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Newton’s method for solving generalized equations: Kantorovich’s
and Smale’s approaches

Samir Adly a,∗, Huynh Van Ngai b, Van Vu Nguyen a
a Laboratoire Xlim, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France

b Department of Mathematics, University of Quy Nhon, 170 An Duong Vuong, Quy Nhon, Viet Nam

In this paper, we study Newton-type methods for solving generalized equations 
involving set-valued maps in Banach spaces. Kantorovich-type theorems (both local 
and global versions) are proved as well as the quadratic convergence of the Newton 
sequence. We also extend Smale’s classical (α, γ)-theory to generalized equations. 
These results are new and can be considered as an extension of many known ones 
in the literature for classical nonlinear equations. Our approach is based on tools 
from variational analysis. The metric regularity concept plays an important role in 
our analysis.

1. Introduction

It is well-known in the literature of applied mathematics, engineering and sciences that the classical
Newton method and its generalizations are among the most famous and effective methods for numerically 
solving the nonlinear equation f(x) = 0, for a given function f : Rm −→ R

m. This success is due to its 
quadratic rate of convergence under some suitable assumptions on the problem data and the choice of the 
initial point. The classical convergence results state that Newton’s method is only locally convergent. More 
precisely, if the function f is sufficiently smooth and its Jacobian ∇f(x∗) is nonsingular at the solution x∗, 
then by choosing an initial point x0 in a neighborhood of this solution x∗, the convergence of the sequence
generated by Newton’s method is guaranteed and the rate of convergence is at least quadratic. Much more 
has been written about Newton’s (or Simpson–Raphson–Newton’s) method and a classical reference is the 
book by Ortega and Rheinboldt [15].

In 1948, L.V. Kantorovich published a famous paper (see [14,11]) about the extension of Newton’s 
method to functional spaces. This result obtained by L.V. Kantorovich can be regarded both as an existence 
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result (of a zero of f) and a convergence result (of the associated iterative process). The assumptions used 
essentially focus on the values of the function f and its first derivative f ′ at the starting point x0 as well
as the behavior of the derivative f ′ in a neighborhood of x0. Kantorovich’s theorem requires the knowledge
of a local Lipschitz constant for the derivative. In the same spirit, another fundamental result on Newton’s 
method is the well-known point estimation theory of Smale [19], based on the α-theory and γ-theory for 
analytical functions. The α-theory uses information about all derivatives of the function f at the initial 
point x0 in order to give the size of the attraction’s basin around the zero of the function f .

In 1980, S.M. Robinson [17] studied generalized equations with parameters: namely parameterized varia-
tional inequalities. He proved an implicit function theorem that can be used to study the local convergence 
of Newton’s method for generalized equations (or variational inclusions). In his Ph.D. thesis, Josephy [10]
used this theorem to investigate the local convergence of the Newton and quasi-Newton methods for the 
variational inequality of the form f(x) +NC(x) � 0, where C is a closed convex subset of Rm and NC is the
forward-normal cone of C. He proved that if the solution x∗ is regular (in the sense of Robinson [17]) and if 
x0 is in a neighborhood of x∗, then the Josephy–Newton method is well-defined and converges superlinearly
to x∗. Further generalization of Newton’s method was considered by many authors. For example J.F. Bon-
nans [3] obtained a local convergence result of Newton’s method for variational inequalities under weaker 
assumptions than the one’s required by Robinson’s theorem. More precisely, Bonnans proved that under 
the condition of semi-stability and hemistability (these two conditions are satisfied if Robinson’s strong 
regularity holds at the solution), superlinear convergence of Newton’s method (quadratic convergence if f
is C1,1) holds.

The Josephy–Newton method for set-valued inclusions of the form f(x) +F (x) � 0, where f : Rm −→ R
m

is a single-valued mapping of class C1 and F : R
m ⇒ R

m is a set-valued map, was also considered by
A. Dontchev [5–7]. In this case, the algorithm starts from some point x0 near a solution and generates a
sequence (xn) defined by solving the following auxiliary problem

0 ∈ f(xn) + Df(xn)(xn+1 − xn) + F (xn+1). (1.1)

Here (and in what follows), Df indicates the first order derivative of f . In [6,7], Dontchev proved the local 
Q-quadratic convergence of Josephy–Newton method under the assumptions that f is of class C1 and F
has closed graph with (f + F )−1 being Aubin continuous at (x∗, 0) (see [8] for more details).

The present paper is concerned with Newton–Kantorovich and Newton–Smale approaches for generalized 
equations of the form

0 ∈ f(x) + F (x), (1.2)

where f : X −→ Y is a single-valued mapping defined between the Banach spaces X and Y , supposed to 
be of class C2 on an open set U in X, and F : X ⇒ Y is a set-valued mapping with a closed graph.

The paper is organized as follows. In section 2, we recall some preliminary results and backgrounds that 
will be used in the rest of the paper. Section 3 is devoted to the proof of a Kantorovich-type theorem for the 
generalized equation (1.2). In section 4, we prove two theorems corresponding to Smale’s α and γ-theory 
for problem (1.2) in the case where f is analytic.

2. Preliminaries

The capital letters X, Y, . . . will denote Banach spaces. By X∗ we mean the dual space associated with X.
Throughout the paper, we will use the common notation ‖·‖ for the norm on some arbitrary Banach space 
X and 〈·, ·〉 for the canonical duality pairing on X∗ ×X. We denote by BX(x, r) (resp. BX [x, r]) the open
(resp. closed) ball with center x ∈ X and radius r > 0. The unit ball in X will be defined by BX (or simply
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B when X is clear). If x ∈ X and K ⊂ X, the notation d(x, K) stands for the distance function from x
to K, defined by

d(x,K) := inf
z∈K

‖x− z‖ .

For two subsets C, D of X, we define the excess of C beyond D by

e(C,D) := inf {t > 0 : C ⊂ D + tBX} ,

and the Hausdorff distance between them as

dH(C,D) := max
{
e(C,D), e(D,C)

}
.

A set-valued mapping (or multifunction) T : X ⇒ Y is a correspondence, assigning to each x ∈ X a subset
T (x) ⊂ Y . The domain and graph of mapping T are defined respectively by dom(T ) =

{
x ∈ X : T (x) 
= ∅

}
and gph(T ) =

{
(x, y) ∈ X × Y : y ∈ T (x)

}
. For the given Banach spaces X, Y , Z and two mappings

T1 : X ⇒ Y , T2 : Y ⇒ Z the composition of T1 and T2 is a mapping T : X ⇒ Z defined by T (x) =⋃
y∈T1(x) T2(y). Finally, the inverse of the mapping T is the set-valued mapping T−1 : Y ⇒ X such that

x ∈ T−1(y) if and only if y ∈ T (x).
The key concept in our analysis is the metric regularity property [1,8,12,13,18]. Recall that a mapping 

T : X ⇒ Y is metrically regular at (x̄, ȳ) ∈ gph(T ) with a modulus κ > 0 if there are some neighborhoods
U of x̄ in X and V of ȳ in Y so that

d
(
x, T−1(y)

)
� κd

(
y, T (x)

)
, whenever (x, y) ∈ U × V.

The infimum of all such constants κ is called the regularity modulus of T at x̄ for ȳ, usually denoted by 
reg(T ; (x̄, ȳ)).

The metric regularity of a mapping T at some point (x̄, ȳ) in gph(T ) is known to be equivalent to the 
so-called Lipschitz-like property (or Aubin property) of the inverse T−1 at (ȳ, ̄x) (see [8,12]). Recall that
a mapping S : Y ⇒ X is Lipschitz-like at (ȳ, ̄x) ∈ gph(S) with constant κ provided that there exists a
neighborhood V × U of (ȳ, ̄x) in Y ×X such that

e
(
S(y) ∩ U, S(y′)

)
� κ ‖y − y′‖ , for all y, y′ ∈ V.

In the sequel, we make use of the following theorem proved in [1], which gives a sufficient condition for the 
stability of metric regularity property under a suitable perturbation. Recall that a mapping S : X ⇒ Y is
called Lipschitz continuous on a set D of X iff there exists a constant L > 0 (Lipschitz constant) such that

dH
(
S(x), S(x′)

)
� L ‖x− x′‖ , for all x, x′ ∈ D.

Theorem 2.1. Given Banach spaces X and Y , let Φ : X ⇒ Y be a set-valued mapping with closed graph and
let (x̄, ȳ) ∈ gph(Φ). Suppose that Φ is metrically regular at (x̄, ȳ) with modulus κ > 0 on a neighborhood 
BX(x̄, a) × BY (ȳ, b) of (x̄, ȳ) for some a > 0 and b > 0. Let δ > 0, L ∈ (0, κ−1), and set τ = κ/(1 − κL).
Let α, β be positive constants satisfying

2α + βτ < min {a, δ/2} , β(τ + κ) < δ, 2cα + β(1 + cτ) < b,

with c := max
{
1, κ−1}. If G : X −→ Y is Lipschitz continuous on BX(x̄, δ) with the constant L, and the

sum Φ +G has closed graph, then Φ +G is metrically regular on BX(x̄, α) ×BY (ȳ+G(x̄), β) with modulus τ .
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Remark 2.2. The proof of Theorem 2.1 is a direct consequence of Theorem 3.2 in [1].

Definition 2.3. Given a set-valued mapping Φ : X ⇒ Y , a point x0 ∈ X and some positive constants r > 0,
s > 0, we define

V (Φ, x0, r, s) = {(x, y) ∈ X × Y : x ∈ BX [x0, r], d(y,Φ(x)) < s} . (2.1)

One says that the mapping Φ is metrically regular on the set V (Φ, x0, r, s) with a modulus τ > 0 if

d
(
x,Φ−1(y)

)
� τd

(
y,Φ(x)

)
for all (x, y) ∈ V (Φ, x0, r, s). (2.2)

When the mapping Φ satisfies Definition 2.3, we denote by reg(Φ, x0, r, s) the infimum of all τ > 0 for
which (2.2) holds. Otherwise, we set reg(Φ, x0, r, s) = ∞.

A global version of Theorem 2.1 is stated in the following theorem.

Theorem 2.4. Let Φ : X ⇒ Y be a set-valued mapping with closed graph, and let x0 ∈ X, r > 0, s > 0,
and κ > 0 be such that Φ is metrically regular on V (Φ, x0, r, s) with modulus κ. For L ∈ (0, κ−1) set
τ = κ/(1 −κL). If G : X −→ Y is Lipschitz continuous on BX [x0, r] with constant L, and Φ +G has closed
graph, then the set-valued mapping Φ + G is metrically regular on V (Φ + G, x0, r4 , R) with the modulus τ ,
where R = min

{
s, r

5τ
}
.

Remark 2.5. The proof of Theorem 2.4 is a direct consequence of Theorem 6.2 in [1].

3. Theorems of Kantorovich’s type

Let us first establish a local convergence theorem for Newton’s iteration (1.1).

Theorem 3.1. Let f : X −→ Y be a function of class C2 on an open set U in X and let F : X ⇒ Y be a
set-valued mapping with closed graph. Let ξ ∈ U be a solution of problem (1.2) and η = Df(ξ)(ξ) −f(ξ) ∈ Y . 
Suppose that the set-valued mapping Φ(·) = Df(ξ)(·) + F (·) is metrically regular on neighborhood V =
BX [ξ, r] × BY [η, ρ] of (ξ, η) with modulus τ such that BX [ξ, r] ⊂ U . Define

K(τ, ξ, r) := τ sup
‖z−ξ‖�r

∥∥D2f(z)
∥∥ , and ε = min

{
r, ρ, τρ

}
,

where D2f stands for the second order derivative of f . If 2K(τ, ξ, r)r < 1, then for all x0 ∈ BX(ξ, ε), there
exists a Newton iterative sequence (xn) generated by (1.1), converging quadratically to ξ:

‖xn+1 − ξ‖ <
1
2r ‖xn − ξ‖2

, n = 0, 1, 2, . . . (3.1)

In order to prove Theorem 3.1, the following lemma will be useful.

Lemma 3.2. With f , r, τ and K(τ, ξ, r) as in the theorem, for any x, x′ ∈ BX [ξ, r], one has:

(i) ‖Df(x) −Df(x′)‖ � K(τ,ξ,r)
τ ‖x− x′‖,

(ii) ‖f(x′) − f(x) −Df(x)(x′ − x)‖ � K(τ,ξ,r)
2τ ‖x′ − x‖2.

Proof. The proof is evident from the mean value theorem and definition of K(τ, ξ, r). �
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Proof of Theorem 3.1. Let L = K(τ,ξ,r)r
τ � 1

2τ , and set τ̄ = τ
1−τL , ν = ε

4τ . Then,

ντ̄ = ν
τ

1 − τL
� 2ντ = ε

2 < r/2.

Moreover, since τL � 1
2 , one has

ν(τ̄ + τ) = ντ

(
1

1 − τL
+ 1

)
� 3τν = 3ε

4 < r.

Set c = max
{
1, τ−1}. If τ � 1, then c = 1, and in this case, we have

ν(1 + cτ̄) � ν(τ + τ̄) � 3τν < ρ.

Otherwise, τ < 1, then c = τ−1. In this case, it holds that

ν(1 + cτ̄) = ν(1 + τ−1τ̄) = ν

(
1 + 1

1 − τL

)
� 3ν < ρ.

Let us take μ > 0 such that

2μ + ντ̄ < r/2, ν(τ̄ + τ) < r, 2cμ + ν(1 + cτ̄) < ρ.

Applying Theorem 2.1 with a = r, b = ρ and δ = r, for any linear and continuous map A : X −→ Y having 
‖A‖ � L the sum ΦA = A + Φ is metrically regular on BX [ξ, μ] × BY [η + A(ξ), ν] with a modulus τ̄ .

Let x0 ∈ BX(ξ, ε), then by Lemma 3.2, we get

‖Df(x0) −Df(ξ)‖ � K(τ, ξ, r)
τ

‖x0 − ξ‖ � K(τ, ξ, r)ε
τ

� K(τ, ξ, r)r
τ

= L.

Hence, Φ0 = Df(x0) + F = [Df(x0) − Df(ξ)] + Φ is metrically regular on the neighborhood BX [ξ, μ] ×
BY [y0, ν] of (ξ, y0), with modulus τ0 = τ

1−τL , where y0 = Df(x0)(ξ) − f(ξ). For z0 = Df(x0)(x0) − f(x0),
we have

‖z0 − y0‖ = ‖Df(x0)(x0) − f(x0) − [Df(x0)(ξ) − f(ξ)]‖

= ‖f(ξ) − f(x0) −Df(x0)(ξ − x0)‖ � K(τ, ξ, r)
2τ ‖ξ − x0‖2

� K(τ, ξ, r)
2τ rε � ε

4τ = ν,

which implies z0 ∈ BY [y0, ν]. Using the fact that Φ0 is metrically regular on BX [ξ, μ] ×BY [y0, ν], we obtain

d
(
ξ,Φ−1

0 (z0)
)
� τ0d

(
z0,Φ0(ξ)

)
� τ0d

(
z0, y0

)
� τ0

K(τ, ξ, r)
2τ ‖ξ − x0‖2

= K(τ, ξ, r)
2(1 − τL) ‖ξ − x0‖2

.

Since L � 1
2τ and rK(τ, ξ, r) < 1/2, we deduce

d
(
ξ,Φ−1

0 (z0)
)
<

1 ‖ξ − x0‖2
.
2r
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Thus, we can select x1 ∈ Φ−1
0 (z0) verifying

‖ξ − x1‖ <
1
2r ‖ξ − x0‖2

.

Observe that, as

Df(x0)(x0) − f(x0) = z0 ∈ Φ0(x1) = Df(x0)(x1) + F (x1),

x1 is a Newton iteration generated by (1.1) with n = 0. On the other hand, the choice of x0 implies

‖ξ − x1‖ <
1
2r ‖ξ − x0‖2 � 1

2 ‖ξ − x0‖ < ε.

That is, x1 ∈ BX(ξ, ε). Consequently, instead of x0, now we can consider x1 as a new starting point and
continue the process. Repeating this procedure, we obtain a sequence (xn) generated by (1.1) for which
relation (3.1) holds. By using repeatedly this inequality, we obtain

‖xn − ξ‖ <

(
1
2r ‖x0 − ξ‖

)2n−1

‖x0 − ξ‖ �
(

1
2

)2n−1

‖x0 − ξ‖ .

Combining the preceding estimation with (3.1), the quadratic convergence is shown. The proof of Theo-
rem 3.1 is thereby completed. �
Remark 3.3. A similar result to Theorem 3.1 was obtained by A. Dontchev in [6, Theorem 1]. Our assump-
tions are slightly different than the ones used in [6, Theorem 1] and the conclusion of Theorem 3.1 is more 
precise in the sense that it gives an explicit region for starting points to ensure the convergence of the 
algorithm.

The next theorem states a global result ensuring the existence of a solution as well as the rate of conver-
gence for the Newton iterative sequence. The assumptions used here are based on a classical Kantorovich 
theorem presented in [4]. An optimal error bound estimate is obtained by using the technique in [9].

Theorem 3.4. Given two Banach spaces X and Y , let f : X −→ Y be a function of class C2 on an open
set U ⊂ X and F : X ⇒ Y be a set-valued mapping with closed graph. For τ > 0, ε > 0 and y ∈ U with
B[y, ε] ⊂ U we define

β(τ, y) := τd
(
0, f(y) + F (y)

)
, K(τ, y, ε) := τ sup

‖z−y‖�ε

∥∥D2f(z)
∥∥ ,

where D2f stands for the second-order derivative of f . Let x ∈ U , α ∈ (0, 1] and r > 0, s > 0 such that the 
following conditions are satisfied.

1. Φ = Df(x) + F is metrically regular on V = V (Φ, x, 4r, s) with a modulus τ > reg(Φ, x, 4r, s),
2. d

(
0, G(x)

)
< s, where G = f + F ,

3. 2β(τ, x)K(τ, x, r) � α,
4. 2ηβ(τ, x) � r, with η = 1−

√
1−α
α = 1

1+
√

1−α
.

Then there exists a solution ξ ∈ U of the generalized equation (1.2) such that

‖x− ξ‖ � 2ηβ(τ, x) � r. (3.2)
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Moreover, there is a sequence (xn) generated by the Newton method (1.1) which starts at x and converges
to ξ. For this sequence, the following error bounds hold:

• if α < 1, then

‖xn − ξ‖ � 4
√

1 − α

α

θ2n

1 − θ2n β(τ, x), with θ = 1 −
√

1 − α

1 +
√

1 − α
; (3.3)

• if α = 1, then

‖xn − ξ‖ � 2−n+1β(τ, x). (3.4)

Let us first note that if β(τ, x) = 0, then the conclusion of Theorem 3.4 is trivially valid. Indeed, in that
case, d

(
0, f(x) + F (x)

)
= τ−1β(τ, x) = 0, and hence 0 ∈ f(x) + F (x) since gph(F ) is closed. This means

that x is a solution of problem (1.2), and we simply set xn = x for all n. Assuming now β(τ, x) > 0, set
β = β(τ, x) > 0, K = (2β)−1α > 0. Consider the majorizing function given by

ω(t) = Kt2 − 2t + 2β. (3.5)

The proof will be performed by induction, and it is based on the following lemma.

Lemma 3.5. Consider the Newton sequence (tn) associated with the scalar equation ω(t) = 0:

{
t0 = 0,
tn+1 = tn − ω′(tn)−1ω(tn), n = 0, 1, . . .

(3.6)

Then this sequence is well-defined, strictly increasing and converges to the smallest root t∗ = 1−
√

1−α
K of ω. 

When α < 1 we have
⎧⎪⎨
⎪⎩
t∗ − tn � 4

√
1−α
α

θ2n

1−θ2n (t1 − t0) = 4
√

1−α
α

θ2n

1−θ2n β,

2(tn+1−tn)

1+
√

1+4θ2n (1+θ2n )−2
� t∗ − tn � θ2n−1(tn − tn−1).

(3.7)

In the case α = 1, one has

{
t∗ − tn � 2−n+1(t1 − t0) = 2−n+1β,

2
(√

2 − 1
)
(tn+1 − tn) � t∗ − tn � tn − tn−1.

(3.8)

Proof. It is sufficient to verify the monotonicity of the sequence defined in (3.6); the existence of (tn) as
well as the error bounds in (3.7), (3.8) follow directly from [9]. The scalar function defined by ϕ : t ∈
(−∞, t∗) �−→ t − ω′(t)−1ω(t) satisfies

ϕ′(t) = ω′′(t)ω(t)
[ω′(t)]2 = 2K ω(t)

[ω′(t)]2 .

Let us observe that ω is positive on I = (−∞, t∗), so ϕ′(t) > 0. This means that ϕ is strictly increasing. 
Since tk+1 = ϕ(tk), the proof is completed by induction on n. �
7



Remark 3.6. It follows immediately from the proof of Lemma 3.5 that

tn < t∗ = 1 −
√

1 − α

K
= 1 −

√
1 − α

α
2β = 2ηβ � r (3.9)

for all n.

Now, we return to the main proof of Theorem 3.4.

Proof of Theorem 3.4. We set G := f+F and rewrite the Newton’s iteration (1.1) in the following equivalent 
form:

−f(xn) + Df(xn)xn ∈
[
Df(xn) + F

]
(xn+1). (3.10)

We will construct by induction a sequence (xn) such that

‖xn − xn+1‖ < tn+1 − tn (3.11)

where (tn) defined in Lemma 3.5.
Let us put x0 = x, Φ0 = Φ, and τ0 = τ . Since τ0 > reg(Φ0, x0, 4r, s), then Φ0 is metrically regular on

V (Φ0, x0, 4r, s) with some modulus τ̄0 < τ0. By setting y0 = −f(x0) + Df(x0)(x0), we have

d
(
y0,Φ0(x0)

)
= d

(
− f(x0) + Df(x0)(x0), [Df(x0) + F ](x0)

)
= d

(
0, G(x0)

)
< s.

Hence (x0, y0) ∈ V (Φ0, x0, 4r, s). By using the metric regularity property of Φ0, the following evaluation
holds

d
(
x0,Φ−1

0 (y0)
)
� τ̄0d

(
y0,Φ0(x0)

)
= τ̄0d

(
0, G(x0)

)
< τ0d

(
0, G(x0)

)
= β(τ0, x0) = β.

Thus, we can select x1 in Φ−1
0 (y0) with ‖x0 − x1‖ < β. Due to Lemma 3.5, it is easy to deduce that

β = t1 − t0. Therefore, (3.11) is satisfied for n = 0.
Suppose that for some n � 1 there exist x1, x2, . . . , xn such that

• xk+1 ∈ Φ−1
j (yk), where Φk(·) = Df(xk)(·) + F (·) and yk = [−f + Df(xk)](xk);

• ‖xk − xk+1‖ < tk+1 − tk = δk for all k = 0, 1, . . . , n − 1.

If xn is a solution of problem (1.2), then the proof is done. Otherwise, using (3.9) and the triangle inequality
we have

∥∥x0 − xn

∥∥ �
n−1∑
j=0

∥∥xj − xj+1
∥∥ <

n−1∑
j=0

(tj+1 − tj) = tn − t0 = tn < r.

Let K0 = K(τ0, x0, r) � α
2β = K; a similar argument as in Lemma 3.2 gives us

‖Df(xn) −Df(x0)‖ � K0 ‖x0 − xn‖ � 1
Ktn.
τ0 τ0
8



We introduce the notation Ln := 1
τ0
Ktn. The fact that tn < t∗ = 1−

√
1−α

K in Remark 3.6 implies

Lnτ̄0 � Lnτ0 = Ktn < Kt∗ = 1 −
√

1 − α � 1.

We define τ̄n = τ̄0
1−Lnτ̄0

, τn = τ0
1−Lnτ0

, rn = r/4 and sn = min
{
s, 4r

5τn

}
. Due to Theorem 2.4, the mapping 

Φn(·) = [Df(xn) −Df(x0)](·) +Φ0(·) is metrically regular on Vn = V (Φn, x0, 4rn, sn) with modulus τ̄n < τn.
Setting yn = [−f + Df(xn)](xn), we get d

(
yn, Φn(xn)

)
= d

(
0, G(xn)

)
. The choice of xn gives us yn−1 ∈

Φn−1(xn). Consequently,

zn−1 := f(xn) − f(xn−1) −Df(xn−1)(xn − xn−1) ∈ G(xn),

and then, by using Taylor’s expansion, we obtain the estimate

d
(
0, G(xn)

)
� ‖zn−1‖

=

∥∥∥∥∥∥
1∫

0

D2f(xn−1 + s(xn − xn−1))(xn − xn−1)2(1 − s) ds

∥∥∥∥∥∥
�

1∫
0

∥∥D2f(xn−1 + s(xn − xn−1))
∥∥ ‖xn − xn−1‖2 (1 − s) ds

� K0

τ0

δ2
n−1
2 � K

τ0

δ2
n−1
2 . (3.12)

We are going to establish the following inequalities:

K

τ0

δ2
n−1
2 < s, n = 1, 2, . . . (3.13)

Indeed, when n = 1 the left-hand side of (3.13) is equal to

K

τ0

δ2
0
2 = K

τ0

β2

2 = Kβ

τ0

τ0d
(
0, G(x0

)
2 = 1

4αd
(
0, G(x0)

)
� 1

4d
(
0, G(x0)

)
,

which affirms (3.13). Consider the situation for which n � 2. If α = 1, error bounds in (3.8) supply us with

δn−1 = tn − tn−1 � 1
2

(√
2 − 1

) (t∗ − tn−1) �
1

2
(√

2 − 1
)2−n+2β �

√
2 + 1
2 β.

When α < 1, paying attention to (3.7), we find

δn−1 = tn − tn−1 � 1
2

(
1 +

√
1 + 4θ2n−1(

1 + θ2n−1)2

)
(t∗ − tn−1)

� 1 +
√

2
2 (t∗ − tn−1) �

1 +
√

2
2

4
√

1 − α

α

θ2n−1

1 − θ2n−1 β

� 1 +
√

2
2

4
√

1 − α

α

θ2

1 − θ2 β = 1 +
√

2
2

α(
1 +

√
1 − α

)2β.

In summary, the inequality δn−1 � 1+
√

2 α( √ )2β is true with n � 2. And this yields
2 1+ 1−α
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K

τ0

δ2
n−1
2 � 1

2
K

τ0

(
1 +

√
2

2

)2

β2 = 1
2τ0

(
1 +

√
2

2

)2
α

2 τ0d
(
0, G(x0)

)

�
(

1 +
√

2
4

)2

αd
(
0, G(x0)

)
< s.

Hence, (3.13) is proved.
Returning to the main proof, combining (3.12) and (3.13) one has

d
(
0, G(xn)

)
� K

τ0

δ2
n−1
2 < s.

On the other hand, thanks to Taylor’s expansion, we can write

ω(tn) = ω(tn−1) + ω′(tn−1)δn−1 + ω′′(tn−1)
δ2
n−1
2 = Kδ2

n−1.

As τn = τ0
1−Lnτ0

= τ0
1−Ktn

and 2ηβ = 2ηβ(τ, x) � r, it follows from (3.12) that

d
(
0, G(xn)

)
� K

τ0

δ2
n−1
2 = 1

2
1

τn(1 −Ktn)ω(tn) = 1
τn

[
− ω′(tn)−1ω(tn)

]
= 1

τn
δn

= β

τn

(
δn
β

)
� r

2ητn

(
δn
β

)
= 4r

5τn
5

(
1 +

√
1 − α

)
8

(
δn
β

)
.

We knew δn � 1+
√

2
2

α(
1+

√
1−α

)2β in the preceding part of this proof. Therefore,

d
(
0, G(xn)

)
� 4r

5τn
5

(
1 +

√
1 − α

)
8

(
δn
β

)

� 4r
5τn

5
(
1 +

√
1 − α

)
8

1 +
√

2
2

α(
1 +

√
1 − α

)2 <
4r
5τn

,

which tells us d
(
yn, Φn(xn)

)
= d

(
0, G(xn)

)
< sn. Because of ‖x0 − xn‖ � r = 4rn, the conclusion (xn, yn) ∈

Vn is clear. Thanks to the metric regularity property of Φn, we obtain

d
(
xn,Φ−1

n (yn)
)
� τ̄nd

(
yn,Φn(xn)

)
= τ̄nd

(
0, G(xn)

)
< τnd

(
0, G(xn)

)
= βn.

Let us select xn+1 ∈ Φ−1
n (yn) such that ‖xn − xn+1‖ < βn. Taking into account (3.12) one has

βn = τnd
(
0, G(xn)

)
� τ0

1 −Ktn

K

τ0

δ2
n−1
2 = −ω′(tn)−1ω(tn) = tn+1 − tn.

Consequently, we derive
∥∥xn − xn+1

∥∥ < tn+1 − tn.

Hence, the construction of the sequence (xn) by induction is now completed.
Since (tn) is convergent, it is easy to see that (xn) is a Cauchy sequence in the Banach space X. Therefore,

the sequence (xn) is also convergent. Let ξ = lim
n→∞

xn. We show that ξ is a solution of problem (1.2). In
fact, for each n there is some wn ∈ F (xn+1) such that

f(xn) + Df(xn)(xn+1 − xn) + wn = 0. (3.14)

10



Observing that f is of class C2 and xn → ξ, and passing to the limit in (3.13), we get

wn = −f(xn) −Df(xn)(xn+1 − xn) → −f(ξ) as n → ∞.

Since gph(F ) is closed and (xn+1, wn) ∈ gph(F ), we have

lim
n→∞

(
xn+1, wn

)
= (ξ,−f(ξ)) ∈ gph(F ).

Thus 0 ∈ f(ξ) + F (ξ), which means that ξ solves (1.2).
As lim

n→∞
xn = ξ, we deduce

∞∑
j=n

(xj − xj+1) = xn − ξ,

for each n � 0. So,

‖xn − ξ‖ �
∞∑
j=n

‖xj − xj+1‖ <
∞∑
j=n

(tj+1 − tj) = t∗ − tn. (3.15)

Note that t∗ = 2ηβ and t0 = 0, by letting n = 0 in (3.15), we get (3.2). Finally, taking into account (3.7),
(3.8), and (3.15), we obtain (3.3) and (3.4). The proof is thereby completed. �
Remark 3.7. The assumptions and the conclusion of Theorem 3.4 are different from the ones obtained in 
[6, Theorem 2]. Our assumptions concern only the starting point, while the assumptions in [6, Theorem 2]
depend on the next iteration.

Remark 3.8. Kantorovich-type results were also presented in [16, Theorem 3.2]. The difference between 
Theorem 3.4 and [16, Theorem 3.2] lies essentially on the used assumptions. In fact, the involved parameters 
are completely different as well as the region of the metric regularity. For Theorem 3.4, one needs the metric 
regularity property of Φ := Df(x) + F on the set V (Φ, x, r, s), where x is the starting point. On the 
other hand, in [16, Theorem 3.2], the authors used the Lipschitz-like property assumption for Q−1

x̄ (which is 
equivalent to the metric regularity of Qx̄ around (x̄, ȳ) ∈ gph(f+F )), where Qx̄(·) = f(x̄) +Df(· −x̄) +F (·),
as well as the condition lim

x→x̄
d
(
ȳ, f(x) + F (x)

)
= 0 (a kind of lower semicontinuity of f + F , which is not

necessary in our analysis). The following example compares the applicability of the two results.

Example 3.9. Consider the mappings f(x) = 1
3x

3 − x + 1 and F (x) = R+, x ∈ R. By a direct computation,
one has

d
(
0, f(x) + F (x)

)
= max

{
0, 1

3x
3 − x + 1

}
, β(τ, x) = τ max

{
0, 1

3x
3 − x + 1

}
,

K(τ, x, r) = τ sup
|u−x|�r

|f ′′(u)| � 2τ(|x| + r).

By setting x = x0 = −2, we get

d
(
0, f(x0) + F (x0)

)
= 1

3 , β(τ, x0) = τ

3 ,K(τ, x0, r) � 2τ(2 + r).

Let Φx0(u) := f ′(x0)u + F (u), u ∈ R, and let r = 0.5, s = 1. For each (u, v) ∈ V
(
Φx0 , x0, 4r, s

)
one obtains
11



d
(
u,Φ−1

x0
(v)

)
= max

{
0, u− v

f ′(x0)

}
= max

{
0, u− 1

3v
}

= max
{

0, 1
3(3u− v)

}
= 1

3 max {0, f ′(x0)u− v} = 1
3d

(
v,Φx0(u)

)
.

This relation shows that reg
(
Φx0 , x0, 4r, s

)
= 1

3 . Let us choose τ = 0.5 > 1
3 , which yields β(τ, x0) = 1

6 ,
K(τ, x0, r) � 5

6 . By taking α = 5
18 < 1, then 2ηβ = 1

3
1

1+
√

1−α
< 1

3 < r. Thus, all conditions of Theorem 3.4
are satisfied for starting point x0 = −2.

Let us check if the assumptions of Theorem 3.2 in [16] hold for x0 = −2. One has Qx0(u) = f(x0) +
f ′(x0)(u − x0) + R+. We use the same notation for the constants M , L, rx0, ry0 , r0, δ, η and y0 ∈ Qx0(x0)
as in Theorem 3.2 of [16]. These constants must satisfy the following constraints

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r0 = min
{
ry0 ,−2Lr2

x0
,
rx0 (1−MLrx0 )

4M

}
,

δ � min
{ rx0

4 ,
ry0
11L , 6r0, 1

}
,

(M + 1)L(ηδ + 2rx0) � 2,

|y0| < Lδ2

4 .

(3.16)

We note that y0 ∈ f(x0) + R+ =
[1
3 ,+∞

)
, M � reg(Qx0 , (x0, y0)) = 1

3 and

L = sup
|u−x0|�rx0/2

|f ′′(u)| = sup
|u−x0|�rx0/2

|2u| = 2 |x0| + rx0 = 4 + rx0 .

From the second and the last inequalities in (3.16), one gets

1
3 � |y0| <

Lδ2

4 � L

64r
2
x0

=
r2
x0

(4 + rx0)
64 . (3.17)

By using the third inequality of (3.16), we deduce

(4 + rx0)rx0 = Lrx0 <
1

M + 1 � 3
4 . (3.18)

Nevertheless, (3.17) and (3.18) are not simultaneously valid. Hence, the conditions of Theorem 3.2 in [16]
can not be satisfied for the starting point x0 = −2.

4. Theorems of Smale’s type

In this section, we consider problem (1.2) by assuming that the function f is analytic in an open subset
U of the Banach space X.

Definition 4.1. A function f : X −→ Y is called analytic at a point x ∈ X if all derivatives Dkf(x) exist, 
and there is a neighborhood BX(x, ε) of x such that

f(y) =
∞∑
k=0

Dkf(x)
k! (y − x)k, (4.1)

for all y ∈ BX(x, ε), where Dkf(x)
k! vk stands for the value of the k-multilinear operator Dkf(x)

k! at the
k-multiple (v, . . . , v) in Xk. We will say that f is analytic on an open set U ⊂ X if f is analytic at every 
point in U .
12



For an analytic function f and for each x ∈ U , the radius of convergence R(f, x) of the Taylor’s series in 
(4.1) is defined by (cf. [4])

R(f, x)−1 = lim sup
k→∞

∥∥∥∥Dkf(x)
k!

∥∥∥∥
1
k

. (4.2)

Theorem 4.2. Let ξ ∈ U be a solution of problem (1.2) and η = Df(ξ)(ξ) − f(ξ). Suppose that the mapping 
Φ(·) = Df(ξ)(·) + F (·) is metrically regular on the neighborhood V = BX [ξ, r] × BY [η, r′] of (ξ, η) with
modulus τ > 0. Define

γ = γ(τ, f, ξ) = sup
k�2

{[
τ

∥∥∥∥Dkf(ξ)
k!

∥∥∥∥
] 1

k−1
}
.

Let ρ = 3−
√

7
2 ≈ 0.17712 . . . be the smallest solution of the equation

2t− ψ(t) = 0, ψ(t) = 2t2 − 4t + 1,

and θ = (1−ρ)2
ψ(ρ) > 1. Pick

0 < ε < min
{

1
2θ r,

1
1 + θ

r′,
τ

1 + θ
r′

}
,

such that BX [ξ, ε] ⊂ U . Then for any x0 ∈ BX [ξ, ε] satisfying

‖x0 − ξ‖ γ < ρ,

there exists a Newton sequence generated by (1.1), which converges quadratically to ξ:

‖xn − ξ‖ � γ

ψ(ρ)‖xn−1 − ξ‖2, n = 1, 2, . . . . (4.3)

The proof of Theorem 4.2 needs some auxiliary lemmas whose proofs are similar to the classical ones and 
will be omitted in this paper (see e.g. [4] for more details).

Lemma 4.3. For any x ∈ BX [ξ, r] ∩ U with rγ < 1, the following Taylor’s series is convergent to f(x):

∞∑
k=0

Dkf(ξ)
k! (x− ξ)k = f(x).

Lemma 4.4. Let x ∈ U be such that s = γ ‖x− ξ‖ < 1. Then for all k � 1, one has

∥∥Dkf(x) −Dkf(ξ)
∥∥ � k!τ−1γk−1

[
1

(1 − s)k+1 − 1
]
. (4.4)

In particular,

‖Df(x) −Df(ξ)‖ � τ−1γ
2 − s

(1 − s)2 ‖x− ξ‖ . (4.5)
13



Lemma 4.5. Let r be a positive real number such that γr < 1 and let x ∈ BX [ξ, r] ∩ U . One has

‖f(ξ) − f(x) −Df(x)(ξ − x)‖ � τ−1γ
1

(1 − γ ‖x− ξ‖)2 ‖x− ξ‖2
.

Let us now prove Theorem 4.2.

Proof of Theorem 4.2. As in the previous section, we can rewrite Newton’s iteration in the following form

xn+1 ∈ Φ−1
n (yn) with Φn = Df(xn) + F and yn = [Df(xn) − f ](xn).

Set L = τ−1 ρ(2−ρ)
(1−ρ)2 < τ−1, τ̄ = τ

1−Lτ , c = max
{
1, τ−1} and pick ν = τ−1ε > 0. In order to use Theorem 2.1,

let us check first that

ντ̄ <
r

2 , ν(τ̄ + τ) < r, ν(1 + cτ̄) < r′.

From the choice of ν, we deduce

ντ̄ = ν
κ

1 − Lκ
= ε

1 − ρ(2−ρ)
(1−ρ)2

= (1 − ρ)2

ψ(ρ) ε = θε <
r

2 .

Moreover, we have

ν(τ̄ + τ) = ντ

(
1

1 − Lκ
+ 1

)
= ε

[
(1 − ρ)2

ψ(ρ) + 1
]

= ε(θ + 1) < r

2θ (1 + θ) � r.

On the other hand, if τ < 1, then c = τ−1. In this case, one obtains

ν(1 + cτ̄) = ν

(
1 + 1

1 − Lτ

)
= ν(1 + θ) = τ−1ε(1 + θ)

< τ−1 τ

1 + θ
r′(1 + θ) = r′.

Otherwise, if τ � 1, then c = 1. Thus,

ν(1 + cτ̄) � ν(τ + τ̄) = ε(θ + 1) < r′.

Now, we take μ > 0 such that

2μ + ντ̄ < r/2, ν(τ̄ + τ) < r, 2cμ + ν(1 + cτ̄) < r′.

Applying Theorem 2.1 with a = r, δ = r and b = r′, for any linear and continuous map A : X −→ Y having 
‖A‖ � L, the sum ΦA = A + Φ is metrically regular on BX [ξ, μ] ×BY [η+A(ξ), ν] together with modulus τ̄ .

Let x0 ∈ BX [ξ, ε] such that γ ‖x0 − ξ‖ < ρ. If x0 = ξ then we set xn = x0 and stop. Otherwise, put
z0 = [Df(x0) − f ](ξ), y0 = [Df(x0) − f ](x0) and Φ0(·) = Df(x0)(·) + F (·). Denoting s0 = γ‖x0 − ξ‖ < ρ

and applying Lemma 4.4, we have

‖Df(x0) −Df(ξ)‖ � τ−1γ
2 − s0

(1 − s0)2
‖x0 − ξ‖ � τ−1 (γ ‖x0 − ξ‖) 2 − ρ

(1 − ρ)2

� τ−1 ρ(2 − ρ)
2 = L.
(1 − ρ)
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Hence, Φ0 = [Df(x0) − Df(ξ)] + Φ is metrically regular on BX [ξ, μ] × BY [z0, ν] with modulus τ̄ . Since
s0 = γ‖x0 − ξ‖ < ρ, using Lemma 4.5, we get

‖y0 − z0‖ = ‖f(ξ) − f(x0) −Df(x0)(ξ − x0)‖ � τ−1γ
1

(1 − s0)2
‖x0 − ξ‖2

� τ−1 ρ

(1 − ρ)2 ‖x0 − ξ‖ � τ−1ε = ν.

Thanks to the metric regularity property of Φ0 on BX [ξ, μ] × BY [z0, ν], we obtain

d
(
ξ,Φ−1

0 (y0)
)
� τ̄ d

(
y0,Φ0(ξ)

)
� τ̄‖y0 − z0‖ � τ̄ τ−1γ

1
(1 − s0)2

‖x0 − ξ‖2

= τ

1 − τL
τ−1γ

1
(1 − s0)2

‖x0 − ξ‖2 = γ

(1 − τL)(1 − s0)2
‖x0 − ξ‖2

<
γ

(1 − τL)(1 − ρ)2 ‖x0 − ξ‖2 = σ ‖x0 − ξ‖2
,

where σ = γ
(1−τL)(1−ρ)2 = γ

ψ(ρ) . Therefore, there exists a point, say x1, belonging to Φ−1
0 (y0) and satisfying

the following relation

‖ξ − x1‖ < σ ‖x0 − ξ‖2
.

Observe that

σ‖x0 − ξ‖ = γ ‖x0 − ξ‖
ψ(ρ) � ρ

ψ(ρ) = 1
2 , (4.6)

which implies x1 ∈ BX [ξ, ε] since ‖x0 − ξ‖ � ε. In addition, the inclusion x1 ∈ Φ−1
0 (y0) shows that x1

satisfies Newton’s iteration (1.1).
Repeating the previous procedure, we can construct a sequence (xn) satisfying (1.1) for which the estimate

in (4.3) is valid as well. Taking into account (4.3), we deduce

‖xn − ξ‖ �
(

γ

ψ(ρ) ‖x0 − ξ‖
)2n−1

‖x0 − ξ‖ �
(

1
2

)2n−1

‖x0 − ξ‖ ,

which yields xn → ξ quadratically. This completes the proof of Theorem 4.2. �
Remark 4.6. For the nonlinear equation case f(x) = 0, i.e. F = 0, the metric regularity property of Φ(·) =
Df(ξ)(·) + F (·) in Theorem 4.2 is equivalent to the surjectivity of Df(ξ). In such a situation, the property 
of metric regularity holds on the whole space. Hence, the radius of the starting domain ε is simply chosen 
such that εγ < ρ and BX [ξ, ε] ⊂ U .

The following theorem is a result of α-theory type for the set-valued generalized equations of the 
form (1.2).

Theorem 4.7. Consider problem (1.2) in the case where f is analytic on open subset U ⊂ X. For τ > 0 and 
z ∈ U we define

β(τ, z) = τd
(
0, f(z) + F (z)

)
,

γ(τ, f, z) = sup
k�2

{[
τ

∥∥∥∥Dkf(z)
k!

∥∥∥∥
] 1

k−1
}
,
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α(τ, f, z) = β(τ, z)γ(τ, f, z).

Let ψ(t) = 2t2 − 4t + 1 and α ≈ 0.1307169 . . . be the smallest real root of the equation

2t− [ψ(t)]2 = 0.

Let x ∈ U and r, s > 0 such that BX [x, r] ⊆ U and assume the following conditions are fulfilled:

(1) Φ(·) = Df(x)(·) + F (·) is metrically regular on V = V (Φ, x, 4r, s) with a modulus τ > reg(Φ, x, 4r, s),
(2) d

(
0, f(x) + F (x)

)
< s,

(3) ηβ(τ, x) � r, where η = α+1−
√
α2−6α+1
4α ,

(4) α(τ, f, x) � α.

Then, there exists a solution ξ of the generalized equation (1.2) such that

‖x− ξ‖ � ηβ(τ, x) � r. (4.7)

In addition, there is a sequence (xn) generated by Newton’s method which starts at x and satisfies the
estimate

‖xn − ξ‖ �
∞∑
k=0

(
1
2

)2k−1

[ψ(α)]n
(

1
2

)2n−1

β(τ, x). (4.8)

As similar as in Theorem 3.4, we have only to consider the case where β(τ, x) > 0. The proof will need 
some complement statements.

Lemma 4.8. Suppose that f is analytic on U ⊂ X. With x, r, s, τ and γ(τ, f, x) as in the previous theorem, 
if rγ(τ, f, x) < 1 and ‖y − x‖ � r, the Taylor series

∞∑
k=0

Dkf(x)
k! (y − x)k

is convergent.

Lemma 4.9. Suppose that f is analytic on an open U ⊂ X. Let x̄ ∈ U and r > 0 such that BX [x̄, r] ⊂ U .
Then for x ∈ BX [x̄, r] and x′ ∈ BX [x, �] ∩ U with γ(τ, f, x)� < 1, one has

∥∥∥∥Dkf(x′)
k!

∥∥∥∥ � τ−1 γ(τ, f, x)k−1

[1 − �γ(τ, f, x)]k+1 . (4.9)

The proofs of Lemmas 4.8 and 4.9 are analogous to the classical ones used by Smale [4,19], where the 

quantity τ
∥∥∥Dkf(x)

k!

∥∥∥ is replaced by 
∥∥∥Df(x)−1 Dkf(x)

k!

∥∥∥.

Lemma 4.10. Let x ∈ U , r > 0, s > 0 and τ > 0 be such that reg(Φ, x, r, s) < τ with Φ(·) = Df(x)(·) +F (·). 
Let x′ be such that u = ‖x′−x‖γ(τ, f, x) < 1 −

√
2

2 . Define Φ′(·) = Df(x′)(·) +F (·) and τ ′ = τ (1−u)2
ψ(u) , where

the function ψ is defined as in Theorem 4.7. If setting r′ = r/4 and s′ = min
{
s, r

5τ ′

}
, then for all μ � τ ′

the mapping Φ′ is metrically regular on V (Φ′, x, r′, s′) with modulus μ.
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Proof. According to the assumptions of Lemma 4.10, the mapping Φ is metrically regular on V =
V (Φ, x, r, s) with some modulus κ < τ . Let us denote α = α(τ, f, x), β = β(τ, x) and γ = γ(τ, f, x). 
Since ‖x′ − x‖γ(τ, f, x) < 1, using Taylor’s expansion and Lemma 4.9 we have

‖Df(x′) −Df(x)‖ =

∥∥∥∥∥∥
1∫

0

D2f(x + t(x′ − x))(x′ − x) dt

∥∥∥∥∥∥
�

1∫
0

∥∥D2f(x + t(x′ − x))
∥∥ ‖x′ − x‖ dt

�
1∫

0

τ−1 2γ
(1 − t‖x′ − x‖γ)3 ‖x′ − x‖ dt

� τ−1
[

1
(1 − ‖x′ − x‖γ)2 − 1

]
= τ−1

[
1

(1 − u)2 − 1
]
.

Therefore, the linear perturbation g = Df(x′) − Df(x) is Lipschitz continuous on BX [x, r] with constant
L = τ−1

[
1

(1−u)2 − 1
]

satisfying

κL � τL = 1
(1 − u)2 − 1 < 1.

Set κ′ = κ
1−κL , τ ′ = τ

1−τL , r′ = r
4 and s′ = min

{
s, r

5τ ′

}
. Then Φ′ = g + Φ is metrically regular on

V ′ = V (Φ′, x, r′, s′) with a modulus κ′ < τ ′ � μ (see Theorem 2.4). A simple computation shows that
τ ′ = τ (1−u)2

ψ(u) . This completes the proof of Lemma 4.10. �
Lemma 4.11. Let β = β(τ, x) > 0 and γ = γ(τ, f, x) > 0. Consider the majorizing function defined by

ω(t) = 1
1 − γt

− 2γt + α− 1, for t < γ−1, (4.10)

where α is given in the statement of Theorem 4.7. The Newton sequence obtained from the equation ω(t) = 0
has the following form

{
t0 = 0,
tn+1 = tn − ω′(tn)−1ω(tn), n = 0, 1, . . .

(4.11)

Then, (tn) is well-defined, increasing and converges to the smallest zero t∗ of ω. Moreover, one has

δn = tn+1 − tn � [ψ(α)]n
(

1
2

)2n−1

β. (4.12)

Proof. Let ψ be the function defined as in Theorem 4.7. We have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ω′(t) = γ

(1−γt)2 − 2γ = −γ ψ(γt)
(1−γt)2 ,

ω′′(t) = 2γ2

(1−γt)3 ,

ω(k)(t) = k!γk

, k � 2.

(4.13)
(1−γt)k+1
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Let

β(ω, t) =
{
−ω′(t)−1ω(t), if ω′(t) 
= 0,
∞, otherwise,

γ(ω, t) =

⎧⎪⎨
⎪⎩

supk�2

(∣∣∣ω′(t)−1 ω(k)(t)
k!

∣∣∣ 1
k−1

)
, if ω′(t) 
= 0,

∞, otherwise,

α(ω, t) = β(ω, t)γ(ω, t).

It is easy to see that β(ω, 0) = β, γ(ω, 0) = γ, and α(ω, 0) = α. By (4.11), it holds that

t1 = t0 + β(ω, t0) = β(ω, 0) = β > t0.

A simple computation shows that

t∗ = α + 1 −
√
α2 − 6α + 1
4γ <

(
1 −

√
2

2

)
γ−1

is the smallest solution of the equation ω(t) = 0. From the choice of α, we have

α <
α + 1 −

√
α2 − 6α + 1
4 = t∗γ,

which implies that t1 = β = γ−1α < t∗.
Suppose that for some n � 1 there exist t1 < . . . < tn < t∗ satisfying tj+1 = tj − ω′(tj)−1ω(tj). By

definition of ψ, we have 0 < ψ(γt) � 1 for any t with γt < 1 − 1√
2 . Since γtn < γt∗ < 1 − 1√

2 , it is obvious
that ψ(γtn) > 0. Hence, ω′(tn) = −γ ψ(γt)

(1−γt)2 < 0, and so tn+1 = tn − ω′(tn)−1ω(tn) makes sense. Because ω
has no zero in the interval (−∞, t∗), and ω(0) = α > 0, we deduce that ω(t) > 0 whenever t < t∗. Thus, 
from tn < t∗ we get

tn+1 = tn − ω′(tn)−1ω(tn) > tn.

To show that tn+1 < t∗, we consider the following function

φ(t) = t− ω′(t)−1ω(t), t < γ−1.

We have

φ′(t) = ω(t)ω′′(t)
[ω′(t)]2 = 2(1 − γt)

[ψ(γt)]2 ω(t) > 0, for each t < t∗.

Therefore, the function φ is increasing on (−∞, t∗]. So, the monotonicity of φ tells us

tn+1 = φ(tn) < φ(t∗) = t∗.

By induction, the sequence (tn) is well-defined, increasing and bounded from above by t∗. Let t̄ = lim
n→∞

tn;
then t̄ � t∗. Passing to the limit as n → ∞ in (4.11) we find ω(t̄ ) = 0, which implies t̄ = t∗.

Now, for each n, we set γn = γ(ω, tn), δn = tn+1 − tn = β(ω, tn) and αn = α(ω, tn). Recall that α0 =
α < 1 −

√
2 . As a result of [4, Lemme 133], we obtain
2

18



δn+1 � 1 − αn

ψ(αn) αnδn, αn+1 � min
{
α0,

1
[ψ(αn)]2α

2
n

}
(4.14)

via inductive arguments. The second inequality in (4.14) yields

αn � 1
[ψ(αn)]2α

2
n � 1

[ψ(α0)]2
α2
n � · · · �

[
α0

ψ(α0)2

]2n

[ψ(α0)]2

=
(

1
2

)2n

[ψ(α)]2.

Finally,

δn � 1 − αn−1

ψ(αn−1)
αn−1δn−1 � 1

ψ(α)αn−1δn−1 � · · · �

�
[
n−1∏
i=0

(
1

ψ(α)αi

)]
δ0 �

[
n−1∏
i=0

(
1

ψ(α)

(
1
2

)2i

[ψ(α)]2
)]

δ0

= [ψ(α)]n
(

1
2

)2n−1

δ0 = [ψ(α)]n
(

1
2

)2n−1

β,

which completes the proof of Lemma 4.11. �
We are now in a position to prove Theorem 4.7.

Proof of Theorem 4.7. We rewrite (1.1) in the following form

xn+1 ∈ Φ−1
n (yn),Φn = Df(xn) + F, yn = [−f + Df(xn)](xn). (4.15)

Let us begin with x satisfying the assumptions of Theorem 4.7 and β = β(τ, x) > 0. Set x0 = x, Φ0 = Φ and
τ0 = τ . Due to the fact that τ0 > reg(Φ0, x0, 4r, s), we can pick κ0 < τ0 for which Φ0 is metrically regular
on V (Φ0, x0, 4r, s) with modulus κ0. By taking y0 = [−f + Df(x0)](x0), we get

d
(
y0,Φ0(x0)

)
= d

(
0, f(x0) + F (x0)

)
< s,

which means that (x0, y0) ∈ V (Φ0, x0, 4r, s). Therefore,

d
(
x0,Φ−1

0 (y0)
)
� κ0d

(
y0,Φ0(x0)

)
= κ0d

(
0, f(x0) + F (x0)

)
< τ0d

(
0, f(x0) + F (x0)

)
= β(τ0, x0) = β.

Choose x1 ∈ Φ−1
0 (y0) such that ‖x0 − x1‖ < β. With the notation of Lemma 4.11 we have t1 − t0 = β,

which yields

‖x0 − x1‖ < t1 − t0.

Suppose that, for some n � 1, there are x1, . . . , xn having the following properties

• xk+1 ∈ Φ−1
k (yk), for Φk(·) = Df(xk)(·) + F (·), yk = [−f + Df(xk)](xk);

• ‖xk − xk+1‖ < tk+1 − tk = δk.
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The case 0 ∈ f(xn) + F (xn) being trivial, we will focus on the remain one. By the triangle inequality, we
have

‖x− xk‖ = ‖x0 − xk‖ �
k−1∑
j=0

‖xj − xj+1‖ <

k−1∑
j=0

(tj+1 − tj) = tk < t∗ (4.16)

for all k � n. Let γ0 = γ(τ0, f, x0) = γ, and denote un = ‖x0 − xn‖ γ0. Inequality (4.16) tells us un < tnγ <

t∗γ < 1 −
√

2
2 . Set κn = κ0

(1−γtn)2
ψ(γtn) , τn = τ0

(1−γtn)2
ψ(γtn) , rn = r/4 and sn = min

{
s, 4r

5τn

}
, so κn > κ0

(1−un)2
ψ(un) .

Hence, according to Lemma 4.10, the mapping Φn(·) = Df(xn)(·) + F (·) is metrically regular on Vn =
V (Φn, x0, 4rn, sn) with modulus κn < τn. Pick yn = [−f + Df(xn)](xn), we will claim that (xn, yn) ∈ Vn.
Indeed, including (4.16), we get

‖x0 − xn‖ < tn � t∗ = ηβ � r = 4rn.

It is easy to check that d
(
yn, Φn(xn)

)
= d

(
0, f(xn) + F (xn)

)
. Furthermore, as a consequence of xn ∈

Φ−1
n−1(yn−1), we can write

zn−1 = f(xn) − [f(xn−1) + Df(xn−1)(xn − xn−1)] ∈ f(xn) + F (xn).

Hence, by using Taylor’s expansion and (4.9) in Lemma 4.9, we find

‖zn−1‖ =

∥∥∥∥∥∥
1∫

0

{
(1 − s)

[
D2f(sxn + (1 − s)xn−1)(xn − xn−1)2

] }
ds

∥∥∥∥∥∥
�

1∫
0

(1 − s)
∥∥D2f(sxn + (1 − s)xn−1)

∥∥ ‖xn − xn−1‖2
ds

�
1∫

0

(1 − s)
[
τ−1
0

2γ0 ‖xn−1 − xn‖2

[1 − γ0 ‖sxn + (1 − s)xn−1‖]3

]
ds

� τ−1
0

1∫
0

(1 − s) 2γ0 ‖xn−1 − xn‖2

[1 − γ0(s ‖xn − x0‖ + (1 − s) ‖xn−1 − x0‖)]3
ds

� τ−1
0

1∫
0

(1 − s)
2γδ2

n−1
[1 − γ(stn + (1 − s)tn−1)]3

ds

= τ−1
0 γ−1

1∫
0

(1 − s)
[
ω′′(tn−1 + sδn−1)δ2

n−1

]
ds

= τ−1
0 γ−1{ω(tn) − [ω(tn−1) + ω′(tn−1)δn−1]

}
= τ−1

0 γ−1ω(tn) = τ−1
0

ψ(γtn)
(1 − γtn)2

[
− ω′(tn)−1ω(tn)

]

= τ−1
0

ψ(γtn)
(1 − γtn)2 δn.

Therefore,

d
(
yn,Φn(xn)

)
= d

(
0, f(xn) + F (xn)

)
� ‖zn−1‖ � τ−1

0
ψ(γtn)

2 δn. (4.17)
(1 − γtn)
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Since ψ(γtn) − (1 − γtn)2 = (γtn)2 − 2(γtn) � 0, the estimate in (4.17) shows that d
(
yn, Φn(xn)

)
� τ−1

0 δn.
Thanks to Lemma 4.11 and recalling that β = β(τ, x) = β(τ0, x0), we obtain

δn � [ψ(α)]n
(

1
2

)2n−1

δ0 � 1
2δ0 = 1

2β = 1
2τ0d

(
0, f(x0) + F (x0)

)
< τ0s,

which implies d
(
yn, Φn(xn)

)
< s. On the other hand, from the definitions of τn and α, combined with (4.17)

and ηβ = ηβ(τ, x) � r, we deduce

d
(
yn,Φn(xn)

)
� τ−1

0
ψ(γtn)

(1 − γtn)2 δn = 1
τn

δn � 1
τn

1
2β � 1

τn

1
2η

−1r

= 1
2τn

4α
α + 1 −

√
α2 − 6α + 1

r

= 4r
5τn

5
(
α + 1 +

√
α2 − 6α + 1

)
16 <

4r
5τn

.

Thus, d
(
yn, Φn(xn)

)
< sn and then, (xn, yn) ∈ Vn. By virtue of the metric regularity property of Φn, the

following evaluation is valid

d
(
xn,Φ−1

n (yn)
)
� κnd

(
yn,Φn(xn)

)
= κnd

(
0, G(xn)

)
< τnd

(
0, G(xn)

)
,

in which G(x) := f(x) +F (x). Hence, there exists xn+1 ∈ Φ−1
n (yn) such that ‖xn − xn+1‖ < τnd

(
0, G(xn)

)
.

Taking into account (4.17), we get

‖xn − xn+1‖ < τnd
(
0, G(xn)

)
� τ0

(1 − γtn)2

ψ(γtn) ‖zn−1‖

� τ0
(1 − γtn)2

ψ(γtn) τ−1
0

ψ(γtn)
(1 − γtn)2 δn = δn = tn+1 − tn.

Therefore, Newton’s sequence (xn) for solving (1.2) is completely determined and satisfies

‖xn − xn+1‖ < tn+1 − tn, for all n = 0, 1, . . . (4.18)

The rest of proof is similar to the one in Theorem 3.4. Indeed, a same argument as in the proof of Theorem 3.4
affirms the convergence of the sequence (xn). Let ξ = lim

n→∞
xn, for each n one has 

∑∞
k=n(xk−xk+1) = xn−ξ.

This permits for writing

∥∥xn − ξ
∥∥ =

∥∥∥∥∥
∞∑

k=n

(xk − xk+1)

∥∥∥∥∥ �
∞∑

k=n

∥∥xk − xk+1
∥∥ <

∞∑
k=n

(tk+1 − tk) = t∗ − tn.

Taking n = 0 in the preceding estimate, the following evaluation holds true

∥∥x0 − ξ
∥∥ < t∗ − t0 = t∗ = α + 1 −

√
α2 − 6α + 1
4γ = ηβ = ηβ(τ, x) � r.

Finally,
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∥∥xn − ξ
∥∥ <

∞∑
k=n

(tk+1 − tk) =
∞∑

k=n

δk �
∞∑

k=n

[ψ(α)]k
(

1
2

)2k−1

β

� [ψ(α)]n
(

1
2

)2n−1 ∞∑
k=0

(
1
2

)2k−1

β(τ, x)

and the proof of Theorem 4.7 is thereby completed. �
Remark 4.12. It is theoretically possible to improve the value of constant α in the proof of Theorem 4.7. 
Indeed, the best theoretical value might be given by

α = sup
{
a ∈

(
0, 1 − 1√

2

)
: sup

0�t�a

t

[ψ(t)]2 = q(a) < 1
}
.

In [20], Wang Xinghua used the notion of Lipschitz condition with L-average to study the behavior of such 
a method for nonlinear equation f(x) = 0. And he obtained a better constant α � 3 − 2

√
2 ≈ 0.1715729 . . .

by considering another majorizing function h(t) = β − t + γt2

1−γt .

Remark 4.13. Theorem 3.1 involves informations of the second derivative D2f on a neighborhood of the
solution ξ, while Theorem 4.2 needs informations of high-order derivatives only at such a solution ξ. The 
same comparison is valid for Theorems 3.4 and 4.7 by replacing the starting point x0 with ξ.

Remark 4.14. Problem (1.2) subsumes as a particular case of the nonlinear equation f(x) = 0 by taking 
F ≡ 0. In this context, our results can be applied by requiring only the metric regularity of the function f . 
While, in the classical ones, the invertibility of the first derivative of f at the reference point x is crucial 
(cf. [2,4,19]). However, with the assumption of the invertibility for Df(x), it will be not possible to recover 
respectively Kantorovich’s and Smale’s classical results by setting F ≡ 0. This is due to the fact that our 
involved constants are larger than the classical ones.

5. Concluding remarks

In this paper, we investigated the Newton-type method for generalized equations in Banach spaces. We
extended both Kantorovich-type theorems and Smale’s classical (α, γ)-theory to this kind of problem and 
showed the quadratic convergence of the Newton sequence under the metric regularity assumption. Many 
issues remain to be investigated such as applying the algorithm studied in this paper to concrete examples. 
There are many problems in nonlinear programming, complementarity systems and differential variational 
inequalities that can be formulated as a generalized equation. It will be interesting to test these algorithms 
numerically and to compare them with others in the literature. This will be the subject of future works.
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