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On the algebraic estimation of whole two-wheeled vehicles dynamics via
High Order Sliding Mode Differentiators

Mohammed El-Habib Dabladji, Dalil Ichalal, Hichem Arioui and Saı̈d Mammar

Abstract— The present study extends our recent result on
the states estimation of two-wheeled vehicles. Based on the
estimation of the lateral dynamics with the observer proposed in
[1], a second estimator is presented in this paper to reconstruct
the longitudinal tire-road forces, engine and braking torques.
To this end, the longitudinal dynamics is analyzed in order
to recover the tire-road forces without any knowledge of tire
parameters. The effectiveness of the proposed approach is
shown through simulation results. Concluding remarks wrap
up the papier.

I. INTRODUCTION

The growth of advanced rider assistance systems (ADAS)
for motorcycles is an important key issue to answer mor-
tality and seriously wounded of riders worldwide [2]. For
standard vehicles, safety systems are developed and operated
well in dangerous situations. Unfortunately, these ADAS are
no longer suitable for single track vehicles and the direct
transposition of the safety systems developed for cars is not
obvious.

Several elements may explain the delay in the promotion
of safety systems for powered two-wheeled (PTW) vehicles:
the low market of two-wheelers and the the investments on
R&D which are limited compared to the others vehicles.
Moreover, cognitive aspects (users acceptance and ride free-
dom) are decisive that are often neglected. Finally, complex
dynamical aspects leading to a very hard vehicle in term of
control and sensitivity [3], [4].

From the control theory point of view, safety issues and
the design of ADAS can be seen as a problem of controllers
and observers design. Then, our researches aim to the design
of passive and active safety systems by using the automatic
control theory. These controllers are based on dynamic states
which can be measured by mean of sensors and/or observers.
These observers are fundamental in perspective of passive
or active assistance systems design. In the field of observer
design for single track vehicles, there is a few approaches
since the application is less attractive. Nevertheless, one can
cite the design and implementation of an Extended Kalman
Filter (EKF) [5] which takes into account the nonlinear
behavior of the system and some stochastic measurement
noises. More recently, High Order Sliding Mode technique
has been used to estimate rider’s torque and the roll angle
by using a linearized model of the vehicle [6] with con-
stant longitudinal velocities. Nonlinear observers based on
Takagi-Sugeno representation are developed in [7], [8]. All
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these techniques are based on considering models (linear or
nonlinear) of the tire road forces (Pacejka’s model [9]) which
are empirical models, thus, uncertain.

In this paper, an approach to estimate the whole dynamics
of two-wheeled vehicles is proposed. It is based on algebraic
analysis and observation which do not need any model of
the tire forces. Thanks to the recent advances in numerical
signal differentiation, such as High Order Sliding Mode Dif-
ferentiators [10], Linear Time Varying differentiator [11] and
numerical differentiation technique proposed by M. Fliess
in [12], it is possible to estimate asymptotically, in finite
time or non asymptotically, respectively, the time derivatives
of the measurements. If the states and the unknown inputs
of the nonlinear model are algebraically observable, then,
it is possible to express the unknown states and inputs as
nonlinear functions, only, in term of known measurements
and their successive derivatives up to finite orders. Finally,
it will be sufficient to use the numerical differentiators to
estimate these time-derivatives and, consequently, thanks
to the algebraic reformulation of the unknown variables,
estimate algebraically the unknown states and unknown
inputs. A first step of this technique is developed in [1] for
estimating the roll angle, the lateral forces and rider’s torque
for a two-wheeled vehicle. In the present paper, an extension
is proposed to estimate the longitudinal dynamics of the
motorcycle, which are required for developing active safety
systems based on the reconstruction of mobilized adhesion.
In addition, some analysis are given about the tire adhesion
and the distribution (ratio) of the braking torque on the front
and the rear wheels.

II. PROBLEM STATEMENT

In the context of improving the passive and active safety of
motorcycle riders, it seems important to know some param-
eters or variables in the vehicle dynamics. Some of these
variables can easily be measured such as the longitudinal
acceleration or the yaw rate. In contrast, other variables are
very hard or impossible to measure.

It is well known in motorcycle and bicycle community
that longitudinal and lateral forces are very hard to measure
or to estimate ; and at the same time, they are seen to be the
most important variables that affect the comfort and safety
of riders [13].

In this context, the main contribution of this work is
to extend the existing works on the estimation of two-
wheeled vehicle’s lateral dynamics by the estimation of the
longitudinal forces. The general scheme of such an observer
is presented briefly in figure 1.
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Fig. 1. Overall scheme of the whole two-wheeled vehicles dynamics
principle estimation

First, we focus on the estimation of the lateral dynam-
ics. Indeed, the estimation of the lateral dynamics of two-
wheeled vehicles has been discussed in several papers [14],
[15], [5], [6], [1]. In general, we consider as measurements:
the steering angle, the yaw rate, the roll rate and the longi-
tudinal velocity which is seen as a time-varying parameter.
The most relevant states (and inputs) to be estimated and
which are difficult to measure are the lateral forces, the
lateral velocity and the steering torque.

As this first step provided with well estimated dynamics
under an acceptable time, we propose in this paper as a
second step to estimate the longitudinal forces based on
some of the lateral estimates. This paper focuses only on the
second. For lateral dynamics estimation, readers can refer to
the articles cited above.

The present paper is organized as follows: in the next
section, a brief presentation of the lateral dynamics and
some of the developed observers is presented. Section IV is
devoted to the description of the two-wheeled longitudinal
model and the corresponding observer. In section V, we
present the obtained simulation results. Finally, we finish by
a conclusion and some perspectives.

III. TWO-WHEELED LATERAL DYNAMICS DESCRIPTION
AND OBSERVATION

This section describes briefly the two-wheeled vehicle
lateral dynamics model and the corresponding observers.

A. Lateral dynamics

Since observers depend strongly to the accuracy of the
used models, the underlying models must be precise. But at
the same time, they must be simpler for real-time calculation
constraints.

To our knowledge, a good compromise between simplicity
and accuracy for the modeling of lateral dynamics of two-
wheeled vehicles is Sharp model [16].

Under the following assumptions, we will describe briefly
the lateral dynamics model:

• The vehicle is considered as the set of two linked bodies
(front and main frame).

• The motorcycle is assumed to be moving on a flat road.
• The rider is considered rigidly linked to the main frame.
• The effect of aerodynamic forces, suspension and pitch

motions are neglected.
• From the longitudinal dynamics, only the longitudinal

velocity and the longitudinal acceleration are considered
affecting the lateral dynamics of the vehicle.

The obtained model involves 4 degrees of freedom (the
lateral, the yaw, the lateral and the steering motions).

Thereby, we obtain the following differential equations
[16]:

Fyf + Fyr = M(v̇y + vxψ̇) +Mfkψ̈ + d1φ̈+Mfeδ̈∑
Mz = Mfk(v̇y + vxψ̇) + a2φ̈+ a3ψ̈ + a1δ̈

− a4vxφ̇− d2vxδ̇∑
Mx = d1v̇y + b2φ̈+ a2ψ̈ + b1δ̈ + b5vxψ̇ + d3vxδ̇∑
Ms = Mfev̇y + b1φ̈+ a1ψ̈ + c1δ̈ − d3vxφ̇

+ c3vxψ̇ +Kδ̇
(1)

where:
∑
Mz = lfFyf − lrFyr∑
Mx = b4 sin(φ)− b3 sin(δ)∑
Ms = −b3 sin(φ)− c2 sin(δ)− ηFyf + τ

(2)

Mf , Mr and M are the mass of the front, the main frame
and the whole vehicle respectively, φ is the roll angle, δ
is the steering angle, Fyf and Fyr are the lateral front and
rear forces respectively and τ is the torque applied on the
handlebar. More details on the motorcycle parameters and
expressions are given in appendix A.

The lateral forces Fyf and Fyr can be modeled in a
quasi-static or a dynamic way (by introducing the relaxation
length). Moreover, many different quasi-static models are to
be found in the literature such as the linear form [16] or
the pacejka model [9]. For brevity, this part has not been
discussed in this paper.

B. Observer design

Several works can be found in the literature to estimate the
lateral dynamics of two-wheeled vehicles. For the estimation
of the roll angle and the steering angle, readers can refer to
[14], [15], [5]. For the estimation of the lateral tire forces,
the only works in this area can be found in [6], [7], [1].

This is not the aim of this paper. Due to lake of space, we
have deliberately omitted this part.

Remark 1: In what follows, it is assumed that the lateral
velocity is estimated using the observer proposed in [1].

IV. TWO-WHEELED LONGITUDINAL DYNAMICS
DESCRIPTION AND ESTIMATION

This section is devoted to the modeling of the longitudinal
dynamics. After, we will propose an algorithm to estimate the
longitudinal forces. The only restriction for the observation
part is to know in addition to the longitudinal acceleration
and the rotational speed of wheels, the ratio of braking torque
on the two tires during the deceleration phase, and to suppose
that during acceleration phase, the engine torque is applied
only to rear wheel.



A. Modeling of longitudinal dynamics

In this subsection, an analytic model of the longitudinal
dynamics is derived from the single-corner model [13], [17].

In addition to the assumptions considered for modeling
the lateral dynamics, we consider here that:

• The lateral velocity is well estimated from the first
observer.

Now, according to figure 2, the following model is de-
duced:  M(ax − vyψ̇) = Fxf + Fxr

ifyω̇f = −RfFxf −Bf
iryω̇r = −RrFxr + E −Br

(3)
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vx

vy

Fxf Fxr

ωr ,T
Br

ωf

Bf

ψ

Fig. 2. Geometrical representation of a motorcycle model with longitudinal
dynamics

Bf and Br are the braking torques applied to the front
and the rear wheel respectively. E is the engine torque. We
suppose that the engine torque is applied only to the rear
wheel. The signification of the other parameters of the model
are given in appendix A.

As said before, the ratio of braking torque between the
two wheels is considered known. We consider Bf = αB
and Br = (1 − α)B with α ∈ [0, 1] and B is the new
braking torque to distribute between the two wheels. Thus,
the model (3) can be writing in the following form: M(ax − vyψ̇) = Fxf + Fxr

ifyω̇f = −RfFxf + αT
iryω̇r = −RrFxr + (1− α)T

(4)

where:
T =

{
E acceleration phase
−B braking phase (5)

and
α =

{
0 acceleration phase
α∗ braking phase (6)

and α∗ is ratio of braking torque between the two wheels.
It is easy to measure the longitudinal acceleration thanks

to accelerometer, the yaw rate from a gyroscope sensor and
the wheels angular speed with optical encoders. In fact, these
sensors are available on motorcycles equipped with antilock
braking systems (ABS). Thus, the more difficult task consists
on the estimation of the longitudinal forces and the braking
and engine torques. This is the aim of the next subsection.

B. Study of detectability

Before speaking about the estimation of the longitudinal
dynamics, let us recall some definitions about the observabil-
ity and the detectability of systems with unknown inputs.

Definition 1: [18] Consider the following nonlinear sys-
tem with x(t) is the state vector, u(t) is the known inputs
vector, w(t) the unknown inputs (UI) vector and y(t) is the
measurements vector:{

ẋ(t) = f(x(t), u(t), w(t))
y(t) = h(x(t), u(t), w(t))

(7)

For every initial condition x(0), any known input u(t) and
and any couple of UI (w(t), w̄(t)), the nonlinear system (7)
with two different trajectories x(t) and x̄(t) is called:

• state strongly observable: if y(t, x(t), u(t), w(t)) =
y(t, x̄(t), u(t), w̄(t)) implies that: x(t) = x̄(t).

• state strongly detectable: if y(t, x(t), u(t), w(t)) =
y(t, x̄(t), u(t), w̄(t)) implies that: x(t) → x̄(t) as t →
∞.

• state strongly asydetectable: if y(t, x(t), u(t), w(t)) →
y(t, x̄(t), u(t), w̄(t)) as t → ∞ implies that: x(t) →
x̄(t) as t→∞).

Remark 2: In [18], strong asydetectability has been called
strong∗ detectability.

Definition 1 speaks only about the state observability or
detectability. The unknown input observability (detectability)
relates to the possibility of reconstruct the UI uniquely
infinite-time (asymptotically) having as information the
known inputs and outputs.

Definition 2: [19] For every initial condition x(0) and any
known input u(t), the nonlinear system (7) is called:

• state and UI strongly observable: if
y(t, x(t), u(t), w(t)) = y(t, x̄(t), u(t), w̄(t)) implies
that: x(t) = x̄(t) and w(t) = w̄(t).

• state and UI strongly detectable: if
y(t, x(t), u(t), w(t)) = y(t, x̄(t), u(t), w̄(t)) implies
that: x(t)→ x̄(t) and w(t)→ w̄(t) as t→∞.

• state strongly asydetectable: if y(t, x(t), u(t), w(t)) →
y(t, x̄(t), u(t), w̄(t)) as t → ∞ implies that: x(t) →
x̄(t) w(t)→ w̄(t) as t→∞).

Let us check the UI strong observability (detectability or
asydetectability) of the model giving by (3).

We consider that the longitudinal dynamics state vector
([ωf (t), ωr(t)]

T ) is measurable. Moreover, since ax and ψ̇(t)
are considered measurable and vy(t) is considered well es-
timated from the lateral dynamics observer (asymptotically),
then we can say that Fxf + Fxr is also known asymptotically
(from (4)). So, the vector z(t) = [ωf (t), ωr(t), Fxf + Fxr]

T

is known asymptotically.
Now, applying the definition giving for the state and un-

known input strong asydetectability. Consider the trajectory
of the system (3) and another trajectory: M(āx − v̄y ˙̄ψ) = F̄xf + F̄xr

ify ˙̄ωf = −Rf F̄xf − B̄f
iry ˙̄ωr = −RrF̄xr + T̄ − B̄r

(8)



and suppose that z(t) → z̄(t) when t → ∞. Thus, we
obtain: 

F̃xf + F̃xr → 0

−Rf F̃xf − B̃f → 0

−RrF̃xr + T̃ − B̃r → 0

(9)

where: F̃xf = Fxf − F̄xf , F̃xr = Fxr − F̄xr, T̃ = T − T̄ ,
B̃f = Bf − B̄f and B̃r = Br − B̄r

We see that the obtained system has (F̃xf + F̃xr)→ 0 as
unique solution, but (F̃xf , F̃xr) → (0, 0) is not the unique
one. Then, the longitudinal forces cannot be detectable with
such a model. This motivates our constraints to consider the
ratio of braking torque to be known.

In the case where this ratio is known, we obtain the
following system of equation:

F̃xf + F̃xr → 0

−Rf F̃xf + αŨ → 0

−RrF̃xr + (1− α)Ũ → 0

(10)

Now, we see that the only solution of the above system of
equations is [F̃xf , F̃xr, Ũ ]T → 0. So, if the ratio of braking
torque is known, the longitudinal forces become strongly
asydetectable i.e. they will be estimated asymptotically.

C. Longitudinal dynamics reconstruction

Now, we’ll continue the design of the cascaded observer
by the estimation of the longitudinal forces. We consider
that the longitudinal acceleration, the angular velocities of
the wheels and the yaw rate are measured. The lateral speed
is considered well estimated from the first observer. The
diagram of the proposed observer is given in figure 1.

From (4), thanks to the first algebraic equation which
is known and since all the state vector x = [ωf , ωr]

T

is measurable. So, as seen before, the system is strongly
asydetectable.

From (4), the system can be writing in the following form: 1 1 0
−Rf 0 α

0 −Rr 1− α


︸ ︷︷ ︸

D(α)

 Fxf
Fxr
U

 =

 M(ax − vyψ̇)
ifyω̇f
iryω̇r


(11)

One can notice that the matrix D(α) is nonsingular for
all values of α ∈ [0, 1]. The yaw rate and the longitudinal
acceleration are given by appropriate sensors. The lateral
velocity is obtained from the lateral dynamics observer
(figure 1). Hence, to estimate the longitudinal forces, we
request the knowledge of only the derivatives of the state
vector.

Note that considering the tire forces as unknown inputs is
more consistent with real constraints, because they depend on
several parameters (tire pressure, tire adhesion, mass transfer
between the two tires, etc.). In fact, it is not necessary in this
paper to known the tire parameters or dynamics.

Since the rotational tire velocities ωf and ωr and their
first time derivatives are bounded, several algorithms can be

used to estimate the first derivatives like the super-twisting
algorithms [10], Linear Time Varying differentiator [11] or
numerical differentiation technique proposed by M. Fliess in
[12]. In this work, we use the super-twisting algorithms [10].


v̇11 = v12 − λ11|v11 − ωf |

1
2 sign(v11 − ωf )

v̇12 = −λ12sign(v12 − v̇11)

v̇21 = v22 − λ21|v21 − ωr|
1
2 sign(v21 − ωr)

v̇22 = −λ22sign(v22 − v̇21)

(12)

sign refer to the sign function. λij are positive scalars and
are chosen according to the limits of the derivatives of ωf
and ωr (see [10]).

Consider v = [v12, v22]T the estimates of [ω̇f , ω̇r]
T . From

these estimates and the equation (11), we can estimate the
longitudinal forces and the engine or braking torque by the
following equation: F̂xf

F̂xr
Û

 = D−1(α)

 M(ax − v̂yψ̇)
ifyv12
iryv22

 (13)

Thus, we have estimated the longitudinal forces and the
engine or braking torque without any knowledge of the tire
parameters.

V. SIMULATION RESULTS

The results shown in this paper refer to a simulation test.
The nonlinear model used for the simulation includes the
coupled longitudinal and lateral dynamics. The tire forces are
modeled by the magic formula of Pacejka. The simulations
are carried out for a lane change maneuver.

The simulation results are presented first for the case
without measurement noises and with the exact knowledge
of the mass and the geometric parameters of wheels. Thus,
we obtain figures 3, 4 and 5.
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From the figure 3, we notice that the proposed scenario
includes three phases. Before 10s, we are in braking phase
and the longitudinal acceleration is about −1m/s2. From
10s to 17s, no braking or engine torque is applied. After 17s,
the vehicle is in an acceleration phase. We see also that the
lateral velocity is well estimated from the first observer. From
figure 4, we observe that the estimation of the longitudinal
tire forces and the engine and braking torques are estimated
exactly and in finite time. Figure 5 shows the variations of
the lateral and vertical forces for the corresponding scenario.

Now, if the measurements are noisy, the results of simula-
tion are given in figure 6 where each measure is considered
affected by a random and centered signal of magnitude 8%
of its maximum.

The effect of noises is apparent but the results remain
acceptable. Of course, it is well known that the super-twisting
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Fig. 6. With noises (Top) Longitudinal front and rear tire forces (blue)
and their estimates (red), (bellow) Front and rear engine or braking torques
(blue) and their estimates (red)

algorithm is very sensitive to measurement noises and we
have a compromise in the choice of the differentiator gains. If
they are chosen sufficiently large, we will have good and fast
estimation, but the observer will be very sensitive to noises.
And in the other case, the observer will be less sensitive to
noises but the estimation of the unknown signals will not be
accurate.

In figure 7, we check the situation when the mass M or
the geometric parameters of the tires are not known exactly.
Let us choose for the observer part: M̂ = 0.9 ∗M , îfy =
0.9∗ify and îry = 1.1∗iry. Because the reconstruction of the
unknown inputs (the longitudinal forces and torques) is done
algebraically without any feedback law, it is obvious that the
reconstruction of these inputs is sensitive to the knowledge
of these parameters.
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(bottom) Front and rear engine or braking torques (blue) and their estimates
(red)



Finally, we will study the influence of the variation of the
ratio of braking torque α∗ on the longitudinal adhesion on
each tire.

Recall that the longitudinal (lateral) adhesion µx (µy) on a
tire is equal to the ratio between the longitudinal (lateral) tire
force and the vertical force on the same tire. The longitudinal
and lateral adhesion must always be less than a friction
limit depending on the tire and the conditions of the road.
Moreover, the longitudinal and lateral adhesion must satisfy
the following inequality [13]:

µ2
x + µ2

y ≤ µmax ≤ 1 (14)

In figure 8, we propose the simulation results of the
longitudinal adhesion for different values of braking torque
ratio α∗.
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Fig. 8. Front and rear longitudinal adhesion for different values of α∗

From figure 8, we notice that the variation of α∗ affects
directly the adhesion requested by each tire. This can be seen
for future work as a degree of freedom to perform the safety
of two-wheeled vehicles in active way.

VI. CONCLUSION AND PERSPECTIVES

In this paper, an estimator was proposed to reconstruct the
longitudinal dynamics of two-wheeled vehicles. The lateral
dynamics were considered estimated from an independent
lateral observer. Without the knowledge of the ratio of
braking torque, we proved the undetectability of the lon-
gitudinal tire forces. When this ratio is known, an estimator
was proposed to reconstruct the longitudinal tire forces and
engine and braking torques. Simulations were given to show
the effectiveness of the proposed approach.

This work associated with previous results on the estima-
tion of two-wheeled lateral dynamics allows us to estimate
all tire forces. Moreover, by considering the braking torque’s
ratio and its effect on the longitudinal adhesion, future works
will be devoted to enhance the safety of motorcycles.

TABLE I

Motorcycle dynamic parameters signification
vx , vy longitudinal and lateral velocities
φ , ψ , δ roll, yaw and steering angles
Fyf , Fyr front and rear lateral forces
Fxf , Fxr front and rear longitudinal forces
Fzf , Fzr front and rear vertical forces
τ steering torque
Mf , Mr , M mass of the front frame, the rear frame

and the whole motorcycle
K damper coefficient of the steering

mechanism
ax Longitudinal acceleration
ωf , ωr Front and rear wheel angular speed
Bf , Br , E Front and rear brake and engine torques
Rf , Rr Front and rear tire radii
ify , iry Front and rear rotational inertia
The other parameters ai , bi , ci and di are described in
table II

TABLE II
MOTORCYCLE PARAMETERS EXPRESSIONS AND NUMERICAL VALUES

parameters ai , bi , ci and di
a1 =Mf ek + Ifz cos ε
a2 =Mf jk − Crxz + (Ifz − Ifx) sin ε cos ε

a3 =Mfk
2 + Irz + Ifx sin2 ε+ Ifz cos

2 ε , a4 =
ify

Rf
+

iry
Rr

b1 =Mf ej + Ifz sin ε
b2 =Mf j

2 +Mrh2 + Irx + Ifx cos2 ε+ Ifz sin
2 ε

b3 = ηZf −Mf eg , b4 = (Mf j +Mrh)g

b5 =Mf j +Mrh+
ify

Rf
+

iry
Rr

, c1 = Ifz +Mf e
2

c2 = (ηZf −Mf eg) sin ε , c3 =Mf e+
ify

Rf
sin ε

d1 =Mf j +Mrh , d2 =
ify

Rf
sin ε , d3 = − ify

Rf
cos ε

Parameters ai , bi , ci and di contain the geometrical
parameters of the motorcycle and their signification are
illustrated in [16]
Numerical values
Mf = 30.65kg , Mr = 217.45kg , M =Mf +Mr

K = 6.77N.s/rad , Irx = 31.18kg/m2 , Irz = 21.07kg/m2

g = 9.81m/s2 , Crxz = 1.74kg/m2 , Ifx = 1.24kg/m2

Ifz = 0.44kg/m2 , ify = 0.72kg/m2 , iry = 1.05kg/m2

a = 0.949m , e = 0.024m , f = 0.028m , h = 0.616m
Rf = 0.305m , Rr = 0.305m , η = 0.116m , ε = 0.47◦

lr = 0.585m , lf = 0.829m
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