
c
+ d
≤

1 + c

a+ d
.
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4 Joint density regularity

4.1 Introduction
We recall that we made an approximation in law F xM of our process Xx

t . It is clear, from its definition
(cf. (2.45)), that the law PFxM of F xM possesses a smooth density : PFxM (dy) = pFxM (y) dy. Then, we have
defined

fM (x, y)
def
= ΨK(x)pFxM (y)

where ΨK is a smooth version with bounded derivatives of any order of the indicator function 1K .
In this section we will highlight the behaviour of fM (x, y) with respect to the norm defined by (1.22),

which will prove the Lemma 2.11 and, consequently, will end the proof of our main result.

4.2 Bounds for the Sobolev norms of the tangent flow and its derivatives
A simple generalisation (a little bit heavier with respect to the notations, but using the very same ideas
and methods) of Proposition 3.6 gives straightforwardly the following result :

Proposition 4.1 Let l, q ∈ N∗, p ≥ 1 and t < T . For every multi-index β ∈ {1, . . . , d}q, there exists
Cl,p,q,T > 0 such that

‖|∂βX
M

t |l‖p ≤ Cl,p,q,T
√

(λM )l. (4.91)

4.3 Proof of 2.11 : an upper bound for ‖fM‖2m+q,2m,p

We already have all the tools to prove the Proposition 2.11, which was the key for proving our main
joint density result 2.1. To bound the quantity ‖fM‖2m+q,2m,p, it is sufficient, by (1.24), to bound the
quantities

∂ξ
(
fM (x, y)

)
, ξ ≤ 2m+ q,

which is the exact point of the Proposition 4.4 that we will prove now ; we will deal first with the case
ξ = 0 (which is the point of the next proposition), to show more conveniently the method that we used.

Notation 4.2 In all the sequel, ϕε will represent a mollifier converging weakly, as ε tends to 0, to the
Dirac distribution. We will also define

Φε(x1, . . . , xd)
def
=

∫ x1

−∞
· · ·
∫ xd

−∞
ϕε(t1, . . . , td) dt1 . . . dtd. (4.92)

Proposition 4.3 Let T > 0. For every t ∈] 4d(3d−1)
θ , T [

fM (x, y) ≤ Cd,TΨK(x)
(

1 ∧ 1

(|y| − 3)d+1

)
λ

5(d+1)3

M (4.93)

Proof : Let us note that, formally, pFMt (x, y) = E
[
δ0(FMt (x)− y)

]
, where δ0 is the Dirac distribution.

In order to work in the direction of this last representation, we will therefore consider the following
approximation of fM :

fM,ε
def
= ΨK(x) E

[
ϕε(F

M
t (x)− y)Ψ2(FMt (x)− y)

]
, (4.94)

where ϕε is, as we said before, a mollifier and where Ψ2 is a smooth version (with bounded derivatives of
any order) of the indicator function with respect to the ball centred at 0 with radius 2.

We will consequently look, in the first place, for an upper-bound of fM,ε = ΨK(x) E
[
ϕε(F

M
t (x) −

y)Ψ2(FMt (x)− y)
]
; using Theorem 1.3,

E
[
ϕε(F

M − y)Ψ2(FMt (x)− y)
]

= E
[
Φε(F

M − y)Hd
M (FM ,Ψ2(FMt (x)− y))

]
It directly follows, since ‖Φε‖∞ ≤ 1 (which is clear from the definition (4.92)) and the weight HM does
not depend on ε, the pointwise convergence of fM,ε(x, y) when ε tends to 0.

Using Theorem 1.13 and denoting temporarily GM
def
= Ψ2(FMt (x)− y),∣∣∣Hd

M (FM , GM )
∣∣∣ ≤ Cd|GM |d (1 + |FM |d+1)(6d+1)d

|detσ(FM )|3d−1

(
1 + |LFM |dd−1

)
.
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Following the same pattern as we did in the proof of Lemma 3.15, for T > t > 0 such that 2d(6q−2)
t < θ

(here q = d), we have

E
[
|Hd

M (FM , GM )|
]
≤ Cd

(
E

[
1

|detσ(FM )|6d−2

]
E
[(

1 + |FM |d+1)4(6d+1)d
]

E
[(

1 + |LFM |dd−1

)4] ) 1
4 ‖|GM |d‖4

≤ C ′d
(

E
[
|FM |4(6d+1)d

d+1

]
E
[
|LFM |4dd−1

] ) 1
4 ‖|GM |d‖4

and, for M big enough (provided that λM → +∞, when M → +∞) we found that4

E
[
|Hd

M (FM , GM )|
]
≤ Cd,Tλ4(d+1)3

M ‖|GM |d‖4.

The Lemma 1.11, with φ(·) def
= Ψ2(·−y) (and with |φ|n(F )

def
= sup|β|≤n |∂βφ(F )| ; it is clear then that

|φ|n(FMt (x)) = |Ψ2|n(FMt (x)− y)) implies :

|φ
(
FMt

)
|d ≤ Cd

∣∣φ∣∣
d

(
FMt

)(
1 + |FMt |1,d + |FMt |d1,d−1

)
≤ Cd

∣∣φ∣∣
d

(
FMt

)(
1 + |X̄M

t |d + |X̄M
t |dd−1

)
.

So, noting that |Ψ2|n(u) ≤ Cn1{|u|≤3},

‖|GM |d‖4 = ‖|Ψ2(FMt (x)− y)|d‖4

≤ Kd

(
E
[
1{|FMt (x)−y|≤3}

]) 1
8
(

E
[(

1 + |X̄M
t |d + |X̄M

t |dd−1

)8]) 1
8

= Cd,T
(
P
[
|FMt (x)− y| ≤ 3

]) 1
8 (λM )

d2

2

and, since

P
[
|FMt (x)− y| ≤ 3)

]
≤ P

[
|FMt (x)| ≥ |y| − 3

]
≤

E
[
|FMt (x)|8(d+1)

]
(|y| − 3)8(d+1)

≤ K ′d
(|y| − 3)8(d+1)

(we used the fact that E
[
|FMt (x)|8(d+1)

]
= ‖|FMt (x)|0‖8(d+1) which is bounded from Proposition 3.6) so

‖|GM |d‖4 ≤
C ′d,T (λM )

d2

2

(|y| − 3)d+1
.

So, since by definition ‖Φε‖∞ ≤ 1,

E
[
ϕε(F

M − y)Ψ2(FMt (x)− y)
]
≤ Kd,T

λ
4(d+1)3

M (λM )
d2

2

(|y| − 3)d+1
≤ Kd,T

λ
5(d+1)3

M

(|y| − 3)d+1
.

And
fM,ε(x, y) ≤ Cd,TΨK(x)

(
1 ∧ 1

(|y| − 3)d+1

)
λ

5(d+1)3

M . (4.95)

•

We are now ready to deal with the general case |ξ| > 1. We have to be aware that the density,
conditionally on G = σ(Tk, k ∈ N), of the law of (Z1, . . . , ZJMt ), density given by

pJMt ,x(ω, z1, . . . , zJMt ) =

JMt∏
j=1

qM
(
zj ,ΨTj−Tj−1

(X
M

Tj−1
)
)

depends on x, which makes the differentiation more complicated.
4using the non-optimal inequality :

d((d− 1)2 + 2) +
d

2
(6d+ 1)(d+ 1) < 4(d+ 1)3
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Proposition 4.4 Let T > 0, m, q ∈ N. For every t ∈] 4d(3q′−1)
θ , T [, with q′ = d + 2m + q, and every

multi-index ξ such that |ξ| ≤ 2m+ q,

|∂ξfM (x, y)| ≤ Cd,m,q,T1K+1(x)
(

1 ∧ 1

(|y| − 3)2m+d+1

)
λ

6(d+2m+q+1)3

M . (4.96)

Proof :
Because of what we said concerning the density, we will separate the differentiation with respect to x

and to y, and hence define two multi-indexes α and β such that

∂αx ∂
β
y

def
= ∂ξ.

Then, we will start to work on the quantity ∂ξfM,ε(x, y) = ∂αx ∂
β
y

(
fM,ε(x, y)

)
.

It is clear that ∂βy
(
ϕε(F

M − y)
)

= (−1)β∂βϕε(F
M − y), so

∂αx ∂
β
y

(
fM,ε(x, y)

)
= ∂αx ∂

β
y

(
ΨK(x) E

[
ϕε(X

M

t (x)− y)Ψ2(X
M

t (x)− y)
])

= ∂αx

(
ΨK(x) E

[ ∑
β′⊕β′′=β

∂β
′

y ϕε(X
M

t (x)− y)∂β
′′

y Ψ2(X
M

t (x)− y)
])

= (−1)β
∑

β′⊕β′′=β

∂αx

(
ΨK(x) E

[
∂β
′
ϕε(X

M

t (x)− y)∂β
′′
Ψ2(X

M

t (x)− y)
)]

= (−1)β
∑

β′⊕β′′=β

∑
α′⊕α′′=α

∂α
′

x ΨK(x)∂α
′′

x

(
E
[
∂β
′
ϕε(X

M

t (x)− y)∂β
′′
Ψ2(X

M

t (x)− y)
])
.

Lemma 4.8 implies then that ∂αx ∂βy
(
fM,ε(x, y)

)
converges (when ε tends to 0) and the existence of

Cd,m,q,T > 0 such that

∂ξfM,ε(x, y) ≤ Cd,m,q,T1K+1(x)
(

1 ∧ 1

(|y| − 3)2m+d+1

)
λ

6(d+2m+q+1)3

M (4.97)

which allows us to state that limε→0 ∂ξfM,ε(x, y) = ∂ξfM (x, y), and letting ε → 0 in (4.97), we obtain
(4.96). •

In this last proof, we used the Lemma 4.8 ; to prove it, we will first need two preliminary lemmas :

Lemma 4.5 Let f : Rd → R∗+ and β a multi-index, then (with the notations used in Lemma 1.6)

∂βf(x) = f(x)

|β|∑
l=1

∑
M∈M|β|(l)

cM

l∏
i=1

∂Mi(β) ln f(x) (4.98)

with cM ∈ N.

Proof : By induction on |β|.
We will just show the mechanism, which will then be rather clear for a higher range, for |β| = 1, 2.
For |β| = 1, let β = (xi) ; then it is clear that

∂xif(x) = f(x)∂xi ln f(x)

(so cM = 1 for M = {{1}}).
For |β| = 2, let β = (xj , xi) then

∂xj∂xif(x) = ∂xj
(
f(x)∂xi ln f(x)

)
= ∂xjf(x)∂xi ln f(x) + f(x)∂xj∂xi ln f(x)

=
(
f(x)∂xj ln f(x)

)
∂xi ln f(x) + f(x)∂xj∂xi ln f(x)

= f(x)
(
∂xj ln f(x)∂xi ln f(x) + ∂xj∂xi ln f(x)

)
(so cM = 1 for M = {{1, 2}} or M = {{1}, {2}}).

•
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Lemma 4.6 Let l, q ∈ N, p ≥ 1 and t < T . For every multi-index5 β ∈ {1, . . . , d}q, there exists
Cl,p,q,T > 0 such that

E
[( JMT∑

j=1

|∂βx X̄M
Tj−|

2w
v

)u]
≤ Cu,v,w,|β|,T (λM )u(vw+1). (4.99)

Proof : We have
|∂βx X̄M

Tj−|
2
v =

∑
|α|≤v

|Dα ∂
β
x X̄

M
Tj−|

2.

In the very same way as we did in (3.80) (with an obvious generalisation6 of Lemma 1.6) we can set

V
α,β

t
def
= Dα ∂

β
x X̄t

with V
α,β

t defined as in (3.54) ; then, there exists a process V α,βt with the same law and verifying (3.58),
so we have :

E
[( JMT∑

j=1

|∂βx X̄M
Tj−|

2w
v

)u]
= E

[( JMT∑
j=1

( ∑
|α|≤v

|Dα ∂
β
x X̄

M
Tj−|

2
)w)u]

= E
[( JMT∑

j=1

( ∑
|α|≤v

|Dα ∂
β
x X̄

M
Tj−|

2
)w)u]

= E
[( JMT∑

j=1

( ∑
|α|≤v

|V α,βTj−|
2
)w)u]

= E
[( JMT∑

j=1

( ∑
|α|≤v

|V α,βTj−|
2
)w)u]

≤
√

E
[(
JMT
)2u−2

]√√√√√E
([ JMT∑

j=1

( ∑
|α|≤v

|V α,βTj−|2
)wu)2]

.

5With the convention {1, . . . , d}0 = {0} and ∂βxF = F .
6Indeed, in this lemma, the derivatives were purely formal, therefore, we can use it directly with an operator D′α′ where

α′ = (α, β) and D′α′
def
= Dα ∂

β
x .
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But, using the F 2
p isometry, with w′ ∈ N∗, and setting f(y)

def
=
(∑

|α|≤v |V α,βy |2
)w′

,

E
[( JMT∑

j=1

( ∑
|α|≤v

|V α,βTj−|
2
)w′)2]

= E
[( ∫ t

0

∫
EM×[0,2C̄]

f(s−) dÑ(s, z, u) +

∫ t

0

∫
EM×[0,2C̄]

f(s−) dN̂(s, z, u)
)2]

≤ E
[( ∫ t

0

∫
EM×[0,2C̄]

f(s−)2 dN̂(s, z, u)
]

+ E
[( ∫ t

0

∫
EM×[0,2C̄]

f(s−) dN̂(s, z, u)
)2]

≤ 2C̄µ(EM ) E
[ ∫ t

0

f(s−)2 ds
]

+
(
2C̄µ(EM )

)2
T E

[ ∫ t

0

f(s−)2 ds
]

= (2C̄µ(EM ) +
(
2C̄µ(EM )

)2
T ) E

[ ∫ t

0

f(s−)2 ds
]

= (2C̄µ(EM ) +
(
2C̄µ(EM )

)2
T ) E

[ ∫ t

0

( ∑
|α|≤v

|V α,βs− |
2
)2w′

ds
]

= (2C̄µ(EM ) +
(
2C̄µ(EM )

)2
T ) E

[ ∫ t

0

( ∑
|α|≤v

|V α,βs− |2
)2w′

ds
]

= (2C̄µ(EM ) +
(
2C̄µ(EM )

)2
T ) E

[ ∫ t

0

|∂βx X̄M
s− |

4w′

v ds
]

= (2C̄µ(EM ) +
(
2C̄µ(EM )

)2
T )

∫ t

0

E
[
|∂βx X̄M

s |4w
′

v

]
ds.

Now from (4.1) we have (with λM = µ(EM )),

E
[∣∣∂βx X̄M

t

∣∣4w′
v

]
≤ Cv,w′,|β|,T (λM )2vw′

Gathering these results, we obtain :

E
[( JMT∑

j=1

|∂βx X̄M
Tj−|

2w
v

)u]
≤ Cu,v,w,|β|,T (λM )u−1(λM )uvw+1.

•

Lemma 4.7 Let l, q ∈ N∗, p ≥ 1 and t < T . For every multi-index α ∈ {1, . . . , d}q, there exists
Cl,p,q,T > 0 such that

‖|∂βx ln pJMt ,x(Z1, . . . , ZJMt )|l‖2p ≤ Cl,p,q,T (λM )l(q+l)+1. (4.100)

Proof : In this proof we will denote JMt simply by J (and sometimes X̄M
Tj−(x) simply by X̄M

Tj−).
Using a similar formula as (1.12) (the Malliavin derivatives were used in a formal way, so it is in

particular true with the usual differential operator), we have (with α ∈ {1, . . . , d}q),

∂αxφ(F ) =

n∑
l=1

∑
β=(β1,...,βl)
βi∈J1,dK

∑
M∈Mn(l)

∂βφ(F )∂M1(α)
x Fβ1

· · · ∂Ml(α)
x Fβl ,

so, with α def
=
∑n
l=1

∑
β=(β1,...,βl)
βi∈J1,dK

∑
M∈Mn(l),

∂αx (ln qM (X̄M
Tj−(x), Z̄j)) =

∑
(α)

∂β(ln qM )(X̄M
Tj−(x), Z̄j)∂

M1(α)
x (X̄M

Tj−(x))β1
· · · ∂Ml(α)

x (X̄M
Tj−(x))βl .

By corollary 1.12, we have the existence of C ′qM ,l > 0 such that

| ln qM (F )|l ≤ CqM ,l
(
1 + |F |l + |F |ll−1

)
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which leads to (recalling q = |α|)

|∂αx (ln qM (X̄M
Tj−(x), Z̄j))|l ≤ CqM ,l

(
1 + |X̄M

Tj−|
2
l + |X̄M

Tj−|
2l
l−1 +

∑
β⊂α

|∂βx (X̄M
Tj−(x))|2ql

)
.

Then

|∂αx ln pJ |l ≤
JMT∑
j=1

|∂αx (ln qM (X̄M
Tj−(x), Z̄j))|l

≤ CqM ,l
( JMT∑
j=1

1 + |X̄M
Tj−|

2
l + |X̄M

Tj−|
2l
l−1 +

∑
β⊂α

|∂βx (X̄M
Tj−(x))|2ql

)

≤ C ′qM ,l
(
JMT +

JMT∑
j=1

|X̄M
Tj−|

2
l + |X̄M

Tj−|
2l
l−1 +

∑
β⊂α

JMT∑
j=1

|∂βx (X̄M
Tj−(x))|2ql

)
it directly follows, using the Lemma 4.6,

E
[
|∂αx ln pJ |2nl

]
≤ CqM ,l,n,|α|

(
E
[(
JMT
)2n]

+ E
[( JMT∑

j=1

|X̄M
Tj−|

2
l

)2n]

+ E
[( JMT∑

j=1

|X̄M
Tj−|

2l
l−1

)2n]
+
∑
β⊂α

E
[( JMT∑

j=1

|∂βx (X̄M
Tj−(x))|2ql

)2n])
≤ CqM ,l,n,|α|

(
(λM )2n + Cn,l,T (λM )2n(l+1) + C ′n,l,T (λM )2n(l(l−1)+1) +

∑
β⊂α

Cn,l,q,|β|,T (λM )2n(ql+1)
)

≤ Cn,l,α,T (λM )2n(l(q+l)+1).

•

Now we can prove the wanted result :

Lemma 4.8 Let T > 0. Let α, β and γ multi-indexes such that |α| + |β| + |γ| ≤ 2m + q. For every
t ∈] 4d(3q′−1)

θ , T [, with q′ = d+ |β|, the quantity ∂αx E
[
∂βϕε(F

M − y)∂γΨ2(FMt (x)− y)
]
converges (when

ε tends to 0) and

∂αx E
[
∂βϕε(F

M − y)∂γΨ2(FMt (x)− y)
]
≤ Kd,m,q,T

(
1 ∧ 1

(|y| − 3)2m+d+1

)
λ

6(d+2m+q+1)3

M . (4.101)

Proof : (in this proof we will denote simply JMt by J ; let us set δM
def
=
√
UM (t) and temporarily

Ψ
def
= ∂γΨ2 and f(u, z)

def
= δMu+ xt(x, z1, . . . , zJ))

∂αx E
[
∂βϕε(F

M − y)Ψ(FMt (x)− y)
]

= E
[
∂αx

∫
Rd
ν(du)

∫
RJ
∂βϕε(δMu+ xt(x, z1, . . . , zJ)Ψ(δMu+ xt(x, z1, . . . , zJ)PJ,x(z1, . . . , zJ) dz1 · · · dzJ

]
=
∑
α1⊕α2

E
[ ∫

Rd
ν(du)

∫
RJ
∂α1
x

(
∂βϕε(f(u, z))

)
∂α2
x

(
Ψ(f(u, z))

)
PJ,x(z1, . . . , zJ) dz1 · · · dzJ

]
+

∑
α1⊕α2⊕α3
α3 6=∅

E
[ ∫

Rd
ν(du)

∫
RJ
∂α1
x

(
∂βϕε(f(u, z))

)
∂α2
x

(
Ψ(f(u, z))

)
∂α3
x PJ,x(z1, . . . , zJ) dz1 · · · dzJ

]
=
(
1
)

+
(
2
)
.
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For the part
(
1
)
, since

E
[ ∫

Rd
ν(du)

∫
RJ
∂α1
x

(
∂βϕε(f(u, z))

)
∂α2
x

(
Ψ(f(u, z))

)
PJ,x(z1, . . . , zJ) dz1 · · · dzJ

]
= E

[
∂α1
x

(
∂βϕε(F

M − y)
)
∂α2
x

(
Ψ(FM − y)

)]
= E

[(∑
(α1)

∂βϕM (FMt (x)− y)∂N1(α1)X̄
t,M
β1
· · · ∂Nl(α1)X̄

t,M
βl

)
×
(∑

(α2)

∂β′Ψ(FMt (x)− y)∂N ′1(α2)X̄
t,M
β′1
· · · ∂N ′l (α2)X̄

t,M
β′l

)]
,

we are brought, on one hand, to prove the convergence (when ε tends to 0) and afterwards to bound the
quantity

E
[
∂βϕε(F

M
t (x)− y)∂β′∂γΨ2(FMt (x)− y)YN,N ′

]
(4.102)

with YN,N ′
def
= ∂N1(α1)X̄

t,M
β1
· · · ∂Nl(α1)X̄

t,M
βl

∂N ′1(α2)X̄
t,M
β′1
· · · ∂N ′l (α2)X̄

t,M
β′l

.
On the other hand, for the part

(
2
)
, Lemma 4.5 leads to

∂α3
x PJ,x = PJ,x

|α3|∑
l=1

∑
M∈M|α3|(l)

cM

l∏
i=1

∂Mi(α3) lnPJ,x (4.103)

so, letting p̃|α3|
J,x

def
=
∑|α3|
l=1

∑
M∈M|α3|(l)

cM
∏l
i=1 ∂

Mi(α3) lnPJ,x, we have :

E
[ ∫

Rd
ν(du)

∫
RJ
∂α1
x

(
∂βϕε(f(u, z))

)
∂α2
x

(
Ψ(f(u, z))

)
∂α3
x PJ,x(z1, . . . , zJ) dz1 · · · dzJ

]
= E

[
∂α1
x

(
∂βϕε(F

M − y)
)
∂α2
x

(
Ψ(FM − y)p̃

|α3|
J,x (Z1, . . . , Zn)

]
= E

[(∑
(α1)

∂βϕM (FMt (x)− y)∂N1(α1)X̄
t,M
β1
· · · ∂Nl(α1)X̄

t,M
βl

)
×
(∑

(α2)

∂β′Ψ(FMt (x)− y)∂N ′1(α2)X̄
t,M
β′1
· · · ∂N ′l (α2)X̄

t,M
β′l

)
p̃
|α3|
J,x (Z1, . . . , Zn)

]
,

so we are brought, again, to prove the convergence (when ε tends to 0) and afterwards to bound the
quantity

E
[
∂βϕε(F

M
t (x)− y)∂β′∂γΨ2(FMt (x)− y)ỸN,N ′

]
(4.104)

with ỸN,N ′
def
= ∂N1(α1)X̄

t,M
β1
· · · ∂Nl(α1)X̄

t,M
βl

∂N ′1(α2)X̄
t,M
β′1
· · · ∂N ′l (α2)X̄

t,M
β′l

p̃
|α3|
J,x (Z1, . . . , Zn).

We can see a similar structure between (4.102) and (4.104) : for the moment we will treat them at the
same time ; we will temporarily denote by Y either YN,N ′ or ỸN,N ′ , and keep working on

E
[
∂βϕε(F

M
t (x)− y)∂β′∂γΨ2(FMt (x)− y)Y

]
. (4.105)

Letting GM
def
= ∂β′∂γΨ2(FMt (x)− y)Y , using Theorem 1.3, we have

E
[
∂βϕε(F

M − y)∂β′∂γΨ2(FMt (x)− y)Y
]

= E
[
Φε(F

M − y)H
d+|β|
M (FM , GM )

]
. (4.106)

It directly follows, since ‖Φε‖∞ ≤ 1 and the weight HM does not depend on ε, the pointwise convergence
of ∂α

(
fM,ε(x, y)

)
when ε tends to 0.

Now, with Theorem 1.13, and following the same pattern as we did in the proof of Lemma 3.15, for
T > t > 0 such that 4d(3q′−1)

t < θ (recalling q′ = d+ |β|),

E
[
H
d+|β|
M (FM , GM )

]
≤Cd

(
E
[(

1 + |LFM |q
′

q′−1

)4] ) 1
4
(

E
[(

1 + |FM |q′+1)(6d+1)q′
)4] ) 1

4 ‖|GM |q′‖4.
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So, for M big enough (provided that λM → +∞, when M → +∞) we find that

E
[
H
d+|β|
M (FM , GM )

]
≤ Cd,q′,Tλ

((q′−1)2+2)q′+ d
2 (6d+1)(d+1)

M ‖|GM |q′‖4

≤ Cd,q′,Tλ(q′+1)3+3(d+1)3

M ‖|GM |q′‖4

Moreover (with Cauchy-Swartz and 1.10)

‖|GM |q′‖8 ≤ Cq′‖|∂β′∂γΨ2(FMt (x)− y)|q′ |Y |q′‖4
≤ Cq′‖|∂β′∂γΨ2(FMt (x)− y)|q′‖8‖|Y |q′‖8.

With the fact that, for all multi-index τ

∂τΨ2(u) ≤ C1|u|≤3 (4.107)

We can show that, as we already did in the proof of Proposition 4.3, for all β, β′, γ of length less than
2m+ q,

‖|∂β′∂γΨ2(FMt (x)− y)|q′‖8 ≤
K ′d,m,q(λM )

q′2
2

(|y| − 3)2m+d+1
. (4.108)

using 4.7, 4.1 (and also 1.10), it appears that

‖|YN,N ′ |q′‖p ≤ C(λM )
q′
2 |α| ≤ C(λM )

q′
2 (2m+q)

and

‖|ỸN,N ′ |q′‖p ≤ Cl,p,q,T (λM )
q′
2 |α|(λM )|α|(q

′(q′+|α|)+1) ≤ Cl,p,q,T (λM )(2m+q)(q′2+(2m+q+1)q′+1)

Since λM → +∞, we have finally

∂αx E
[
∂βϕε(F

M − y)∂γΨ2(FMt (x)− y)
]
≤ Kd,m,q,T

(
1 ∧ 1

(|y| − 3)2m+d+1

)
λ
A(d,m,q,q′)
M ,

with

A(d,m, q, q′)
def
= (q′ + 1)3 + 3(d+ 1)3 +

q′2

2
+ (2m+ q)(q′2 + (2m+ q + 1)q′ + 1).

Now, setting q def
= d+ 2m+ q ≥ q′,

A(d,m, q, q′) ≤ 4(q + 1)3 + 2q3 +
3

2
q2 + q ≤ 6(q + 1)3.

•
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5 Regenerative scheme and Harris-recurrence
We assume that the process Xt, solution of (??), admits a transition density for any time t > 0, denoted
pt(x, y), which is strictly positive and continuous in x and y ; a criteria for such a situation is given by
Theorem 2.1.

As a consequence, for any t > 0 and any compact set C, there exists a probability measure ν and a
constant α > 0 such that the local Doeblin condition is verified :

Pt(x, dy) ≥ α1C(x)ν(dy). (5.109)

In order to obtain some ergodic result over the stochastic process Xt, the main heuristic idea is to
approximate, when t→ +∞, the quantity 1

t

∫ t
0
f(Xs) ds by 1

n

∑n
i=1

∫ Ri+1

Ri
f(Xs) ds, where the r.v. Ri are

to be defined and where the r.v.
∫ Ri+1

Ri
f(Xs) ds would be i.i.d which will allow to conclude by applying

the strong law of large numbers.
To do so in a rigorous way, we will follow the path developed by Eva Löcherbach in [9], Ergodicity and

speed of convergence to equilibrium for diffusion processes, 2013 (cf. also Ikeda, Nagasawa and Watanabe
(1966) [8]). First, given a càdlàg Markov process Yt, we will define the notion of regeneration times :

Definition 5.1 A sequence (Rn)n≥1 is called generalized sequence of regeneration times, if

1. Rn ↑ ∞ as n→ +∞.

2. Rn+1 = Rn + R1 ◦ ϑRn (ϑ is the shift operator defined by ϑtf = f(t + .), where f : R+ → E is
càdlàg).

3. YRn+. is independent of FYSr−.

4. At regeneration times, the process starts afresh from YRn ∼ ν(dy).

5. The trajectories (YRn+s, 0 ≤ s ≤ Rn+1−Rn)n are 2-independent , i.e. (YRn+s, 0 ≤ s ≤ Rn+1−Rn)
and (YRm+s, 0 ≤ s ≤ Rm+1 −Rm) are independent if and only if |m− n| ≥ 2.

These regeneration times do not exist for the original solution Xt, but they exist for a version of
the process on an extended probability space, rich enough to support the driving Brownian motion, the
Poisson measure and an i.i.d sequence of uniform random variable (Un)n≥1.

We will construct, then, a stochastic process (Yt)t≥0 on this richer probability space, equal in law to
(Xt)t≥0.

First we will fix a compact C and a time parameter t∗ > 0 such that (5.109) is true :

Pt∗(x,dy) ≥ α1C(x)ν(dy).

Then we set Yt = Xt for all 0 ≤ t ≤ S̃1, where

S̃1
def
= inf{t ≥ t∗ : Xt ∈ C} and R̃1

def
= S̃1 + t∗.

At time S̃1, we choose U1, the first of the uniform random variables. If U1 ≤ α, we choose

YR̃1
∼ ν(dy). (5.110)

Else, if U1 > α, given YS̃1
= x, we choose

YR̃1
∼ Pt∗(x,dy)− αν(dy)

1− α
. (5.111)

Finally, given YR̃1
= y, we fill in the missing trajectory (Yt)t∈]S̃1,R̃1[ between time S̃1 and time R̃1

according to the diffusion bridge law

pt−S̃1
(x, z)pR̃1−t(z, y)

pt∗(x, y)
dz. (5.112)

Notice that by construction, if we do not care about the exact choice of the auxiliary random variable
U1, then we have that (Yt)t≤R̃1

L
= (Xt)t≤R̃1

.
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We continue this construction after time R̃1 : choose Yt equal to Xt for all t ∈]R̃1, S̃2] where

S̃2
def
= inf{t > R̃1 : Xt ∈ C} and R̃2

def
= S̃2 + t∗.

At time S̃2, we choose U2 in order to realize the choice of YR̃2
according to the splitting of the transition

kernel Pt∗ , as in (5.110) and (5.111). More generally, the construction is therefore achieved along the
sequence of stopping times

S̃n+1
def
= inf{t > R̃n : Xt ∈ C} and R̃n+1

def
= S̃n+1 + t∗, n ≥ 1,

where during each ]R̃n, S̃n+1], Y follows the original solution of the SDE, whereas the intervals [S̃n+1, R̃n+1]
are used to construct the splitting. In particular, every time that we may choose a transition according
to (5.110), we introduce a regeneration event for the process Y , and therefore the following two sequences
of generalized stopping times will play a role. Firstly,

S1 = inf{S̃n : Un ≤ α}, . . . , Sn = inf{S̃m > Sn−1 : Um ≤ α}, n ≥ 2,

and secondly,
Rn

def
= Sn + t∗, n ≥ 1.

The above construction of the process X, since at each time S̃n, a projection into the future is made.
Let Ñt

def
= sup{n : Un ≤ t} and

FYt = σ{Ys, s ≤ t, Un, YR̃n , n ≤ Ñt}, t ≥ 0,

be the canonical filtration of the process Y . The sequence of (FYt )t≥0-stopping times (Rn)n≥1 is a
generalized sequence of regeneration times as it was defined in Definition 5.1.

Remark 5.1 The trajectories of Y are not the same as those of the original solution X of the SDE.
However, by definition, the Harris-recurrence is only a property in law. As a consequence, if, for a given
set A, we succeed to show that almost surely, Y visits it infinitely often, the same is automatically true
for X as well.

We can now state the theorem we were looking for (the demonstration of it is directly taken from Eva
Löcherbach’s lecture, Ergodicity and speed of convergence to equilibrium for diffusion processes, and we
give it here only for the convenience of the reader) :

Theorem 5.2 If for all x ∈ Rd we have Px[R1 <∞] = 1, then the process X is recurrent in the sense of
Harris.

Proof :
Define a measure π on (Rd,B(Rd)) by

π(A)
def
= E

[ ∫ R2

R1

1(Ys) ds
]
, A ∈ B(Rd).

For any n ≥ 2, put ξn
def
=
∫ Rn
Rn−1

1(Ys) ds. By construction, the random variables ξ2n, n ≥ 1, are i.i.d. and
so are, on the other hand, as well, the random variables ξ2n+1. Put

Nt = sup{n : Rn ≤ t}

and observe that Nt →∞ as t→∞. Hence, applying the strong law of large numbers separately to the
sequence (ξ2n)n≥1 and the sequence (ξ2n+1)n≥1, we have that

lim
t→∞

∫ t
0
1(Ys) ds

Nt
= π(A)

Px-almost surely, for any x ∈ Rd. This implies that any set A such that π(A) > 0 is visited infinitely
often by the process Y almost surely. Thus, we have the recurrence property also for the process X, for
any set A such that π(A) > 0. Then, by a deep theorem of Azéma, Duflo and Revuz (1969) [1], see also
Theorem 1.2. of Höpfner and Löcherbach (2003) [7], the process is indeed Harris.

•
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A Miscellaneous

A.1 Regularisation
Let us define on R the following function:

ϕ(x)
def
=

{
α exp(− 1

1−x2 ) si |x| < 1

0 si |x| ≥ 1

where α is chosen in order to have
∫
R ϕ(x) dx = 1. Numerically, α ≈ (0, 44399)−1.

Proposition A.1 ϕ : R→ R is C∞ compact support function.

We then define ϕε : R→ R by:

ϕε(x)
def
=

1

ε
ϕ
(x
ε

)
, ∀x ∈ R.

Thus defined, function ϕε converges weakly, as ε tends to 0, to the Dirac distribution ; it is a mollifier:
for every continuous function f ,

1. limε→0 f ∗ ϕε(x) = f(x)

2. f ∗ ϕε is C∞

(with f ∗ ϕε(x)
def
=
∫
R f(y)ϕε(x− y) dy)).

Proposition A.2 ϕε : R→ R remains a C∞ compact support function and there exists M > 0 such that:

∀x ∈ R, |ϕ′ε(x)| ≤ M

ε2
and |ϕ′′ε (x)| ≤ M

ε3
.

Proof : If |x| ≥ ε,
ϕ′ε(x) = ϕ′′ε (x) = 0.

Elsewhere, ϕε(x) = α
ε exp

(
− 1

1−( xε )
2

)
and

ϕ′ε(x) =
α

ε
exp

(
− 1

1−
(
x
ε

)2
)
× −2x

ε2
× 1(

1−
(
x
ε

)2)2

=
−2α

ε2
exp

(
− 1

1−
(
x
ε

)2
)

x
ε(

1−
(
x
ε

)2)2 .

The function y 7→ exp
(
− 1

1−y2

)
y

(1−y2)2
is defined and continuous (considering a continuous extension for

y = ±1) on R and bounded, as we can easily prove by considering its limits when y tends respectively to
±∞, −1 and 1.
Denoting now by M1 an upperbound and letting C1 = 2αM1, we obtain the first assumption.

Now,

ϕ′′ε (x) =
α

ε3
exp

(
− 1

1−
(
x
ε

)2
) −2x

ε2
(

1−
(
x
ε

)2)2 ×
−2x(

1−
(
x
ε

)2)2 +
∂

∂x

 −2x(
1−

(
x
ε

)2)2




=
α

ε3
exp

(
− 1

1−
(
x
ε

)2
) 4

(
x
ε

)2(
1−

(
x
ε

)2)4 −
2(

1−
(
x
ε

)2)2 +
4x

ε2
× −2x(

1−
(
x
ε

)2)3

 .

Similarly, the function y 7→ exp
(
− 1

1−y2

)(
4y2

(1−y2)4
− 2

(1−y2)2
− 8y2

(1−y2)3

)
is bounded on R by a constant

M2. With C2 = αM2 and M = max(C1, C2) we then obtain the last property. •

We then define hε : R→ R by:
hε(x)

def
= |x| ∨ 2ε

and φε : R→ R by:
φε(x) = hε ∗ ϕε(x).
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Proposition A.3 1. φε converges pointwise to the absolute value function x 7→ |x| and

φε(x) =

{
2ε if |x| ≤ ε
|x| if |x| > 3ε

and
0 ≤ φε(x) ≤ 4ε if |x| ∈]ε, 3ε].

2. There exists C > 0 such that

∀x ∈ R, |φ′ε(x)| ≤ C and |φ′′ε (x)| ≤ C

ε
1|x|≤3ε.

Proof : First, let us remark that, since φε is defined by a convolution, it is a smooth function and, for
all n ∈ N∗, φ(n)

ε (x) = hε ∗ ϕ(n)
ε (x).

We will now prove the two items by dividing the problem into the following three cases.

• Case |x| ≤ ε:
We have

φε(x) = hε ∗ ϕε(x) =

∫ 2ε

−2ε

ϕε(x− y)hε(y) dy

= 2ε

∫ 2ε

−2ε

ϕε(x− y) dy

= 2ε

∫
R
ϕε(z) dz︸ ︷︷ ︸

=1

= 2ε.

Hence, for all |x| < ε,
φ′ε(x) = φ′′ε (x) = 0,

(which remains true when |x| = ε, since φε is a smooth function).

• Case |x| > 3ε:

noticing that z 7→ zϕε(z) is an odd function (with compact support),

φε(x) =

∫
R
hε(x− z)ϕε(z) dz =

∫
|z|≤ε

hε(x− z)ϕε(z) dz

=

∫
|z|≤ε

|x− z|ϕε(z) dz

=

∫
|z|≤ε

sign(x)(x− z)ϕε(z) dz

= sign(x)×
(
x−

∫
R
ϕε(z)z dz︸ ︷︷ ︸

=0

)
= |x|.

Hence, for all |x| > 3ε,
φ′ε(x) = ±1 and φ′′ε (x) = 0,

(and obviously again, it remains true when |x| = 3ε).

• Case |x| ∈]ε, 3ε]:

Let g be a continuous function (with compact support), then

hε ∗ g(x) =

∫
R
g(x− y)hε(y) dy =

∫ 4ε

−4ε

g(x− y)hε(y) dy

≤ 4ε

∫
R
|g(z)|dz.
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With g def
= ϕε,

∫
R |g(z)|dz = 1 and it follows that

φε(x) ≤ 4ε ;

with respectively g def
= ϕ′ε and g def

= ϕ′′ε , and using the Proposition A.2, it follows that

φ′ε(x) = hε ∗ ϕ′ε ≤ 4ε

∫ ε

−ε

M

ε2
dy = 8M ;

and
φ′′ε (x) = hε ∗ ϕ′′ε ≤ 4ε

∫ ε

−ε

M

ε3
dy =

8M

ε
.

Gathering the three cases, we may conclude. •

A.2 Gronwall’s lemma
In all this work we used the following version of the Gronwall’s lemma:

Proposition A.4 If a measurable function g : [0, T ]→ R+ is such that

1. G = supt∈[0,T ] g(t) < +∞ ;

2. for all t ∈ [0, T ],

g(t) ≤ A+B

∫ t

0

g(s) ds

then, for all t ∈ [0, T ],
g(t) ≤ A exp(Bt).

Proof : It is easy to obtain by induction that, for every n ∈ N∗,

g(t) ≤ A
(

1 +

n−1∑
k=1

(Bt)k

k!
+Bn

∫ t

0

∫ t1

0

...

∫ tn−1

0

g(tn) dtn · · · dt1 dt
)
,

which implies

g(t) ≤ A
(

1 +

n−1∑
k=1

(Bt)k

k!
+G

(Bt)n

n!

)
.

Since limn→+∞G (Bt)n

n! = 0, the assertion follows. •

A.3 Moment inequalities
In this subsection of the appendix we prove some moment inequalities which we used in Subsection ??,
so the notations introduced in that subsection prevail.

We assume in this subsection that µ(E) < ∞. This is just to simplify the notations — in concrete
applications we will replace µ by 1Gµ. Then we consider an index set Λ and we denote by α the elements
of Λ. Moreover we consider a family of processes V αt ∈ Rd, α ∈ Λ which verify the following equation

V αt = V α0 +

m∑
l=1

∫ t

0

(Hα
l (s) + 〈∇σl(Xs), V

α
s 〉) dW l

s (A.113)

+

∫ t

0

(hα(s) + 〈∇b(Xs), V
α
s 〉) ds

+

∫ t

0

∫
E×(0,1)

(Qα(s−, z) +
〈
∇xc(Xs−, z), V

α
s−
〉
)1{u≤γ(Xs−,z)} dN(s, u, z).

Here Hα
l , h

α
l and Q

α are adapted càdlàg processes which verify∫ T

0

(|Hα
l (s)|2 + |hα(s)|+

∫
E

|Qα(s, z)| γ(z)dµ(z)) ds <∞.

(Where the functions σ, b, c and γ are the ones introduced in Subsection ??.) So the corresponding
stochastic integrals in (A.113) make sense.
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Proposition A.5 We suppose that
|Qα(s, z)| ≤ q(z) |Rαs | (A.114)

for some adapted càdlàg process Rα and some measurable function q : E → R+ and we denote

ĉ1(p) =

∫
E

(q(z) + c(1)(z))(1 + q(z))2pγ(z)dµ(z), (A.115)

ĉ2(p) =

∫
E

(q(z) + c(1)(z))(1 + c(1)(z))
2pγ(z)dµ(z).

For every p ∈ N there exists a universal constant Cp such that 0 ≤ t ≤ T

E
[
|V αt |

2p ] ≤ exp
(
Cpt(1 + ‖∇σ‖2p∞ + ‖∇b‖2p∞ + ĉ2(p))

)
(A.116)

×
(
|V α0 |

2p
+ Cp

∫ t

0

E
[ m∑
l=1

|Hα
l (s)|2p + |hα(s)|2p + ĉ1(p)

∣∣Rαs−∣∣2p ] ds
)

Proof : Using Itô’s formula for f(x) = x2p, we obtain7

(V αt )
2p

= (V α0 )
2p

+Mα
t + Iαt + Jαt

with

Mα
t =

m∑
l=1

∫ t

0

2p(V αs )2p−1(Hα
l (s) + 〈∇σl(Xs), V

α
s 〉) dW l

s,

Iαt =

m∑
l=1

∫ t

0

p(2p− 1)(V αs )2p−2
m∑
l=1

(Hα
l (s) + 〈∇σl(Xs), V

α
s 〉)2 ds

+ 2p

∫ t

0

(V αs )2p−1(hα(s) + 〈∇b(Xs), V
α
s 〉) ds

and

Jαt =

∫ t

0

∫
E×(0,1)

((
V αs− +Qα(s−, z) +

〈
∇xc(Xs−, z), V

α
s−
〉 )2p − (V αs−)2p)1{u≤γ(Xs−,z)} dN(s, u, z).

Using the trivial inequality aubv ≤ au+v + bu+v we obtain

E
[
|Iαt |

]
≤Cp

∫ t

0

E
[ m∑
l=1

|Hα
l (s)|2p + |hα(s)|2p

]
ds

+ Cp(1 + ‖∇σ‖2p∞ + ‖∇b‖2p∞)

∫ t

0

E
[∣∣V αs ∣∣2p] ds.

We estimate now Jαt . Using the elementary inequality

(a+ b)2p − a2p ≤ Cp |b| (|a|2p−1
+ |b|2p−1

)

we obtain ∣∣V αs− +Qα(s−, z) +
〈
∇xc(Xs−, z), V

α
s−
〉∣∣2p − ∣∣V αs−∣∣2p

≤ Cp(|Qα(s−, z)|+ c(1)(z)
∣∣V αs−∣∣)(∣∣V αs−∣∣2p−1

(1 + c2p−1
(1) (z)) + |Qα(s−, z)|2p−1

).

Recall that |Qα(s−, z)| ≤ q(z)
∣∣Rαs−∣∣ so the above term is upper bounded by

Cp(q(z)
∣∣Rαs−∣∣+ c(1)(z)

∣∣V αs−∣∣)(∣∣V αs−∣∣2p−1
(1 + c(1)(z))

2p−1 +
∣∣q(z)Rαs−∣∣2p−1

)

≤ Cp(q(z) + c(1)(z))(
∣∣Rαs−∣∣+

∣∣V αs−∣∣)(((1 + c(1)(z))
2p−1

∣∣V αs−∣∣2p−1
+
∣∣q(z)Rαs−∣∣2p−1

)

We use once again the inequality aubv ≤ au+v + bu+v and we upper bound the above term by

Cp(q(z) + c(1)(z))(
∣∣Rαs−∣∣2p (1 + q(z))2p + (1 + c(1)(z))

2p
∣∣V αs−∣∣2p).

7For x = (xi)1≤i≤d ∈ Rd we simply denote (x2pi )1≤i≤d by x2p.
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It follows that

E
[
|Jαt |

]
≤Cp

∫
E

(q(z) + c(1)(z))(1 + q(z))2pγ(z)dµ(z)

∫ t

0

E
[∣∣Rαs−∣∣2p]ds

+ Cp

∫
E

(q(z) + c(1)(z))(1 + c(1)(z))
2pγ(z)dµ(z)

∫ t

0

E
[∣∣V αs−∣∣2p]ds.

Since Mα
t is a martingale we obtain

E
[

(V αt )
2p ]

= E
[

(V α0 )
2p ]

+ E
[
Iαt
]

+ E
[
Jαt
]

and (we recall the notation in (A.115))

E
[
|V αt |

2p ] ≤ |V α0 |2p + E
[
|Iαt |

]
+ E

[
|Jαt |

]
≤ |V α0 |

2p
+ Cp

∫ t

0

E
[ m∑
l=1

|Hα
l (s)|2p + |hα(s)|2p + ĉ1(p)

∣∣Rαs−∣∣2p ] ds

+ Cp(1 + ‖∇σ‖2p∞ + ‖∇b‖2p∞ + ĉ2(p))

∫ t

0

E
[∣∣V αs ∣∣2p] ds.

The Gronwall’s lemma then gives

E
[
|V αt |

2p ] ≤ exp
(
Cpt(1 + ‖∇σ‖2p∞ + ‖∇b‖2p∞ + ĉ2(p))

)
×
(
|V α0 |

2p
+ Cp

∫ t

0

E
[ m∑
l=1

|Hα
l (s)|2p + |hα(s)|2p + ĉ1(p)

∣∣Rαs−∣∣2p ] ds
)
.

•

A.4 Proof of (2.40)

I = E
[
f(XM

Tk
)1{Uk≥γ(Zk,XMTk−

)}|XM
Tk− = x

]
=

∫
〈XMTk−=x〉

f(XM
Tk

)1{Uk≥γ(Zk,XMTk−
)}

dP

P(XM
Tk− = x)

=

∫
〈XMTk−=x〉∩〈Uk≥γ(Zk,XMTk−

)〉
f(XM

Tk
)

dP

P(XM
Tk− = x)

On the event 〈XM
Tk− = x〉 ∩ 〈Uk ≥ γ(Zk, X

M
Tk−)〉 we have XM

Tk
= x, so I becomes

I = f(x)
P(〈XM

Tk− = x〉 ∩ 〈Uk ≥ γ(Zk, X
M
Tk−)〉)

P(XM
Tk− = x)

= f(x)
P(〈XM

Tk− = x〉 ∩ 〈Uk ≥ γ(Zk, x)〉)
P(XM

Tk− = x)

= f(x) P(Uk ≥ γ(Zk, x)) (since Uk and XM
Tk− are independent)

= f(x)
1

µ(BM+1)2c

∫
BM+1

∫ 2c

0

1{u≥γ(z,x)} dµ(z) du

= f(x)
1

µ(BM+1)

∫
BM+1

(
1− γ(z, x)

2c

)
dµ(z)

= f(x)θM,γ(x) = f(x)θM,γ(x)

∫
Rd
φ(z − z∗M ) dz (

∫
φ = 1 and φ(B(0, 1)c) = 0)

=

∫
|z|>M+1

f(x+ cM (z, x))φ(z − z∗M )θM,γ(x) dz (since cM (z, x) = 0 if |z| > M + 1)

=

∫
|z|>M+1

f(x+ cM (z, x))qM (z, x) dz.
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On the other hand:

J = E
[
f(XM

Tk
)1{Uk<γ(Zk,XMTk−

)}|XM
Tk− = x

]
=

∫
〈XMTk−=x〉

f(XM
Tk

)1{Uk<γ(Zk,XMTk−
)}

dP

P(XM
Tk− = x)

=

∫
〈XMTk−=x〉∩〈Uk≥γ(Zk,XMTk−

)〉
f(x+ cM (Zk, x))

dP

P(XM
Tk− = x)

=

∫
Ω

f(x+ cM (Zk, x))1{Uk<γ(Zk,x)} dP (since (Uk, Zk) and XM
Tk− are independent)

=
1

µ(BM+1)2c

∫
BM+1

∫ 2c

0

f(x+ cM (z, x))1{u<γ(z,x)} dµ(z) du

=
1

µ(BM+1)

∫
BM+1

f(x+ cM (z, x))
γ(z, x)

2c
dµ(z) (with dµ(z) = h(z) dz)

We finally have

E
[
f(XM

Tk
)|XM

Tk− = x
]

=

∫
Rd
f(x+ cM (z, x))qM (z, x) dz.

Now σ(XTk+1−) ⊂ Gk, so

E
[
f(X

M

Tk+1
)|XM

Tk+1− = x
]

= E
[
f(X

M

Tk+1− + cM (Zk+1, X
M

Tk+1−))|XM

Tk+1− = x
]

= E
[

E
[
f(X

M

Tk+1− + cM (Zk+1, X
M

Tk+1−))|Gk
]
|XM

Tk+1− = x
]

= E
[ ∫

Rd
f(X

M

Tk+1− + cM (z,X
M

Tk+1−))qM (X
M

Tk+1−, z) dz|XM

Tk+1− = x
]

=

∫
Rd

∫
〈XMTk+1−

=x〉
f(X

M

Tk+1− + cM (z,X
M

Tk+1−))qM (X
M

Tk+1−, z)
dP

P(X
M

Tk+1− = x)
dz

=

∫
Rd
f(x+ cM (z, x))qM (z, x) dz

So we have:
E
[
f(XM

Tk
)|XM

Tk− = x
]

= E
[
f(X

M

Tk
)|XM

Tk− = x
]

(A.117)

We can prove now that the processes XM
t and X

M

t are sharing the same law.

A.5 XM
t and X

M

t share the same law

• First, if 0 ≤ t < T1, xt = Ψt(x) and then X
M

t = Ψt(x) ∼ XM
t .

• Moreover, if X
M

Tk− ∼ XM
Tk− we have X

M

Tk
∼ XM

Tk
: recalling that, if φ(x) := E

[
Y |X = x], we have∫

A
φ(x) dPX(x) =

∫
〈X∈A〉 Y dP , since P

X
M
Tk−

= PXMTk−
the relation (A.117) leads to

E
[
f(XM

Tk
)
]

= E
[
f(X

M

Tk
)
]

• Finally, if Tk ≤ t < Tk+1, X
M

t = Ψt−Tk(X
M

Tk
) ∼ Ψt−Tk(XM

Tk
) = XM

t .

B Sobolev norms of XM
t and its derivatives.

We have used, within the proof of the Lemma 3.1 that XM
t has moments of any order. The proof of that

result follows the same pattern of this same lemma, although a bit simpler. The following result is the
equation (3.60) in the special case k = 0.
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Proposition B.1 Let M ∈ N∗. For all T > 0 and p ≥ 1, there exists a constant CT,p > 0 (which does
not depend on M) such that

E
[
|XM

t |2p
]
≤ CT,p. (B.118)

Proof :
We localize our problem by using the sequence (τMK )K∈N∗ of stopping times defined by

τMK
def
= inf{t > 0 : |XM

t | ≥ K}. (B.119)

We can prove that a.s. limK→∞ τMK =∞:
From the hypothesis made on the coefficients of XM

t , it is clear that, for all t ≥ 0,

E
[

sup
s≤t
|XM

s |
]
<∞. (B.120)

We have, for t ≥ 0

lim
K→∞

P(τMK < t) = lim
K→∞

P(sup
s≤t
|XM

s | > K)

≤ lim
K→∞

1

K
E
[

sup
s≤t
|XM

s |
]

= 0.

(τMK )K∈N∗ tends to ∞ in probability and so, there exists a subsequence (that we will continue to denote
by (τMK )K∈N∗) which tends to ∞ a.s.

If we admit for the moment the Lemma B.2, we know that there exists a constant Cp,T which does
not depend on K and M and such that, for all 0 ≤ t ≤ T ,

E
[
|XM

t∧τMK
|2p
]
≤ CT,p.

The monotone convergence theorem implies then

E
[
|XM

t |2p
]

= sup
K

E
[
|XM

t |2p1τMK >t

]
and

sup
K

E
[
|XM

t |2p1τMK >t

]
= sup

K
E
[
|XM

t∧τMK
|2p
]
≤ CT,p.

•

Lemma B.2 Let M ∈ N∗ and a sequence (τMK )K∈N∗ of stopping times defined by (B.119). There exists
a constant Cp,T , which does not depend on K and M , and such that, for all 0 ≤ t ≤ T ,

E
[
|XM

t∧τMK
|2p
]
≤ CT,p.

Proof :
Recalling the definition (2.35) of XM

t :

XM
t = x+

∫ t

0

σ(XM
s ) dWs +

∫ t

0

∫
E

cM (z,XM
s−)1{u≤γ(z,XMs−)}N(ds,dz,du) +

∫ t

0

g(XM
s ) ds,

we have, for a single component (omitting for a moment the parameter M in order to simplify the
notations), applying Itô’s formula with f(x) = x2p with respect to every component of the process XM

t∧τMK
,

(Xi
t∧τMK

)2p = (Xi
0)2p +

m∑
l=1

∫ t∧τMK

0

2p(Xi
s)

2p−1σil(Xs) dW l
s

+ 2p

∫ t∧τMK

0

(Xi
s)

2p−1gi(Xs) ds

+ p(2p− 1)

m∑
l=1

∫ t∧τMK

0

(Xi
s)

2p−2
(
σil(Xs)

)2
ds

+

∫ t∧τMK

0

∫
E

(
Xi
s− + cM (z,XM

s−)1{u≤γ(z,XMs−)}

)2p

− (Xi
s−)2pN(ds,dz,du)
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We now take the expectation with respect to the Brownian motion (i.e. conditionally with respect to
all the other random quantities):

EW

[
(Xi

t∧τMK
)2p
]

= EW

[
(Xi

0)2p
]

+ 2p

∫ t∧τMK

0

EW

[
(Xi

s)
2p−1gi(Xs)

]
ds

+ p(2p− 1)

m∑
l=1

∫ t∧τMK

0

EW

[
(Xi

s)
2p−2

(
σil(Xs)

)2]
ds

+

∫ t∧τMK

0

∫
E

EW

[(
Xi
s− + cM (z,XM

s−)1{u≤γ(z,XMs−)}

)2p

− (Xi
s−)2p

]
N(ds,dz,du)

Since s ≤ t ∧ τMK , we have Xs = XsM , and obviously t ≥ t ∧ τMK , so we have

EW

[
|Xi

t∧τMK
|2p
]
≤EW

[
|Xi

0|2p
]

+ 2p

∫ t

0

EW

[
|Xi

s∧τMK
|2p−1|gi(Xs)|

]
ds

+ p(2p− 1)

m∑
l=1

∫ t

0

EW

[
|Xi

s∧τMK
|2p−2

∣∣σil(Xs)
∣∣2] ds

+

∫ t∧τMK

0

∫
E

EW

[∣∣∣(Xi
s− + cM (z,XM

s−)1{u≤γ(z,XMs−)}

)2p

− (Xi
s−)2p

∣∣∣]N(ds,dz,du)

It follows (since (a + b)2n − a2n ≤ (|a| + |b|)2n − a2n, for all a, b ∈ R and using the inequality
xuyv ≤ xu+v + yu+v)

EW

[
|Xt∧τMK |

2p
]
≤EW

[
|X0|2p

]
+ 2p

∫ t

0

EW

[
|Xs∧τMK |

2p
]

ds+ 2pT‖g2p‖∞

+ p(2p− 1)m

∫ t

0

EW

[
|Xs∧τMK |

2p
]

ds+ p(2p− 1)mT‖σ2p‖∞

+

∫ t∧τMK

0

∫
E

EW

[(
|Xs− |+ c(z)1{u≤γ}

)2p

− |Xs− |2p
]
N(ds,dz,du);

using now |a2p−b2p| ≤ |a−b|(a+b)2p−1, we have
(
|Xs− |+c(z)1{u≤γ}

)2p

−|Xs− |2p ≤ 22pc(z)1{u≤γ}|Xs− |2p,
so,

EW

[
|Xt∧τMK |

2p
]
≤CT +Ap

∫ t

0

EW

[
|Xs∧τMK |

2p
]

ds+Bp

∫ t∧τMK

0

∫
E

c(z)1{u≤γ} EW

[
|Xs− |2p

]
N(ds,dz,du)

≤CT +Ap

∫ t

0

EW

[
|Xs∧τMK |

2p
]

ds+Bp

∫ t

0

∫
E

c(z)1{u≤γ} EW

[
|X(s∧τMK )− |

2p
]
N(ds,dz,du).

With
θKt

def
= sup

0≤u≤t
EW

[
|XM

u∧τMK
|2p
]
,

we then have

θKt ≤ CT +Ap

∫ t

0

θKs ds+Bp

∫ t

0

∫
E

c(z)1{u≤γ}θ
K
s−N(ds,dz,du).

With

R1
def
=

∫ t

0

∫
E

c(z)1{u≤γ} dµ(z) du

we have

E
[
θKt
]
≤CT +Ap E

[ ∫ t

0

θKs ds
]

+Bp E
[ ∫ t

0

∫
E

c(z)1{u≤γ}θ
K
s− dN(s, z, u)

]
≤CT +Ap

∫ t

0

E
[
θKs
]

ds+Bp

∫ t

0

∫
E

c(z)1{u≤γ} E
[
θKs−
]

dsµ(dz) du

≤CT + (Ap +R1)

∫ t

0

E
[
θKs
]

ds.

The Gronwall’s lemma ends then the proof.
•
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C Tangent flow
Let us recall the expression of the tangent flow YMt :

YMt = Id +

m∑
l=1

∫ t

0

∇σl(X̄M
s )YMs dW l

s +

JMt∑
j=1

∇xcM (Z̄j , X̄
M
Tj−)YMTj− +

∫ t

0

∇xg(X̄M
s )YMs ds.

We have then defined the following process (with ∇xcj = ∇xcM (Z̄j , X̄
M
Tj−)):

ŶMt
def
= Id−

m∑
l=1

∫ t

0

ŶMs ∇σl(X̄M
s ) dW l

s −
JMt∑
j=1

ŶMTj−∇xcj(Id +∇xcj)−1

+

∫ t

0

ŶMs

(1

2

m∑
l=1

∇σl(X̄M
s )2 −∇xg(X̄M

s )
)

ds,

and stated that:

Lemma C.1 For all t ≥ 0,
YMt ŶMt = Id . (C.121)

Proof :

Step 1

Let us consider (for the moment m = 1) the stochastic process sharing the same law as Yt (that we will
continue to denote Yt, in order to simplify the notations) defined by

Yt = Id +

∫ t

0

ΣYs dWs +

JMt∑
j=1

CjY
M
Tj− +

∫ t

0

GYs ds

with
Cj = ∇xcM (Zj , X

M
Tj−)1{Uj≤γ(Zj ,XMTj−

)}

and let us set

Ŷt = Id +

∫ t

0

ŶsAdWs +

JMt∑
j=1

ŶMTj−Hj +

∫ t

0

ŶsB ds

that is

Y i,jt = δi,j +

d∑
h=1

∫ t

0

Σi,hY
h,j
s dWs +

JMt∑
k′=1

d∑
h=1

Ci,hk′ Y
h,j
Tk′− +

d∑
h=1

∫ t

0

Gi,hY
h,j
s ds

and

Ŷ i,jt = δi,j +

d∑
h=1

∫ t

0

Ŷ i,hs Ah,j dWs +

JMt∑
k′=1

d∑
h=1

Ŷ i,hTk′−H
h,j
k′ +

d∑
h=1

∫ t

0

Ŷ i,hs Bh,j ds

We have (ŶtYt − Id)p,q =
∑d
n=1 Ŷ

p,n
t Y n,qt − δp,q. Using Itô’s formula it follows:

Ŷ p,nt Y n,qt − δp,q,n

=

∫ t

0

Y n,qs

d∑
h=1

Ŷ p,hs Ah,n dWs +

∫ t

0

Ŷ p,ns

d∑
h=1

Σn,hY
h,q
s dWs

+
1

2

∫ t

0

(
d∑
g=1

Ŷ p,gs Ag,n

)(
d∑

h=1

Σn,hY
h,q
s

)

+

∫ t

0

Y n,qs

d∑
h=1

Ŷ p,hs Bh,n ds+

∫ t

0

Ŷ p,ns

d∑
h=1

Gn,hY
h,q
s ds

+

∫ t

0

∫
E

(
Y n,qs− +

d∑
h=1

Cn,hs− (z, u)Y h,qs−

)(
Ŷ p,ns−

d∑
h=1

Ŷ p,hs− H
h,n
s− (z, u)

)
− Y n,qs− Ŷ p,ns− N(ds,dz,du)
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The integrated term with respect to dWs of (ŶtYt − Id)p,q has the following form:

d∑
n=1

d∑
h=1

Y n,qs Ŷ p,hs Ah,n +

d∑
n=1

d∑
h=1

Ŷ p,ns Y h,qs Σn,h =

d∑
n=1

d∑
h=1

Y h,qs Ŷ p,ns An,h +

d∑
n=1

d∑
h=1

Ŷ p,ns Y h,qs Σn,h

=

d∑
n=1

d∑
h=1

Y h,qs Ŷ p,ns (An,h + Σn,h).

This term is null for
A = −Σ

which we will suppose in the following of this proof.
For the third term

d∑
n=1

(
d∑
g=1

Ŷ p,gs Ag,n

)(
d∑

h=1

Σn,hY
h,q
s

)
=

d∑
n=1

d∑
g=1

(
d∑

h=1

Ŷ p,gs Ag,nΣn,hY
h,q
s

)

=

d∑
g=1

d∑
h=1

(
d∑

n=1

Ag,nΣn,h

)
Ŷ p,gs Y h,qs

=

d∑
n=1

d∑
h=1

(
d∑
g=1

An,gΣg,h

)
Ŷ p,ns Y h,qs

=

d∑
n=1

d∑
h=1

(AΣ)n,h Ŷ
p,n
s Y h,qs

The integrated term with respect to ds of (ŶtYt − Id)p,q has the following form:

1

2

d∑
n=1

d∑
h=1

(AΣ)n,h Ŷ
p,n
s Y h,qs +

d∑
n=1

d∑
h=1

Y n,qs Ŷ p,hs Bh,n +

d∑
n=1

d∑
h=1

Ŷ p,ns Gn,hY
h,q
s

=
1

2

d∑
n=1

d∑
h=1

(AΣ)n,h Ŷ
p,n
s Y h,qs +

d∑
n=1

d∑
h=1

Y h,qs Ŷ p,ns Bn,h +

d∑
n=1

d∑
h=1

Ŷ p,ns Gn,hY
h,q
s

=

d∑
n=1

d∑
h=1

(
1

2
(AΣ)n,h +Bn,h +Gn,h

)
Ŷ p,ns Y h,qs

=

d∑
n=1

d∑
h=1

(
1

2
AΣ +B +G

)
n,h

Ŷ p,ns Y h,qs .

This term is null if (with A = −Σ)

B =
1

2
Σ2 −G.

Step 2

Multidimensional Brownian case:

Yt = Id +

∫ t

0

Σ1Ys dW 1
s + · · ·+

∫ t

0

ΣmYs dWn
s +

JMt∑
j=1

CjY
M
Tj− +

∫ t

0

GYs ds

and let us set

Ŷt = Id +

∫ t

0

ŶsA1 dW 1
s + · · ·+

∫ t

0

ŶsAm dWn
s +

JMt∑
j=1

ŶMTj−Hj +

∫ t

0

ŶsB ds

that is

Y i,jt = δi,j +

m∑
l=1

d∑
h=1

∫ t

0

Σli,hY
h,j
s dW l

s +

JMt∑
k′=1

d∑
h=1

Ci,hk′ Y
h,j
Tk′− +

d∑
h=1

∫ t

0

Gi,hY
h,j
s ds
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and

Ŷ i,jt = δi,j +

m∑
l=1

d∑
h=1

∫ t

0

Ŷ i,hs Alh,j dW l
s +

JMt∑
k′=1

d∑
h=1

Ŷ i,hTk′−H
h,j
k′ +

d∑
h=1

∫ t

0

Ŷ i,hs Bh,j ds

and

Ŷ p,nt Y n,qt − δp,q,n =

∫ t

0

Y n,qs

m∑
l=1

d∑
h=1

Ŷ p,hs Alh,n dW l
s +

∫ t

0

Ŷ p,ns

m∑
l=1

d∑
h=1

Σln,hY
h,q
s dW l

s

+

m∑
l=1

1

2

∫ t

0

(
d∑
g=1

Ŷ p,gs Alg,n

)(
d∑

h=1

Σln,hY
h,q
s

)

+

∫ t

0

Y n,qs

d∑
h=1

Ŷ p,hs Bh,n ds+

∫ t

0

Ŷ p,ns

d∑
h=1

Gn,hY
h,q
s ds

+

∫ t

0

∫
E

(
Y n,qs− +

d∑
h=1

Cn,hs− (z, u)Y h,qs−

)(
Ŷ p,ns−

d∑
h=1

Ŷ p,hs− H
h,n
s− (z, u)

)
− Y n,qs− Ŷ p,ns− N(ds,dz,du)

The same computations, by a straight superposition, give us then, for all l ∈ J0,mK,

Ai = −Σi

and

B =
1

2

(∑
i=1

Σ2
i

)
−G.

•
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