The R_2 measure for totally positive algebraic integers
V Flammang

To cite this version:

V Flammang. The R_2 measure for totally positive algebraic integers. Colloquium Mathematicum, 2016, 144 (1), pp.45-53. <10.4064/cm6221-1-2016>. <hal-01313011>
The R_2 measure for totally positive algebraic integers

V. Flammang
UMR CNRS 7502, IECL, Université de Lorraine, site de Metz, Département de Mathématiques, UFR MIM, Ile du Saulcy, CS 50128, 57045 METZ cedex 01, FRANCE
E-mail address : valerie.flammang@univ-lorraine.fr

Abstract
Let α be a totally positive algebraic integer of degree d, i.e., whose all conjugates $\alpha_1 = \alpha, \ldots, \alpha_d$ are positive real numbers. We study the set R_2 of the quantities $\left(\prod_{i=1}^{d}(1 + \alpha_i^2)^{1/2}\right)^{1/d}$. We first show that $\sqrt{2}$ is the smallest point of R_2. Then, we prove that there exists a number l such that R_2 is dense in (l, ∞). Finally, using the method of auxiliary functions, we find the six smallest points of R_2 in $(\sqrt{2}, l)$. The polynomials involved in the auxiliary function are found by our recursive algorithm.

1 Introduction
Let $P(x) = a_0 x^d + \cdots + a_d = a_0(x - \alpha_1)\cdots(x - \alpha_d)$, $a_0 \neq 0$, $P \neq x$, be a polynomial with complex coefficients. M. Langevin [La] defined three families of measures of polynomials which are, for $p > 0$:

$$M_p(P) = \left(\int_0^1 |P(e^{2\pi it})|^p dt \right)^{1/p},$$

$$L_p(P) = \left(\sum_{i=1}^{d} |a_i|^p \right)^{1/p},$$

$$R_p(P) = |a_0| \prod_{i=1}^{d} (1 + |\alpha_i|^p)^{1/p}.$$
Note that \(\lim_{p \to 0} M(P) = \exp \left(\int_0^1 \log |P(e^{2\pi i t})| dt \right) \) is the well known Mahler measure of \(P \) and \(L_1(P) \) is the well known length of \(P \).

In this paper, we are interested in the \(R_2 \) measure of \(P \) which is \(R_2(P) = |a_0| \prod_{i=1}^d (1 + |a_i|^2)^{1/2} \). If \(\alpha \) is an algebraic integer, the \(R_2 \) measure of \(\alpha \) is the \(R_2 \) measure of its minimal polynomial. The absolute \(R_2 \) measure of \(\alpha \) is the quantity \(r_2(\alpha) = R_2(\alpha)^{1/\deg(\alpha)} \).

From a well known theorem of Kronecker [Kr], it is easy to prove that, if \(\alpha \) is an algebraic integer, \(r_2(\alpha) = \sqrt{2} \) if and only if \(\alpha \) is a root of unity.

Now, we suppose that \(\alpha \) is a totally positive algebraic integer (all its conjugates are positive real numbers). We have

Theorem 1. If \(\alpha \) is a nonzero totally positive algebraic integer then \(r_2(\alpha) \geq \sqrt{2} \). The equality holds if and only if \(\alpha = 1 \).

The result comes immediately from the following inequality due to K. Mahler:

\[
\left(\prod_{i=1}^d (u_i + v_i) \right)^{1/d} \geq \left(\prod_{i=1}^d u_i \right)^{1/d} + \left(\prod_{i=1}^d v_i \right)^{1/d} \text{ for } u_i, v_i > 0.
\]

In order to study the structure of the set \(R_2 \) of the quantities \(r_2(\alpha) \), we show the following

Theorem 2. \(R_2 \) is dense in \((l, \infty)\) where \(l = \lim_{n \to \infty} r_2(\beta_n^2) \).

The \(\beta_n^2 \) were defined by C.J. Smyth [Sm1] as follows:

\[
\begin{align*}
\beta_0^2 &= 1 \\
\beta_n^2 &= \beta_{n+1}^2 + \beta_{n+1}^{-2} - 2
\end{align*}
\]

\(\beta_n^2 \) is a totally positive algebraic integer of degree \(2^n \).

Towards determining the structure of \(R_2 \) in the gap \((\sqrt{2}, l)\), we prove the following

Theorem 3. If \(\alpha \) is a totally positive algebraic integer whose minimal polynomial is different from \(x - 1, x^2 - 3x + 1, x^4 - 7x^3 + 13x^2 - 7x + 1, x^8 - 15x^7 + 83x^6 - 220x^5 + 303x^4 - 220x^3 + 83x^2 - 15x + 1, x^6 - 11x^5 + 41x^4 - 63x^3 + 41x^2 - 11x + 1 \) and \(x^8 - 15x^7 + 84x^6 - 225x^5 + 311x^4 - 225x^3 + 84x^2 - 15x + 1 \), then we have:
Corollary 4. The six smallest points of \(R_2 \) in \((\sqrt{2}, l)\) are:

1. \(r_2(x-1) = r_2(\beta_0^2) \),
2. \(r_2(x^2 - 3x + 1) = r_2(\beta_1^2) \),
3. \(r_2(x^4 - 7x^3 + 13x^2 - 7x + 1) = r_2(\beta_2^2) \),
4. \(r_2(x^8 - 15x^7 + 83x^6 - 220x^5 + 303x^4 - 220x^3 + 83x^2 - 15x + 1) = r_2(\beta_3^2) \),
5. \(r_2(x^6 - 11x^5 + 41x^4 - 63x^3 + 41x^2 - 11x + 1) \),
6. \(r_2(x^8 - 15x^7 + 84x^6 - 225x^5 + 311x^4 - 225x^3 + 84x^2 - 15x + 1) \).

We conjecture that the next point has minimal polynomial \(x^{14} - 27x^{13} + 308x^{12} - 1963x^{11} + 7790x^{10} - 20307x^9 + 35763x^8 - 43131x^7 + 35763x^6 - 20307x^5 + 7790x^4 - 1963x^3 + 308x^2 - 27x + 1 \) and \(R_2 \) measure 1.8698925.

Section 2 deals with the denseness of the set \(R_2 \). In Section 3, we describe the method of explicit auxiliary functions. We link these functions with the integer transfinite diameter. Then, we explain the recursive algorithm which enables us to obtain the constant of Theorem 2. All the computations were done on a MacBookPro with the languages Pascal and Pari.

2 Denseness of the set \(R_2 \)

2.1 Study of the sequence \((r_2(\beta_n^2))_{n \geq 0}\)

We first prove the following

Lemma 5.

\[
r_2(\beta_n^2) = \left(2 \prod_{i=1}^{n-1} (1 + \lambda_i)^{1/2}\right)^{1/2} \quad \text{where} \quad \lambda_0 = \frac{1}{2} \quad \text{and} \quad \lambda_{i+1} = \frac{\lambda_i}{(1 + \lambda_i)^2} \quad \text{for} \quad i \geq 0.
\]

Proof

For \(n \geq 0 \), we put \(\gamma_n = \beta_n^2 \) so, \(\gamma_n = \gamma_{n+1} + \gamma_{n+1}^{-1} - 2 \) and \(\gamma_{n+1}^2 + \gamma_{n+1}^{-2} = \gamma_n^2 + 4\gamma_n + 2 \).

Therefore, we can write: \(R_2(\beta_n^2) = R_2(\gamma_n) = \prod_{i=1}^{2^n}(1 + \gamma_{n,i}^2)^{1/2} \) where,

for \(1 \leq i \leq 2^n \), \(\gamma_{n,i} \) denote the conjugates of \(\gamma_n \).

Then, we have:

\[
R_2(\beta_n^2) = \prod_{i=1}^{2^n-1} \left((1 + \gamma_{n,i}^2)(1 + \gamma_{n,i}^{-2})\right)^{1/2} = \prod_{i=1}^{2^n-1} \left(2 + \gamma_{n,i}^2 + \gamma_{n,i}^{-2}\right)^{1/2} = \prod_{i=1}^{2^n-1} (2 + \gamma_{n,i}^2 + \gamma_{n,i}^{-2})^{1/2}.
\]
\[
\gamma_{n-1,i}^2 + 4\gamma_{n-1,i} + 2)^{1/2} = \prod_{i=1}^{2^{n-1}} (\gamma_{n-1,i} + 2).
\]

Finally, we have \(R_2(\beta_n^2) = 2^{2^{n-1}} \prod_{i=1}^{2^{n-1}} (1 + 1/2\gamma_{n-1,i}) \).

Then the result comes immediately from the more general following lemma that we proved in [F]:

Lemma 6. The notations are the same as previously. Then we have
\[
\Gamma_{n,0} = \left(\prod_{i=0}^n (1 + \lambda_i)^{1/2} \right)^{2^n} \text{ where } \lambda_0 = \frac{1}{2} \text{ and } \lambda_{i+1} = \frac{\lambda_i}{(1 + \lambda_i)^2} \text{ for } i \geq 0.
\]

The lemma shows that the sequence \((r_2(\beta_n^2))_{n \geq 0} \) is increasing. Furthermore, as \(\log(1 + x) \leq x \) for all \(x \geq 0 \), we have \(\log r_2(\beta_n^2) \leq \frac{1}{2} + \sum_{i=0}^{n-1} \frac{\lambda_i}{2^i} \). The series \(\sum_{i=0}^{n-1} \frac{\lambda_i}{2^i} \) is convergent because \(0 \leq \lambda_i \leq 1 \) for \(i \geq 0 \).

Thus, the sequence \((r_2(\beta_n^2))_{n \geq 0} \) is also convergent and its limit is \(l = 1.874348 \ldots \).

Note that \(l \) gives an upper bound for the first accumulation point of \(R_2 \).

2.2 Proof of Theorem 2

The proof and notations follow those of C.J. Smyth in [Sm1]. For a given function \(g : [0, \infty) \rightarrow \mathbb{R} \), put \(M(g) \) the set of all means
\[
M_g(\alpha) = \frac{1}{d} \sum_{i=1}^d g(|\alpha_i|)
\]
for \(\alpha \) a totally real algebraic integer, i.e., all its conjugates \(\alpha_1 = \alpha, \ldots, \alpha_d \) are real numbers. When the limits exist, put \(a(g) = \lim_{n \rightarrow \infty} M_g(\beta_n) \) and \(c(g) = \lim_{n \rightarrow \infty} M_g(2\cos(2\pi/n)) \).

Here a convenient choice for \(g \) is \(g : x \rightarrow \frac{1}{2} \log(1 + x^4) \) because then \(M_g(\alpha) = \log r_2(\alpha^2) \).

The proof consists in two parts.

2.2.1 First step of the proof

C.J. Smyth [Sm1] proved the following

Theorem 7. Let \(g : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) be a monotonic increasing function, zero on \([0, 1] \) such that
\[
\lim_{x \rightarrow \infty} g(x + 1)/g(x) = 1
\]
and the values of \(\log_2 g(2k + 1) \mod 1\) (k=0,1,2,...) are everywhere dense in (0,1).

Then the limit \(a(g)\) exists and \(\mathcal{M}(g)\) is dense in \((a(g), \infty)\).

We replace the function \(g\) by the function \(g^*\) which satisfies the hypothesis of Theorem 7:
\[
g^*(x) = \begin{cases}
 g(x) + g(1/x) & \text{if } x > 1 \\
 0 & \text{if } 0 \leq x \leq 1
\end{cases}
\]

As \(\beta_{n,i}^{-1}\) or \(-\beta_{n,i}^{-1}\) is a conjugate of \(\beta_{n,i}\), we have:
\[
\mathcal{M}_g(\beta_n) = \frac{1}{2^n} \sum_{i=1}^{2^n} g(\beta_{n,i}) = \frac{1}{2^n} \sum_{i=1}^{2^n-1} (g(\beta_{n,i}) + g(\beta_{n,i}^{-1})) = M_{g^*}(\beta_n).
\]

Thus, the existence of \(a(g^*)\) implies those of \(a(g)\) and \(a(g^*) = a(g)\).

It is easy to see that \(g^*\) satisfies the first hypothesis of Theorem 7. So, it is sufficient to study the denseness of the set \(\mathcal{F} = \{\log_2 g(2k + 1) \mod 1, k \in \mathbb{N}\}\).

Let \(t \in [0, 1]\) and \(\epsilon > 0\). Does there exist \(f \in \mathcal{F}\) such that \(|f - t| < \epsilon\)? We search for \(n\) and \(k\) satisfying:
\[
| \log_2 g^*(2k + 1) - t - n | < \epsilon
\]
i.e.,
\[
| \log_2 g^*(2k + 1) - t' - n \log 2 | < \epsilon'
\]

The uniform continuity of the function \(\log\) on \([1, \infty)\) gives:
\[
\forall \epsilon' > 0, \exists \eta(\epsilon') \text{ such that } \forall x, y > 0, |x - y| < \eta(\epsilon') \Rightarrow |\log x - \log y| < \epsilon'.
\]

We choose \(n\) such that \(2^{-n} < \eta(\epsilon')\) and \(k\) such that \(|(2k+1) - (g^*)^{-1}(2^n e')| \leq 1\). As \((g^*)'\) is bounded by 1, the mean value Theorem for \(g^*\) on \((1, \infty)\) gives:
\[
|g^*(2k + 1) - 2^n e'| \leq 1,
\]
i.e.,
\[
|2^{-n} g^*(2k + 1) - e'| \leq 2^{-n} < \eta(\epsilon')
\]
and the inequality (2.1) follows immediately. Thus, we have proved that \(\mathcal{M}(g)\) is dense in \((a(g^*), \infty) = (a(g), \infty)\).
2.2.2 Second step of the proof

C.J. Smyth [Sm1] established the following

Theorem 8. Let \(g : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) be a function such that \(\lim_{x \to \infty} g(x) = \infty \) and which satisfies a Lipschitz condition

\[
|g(x) - g(y)| < B(\lambda)|x - y|
\]

for \(x, y \in [0, \lambda] \), for each \(\lambda > 0 \). Then \(\mathcal{M}(g) \) is dense on \((c(g), \infty) \), where

\[
c(g) = \frac{2}{\pi} \int_{0}^{\pi/2} g(2 \cos \theta) d\theta.
\]

It is easy to see that, for our function \(g \), the Lipschitz condition is satisfied for \(B(\lambda) = 4\lambda^3 \).

2.2.3 Conclusion

We have shown that \(\mathcal{M}(g) \) is dense on \((\min(a(g), c(g)), \infty) \) which means that \(\mathcal{R}_2 \) is dense on \((l, \infty) \), where \(l = \lim_{n \to \infty} r_2(\beta_n^2) = 1.874348 \ldots \).

2.3 Proof of Theorem 3

2.4 The explicit auxiliary function

The auxiliary function involved in Theorem 3 is of the following type:

\[
(2.2) \quad \text{for } x > 0, \quad f(x) = \frac{1}{2} \log(1 + x^2) - c_0 \log x - \sum_{1 \leq j \leq J} c_j \log |Q_j(x)|
\]

where the \(c_j \) are positive real numbers and the polynomials \(Q_j \) are non zero polynomials in \(\mathbb{Z}[x] \).

Let \(\alpha \) be a totally positive algebraic integer with conjugates \(\alpha_1 = \alpha, \ldots, \alpha_d \) and minimal polynomial \(P \). Then we have

\[
\sum_{i=1}^{d} f(\alpha_i) \geq md
\]

where \(m \) denotes the minimum of the function \(f \), i.e.,

\[
\log \mathcal{R}_2(\alpha) \geq md + \sum_{1 \leq j \leq J} c_j \log |\prod_{i=1}^{d} Q_j(\alpha_i)|.
\]
We assume that \(P \) does not divide any \(Q_j \), then \(\prod_{i=1}^{d} Q_j(\alpha_i) \) is a nonzero integer because it is the resultant of \(P \) and \(Q_j \).

Therefore, if \(\alpha \) is not a root of \(Q_j \), we have

\[
 r_2(\alpha) \geq e^m.
\]

It is possible to reduce the domain of study of the function \(f \). If we consider the function \(g(x) = 1/2[f(x) + f(1/x)] \), we get a minimum greater or equal to those given by \(f \). But \(g \) is invariant under the application \(x \rightarrow 1/x \) so it is sufficient to study \(g \) on \((0, 1)\). Thus, without loss of generality, we can limit our study to auxiliary functions invariant under this transformation. This implies that we can take for \(Q_j \) to be reciprocal polynomials, i.e., \(Q_j(x) = x^{\deg Q_j} Q_j(1/x) \). The condition \(f(x) = f(1/x) \) gives

\[
 2c_0 + \sum_{1 \leq j \leq J} c_j \deg Q_j = 1.
\]

We denote \(\deg Q_j = 2d_j \) for \(1 \leq j \leq J \).

On \((0,1)\), the auxiliary function \(f \) can be written

\[
 f(x) = \frac{1}{2} \log x + \frac{1}{2} \log(x+1/x) - c_0 \log x - \sum_{1 \leq j \leq J} c_j \log \left| \frac{Q_j(x)}{x^{d_j}} \right| - \sum_{1 \leq j \leq J} c_j \log x^{d_j} \geq m.
\]

Thus, if we put \(y = x + 1/x - 2 \), \(f(x) \) becomes

\[
 \text{for } y > 0, \quad g(y) = \frac{1}{2} \log(y + 2) - \sum_{1 \leq j \leq J} c_j \log |U_j(y)| \geq m
\]

where \(\deg(U_j) = d_j \).

The main problem is to find a good list of polynomials \(Q_j \) which gives a value of \(m \) as large as possible. Thus, we link the auxiliary function with the integer transfinite diameter in order to find the polynomials with our recursive algorithm.

2.5 Auxiliary functions and integer transfinite diameter

In this section, we shall need the following definition:

Let \(K \) be a compact subset of \(\mathbb{C} \).
If φ is a positive function defined on K, the φ-integer transfinite diameter of K is defined as

$$t_{Z,\varphi}(K) = \lim_{n \to \infty} \inf_{P \in \mathbb{Z}[Y]} \inf_{y \in K} \sup_{n \geq 1} \left(|P(y)|^{\frac{1}{n \varphi(y)}} \right).$$

This weighted version of the integer transfinite diameter was introduced by F. Amoroso [A] and is an important tool in the study of rational approximations of logarithms of rational numbers.

Inside the auxiliary function (2.2), we replace the numbers c_j by rational numbers. Then we can write:

$$\text{(2.3) for } y > 0, \quad f(y) = \frac{1}{2} \log(y + 2) - \frac{t}{r} \log |Q(y)| \geq m$$

where $Q \in \mathbb{Z}[Y]$ is of degree r and t is a positive real number. We want to get a function whose minimum m is as large as possible. Thus we search a polynomial $Q \in \mathbb{Z}[Y]$ such that

$$\sup_{y > 0} |Q(y)|^{t/r}(y + 2)^{-1/2} \leq e^{-m}.$$

If we suppose that t is fixed, it is clear that we need an effective upper bound for the quantity

$$t_{Z,\varphi}((0, \infty)) = \lim_{r \to +\infty} \inf_{P \in \mathbb{Z}[Y]} \inf_{y > 0} \sup_{r \geq 1} \left(|P(y)|^{\frac{1}{r \varphi(y)}} \right)$$

where we use the weight $\varphi(y) = (y + 2)^{-1/2}$.

Even if we replace the compact subset K by the infinite interval $(0, \infty)$, the weight φ ensures that the quantity $t_{Z,\varphi}((0, \infty))$ is finite.

2.6 Construction of the auxiliary function

The improvement compared with Wu’s algorithm is that our polynomials are obtained by induction. Suppose that we have $Q_1, Q_2, ..., Q_J$. Then we use the semi-infinite linear programming (introduced in number theory by C. J. Smyth [Sm2]) to optimize f for this set of polynomials (i.e., to get the greatest possible m). We obtain the numbers $c_1, c_2, ..., c_J$ and f in the form (2.3) with $t = \sum_{j=1}^{J} c_j \deg(Q_j)$.
For several value of k, we seek a polynomial $R(y) = \sum_{i=0}^{k} a_i y^i \in \mathbb{Z}[y]$ such that

$$
\sup_{y>0} |Q(y)R(y)|^{1/2} (y + 2)^{-1/2} \leq e^{-m},
$$
i.e., such that

$$
\sup_{y>0} |Q(y)R(y)|(y + 2)^{-(r+k)/2t}
$$
is as small as possible.

We apply LLL algorithm to the linear forms in a_0, \ldots, a_k

$$Q(y_i)R(y_i)(y_i + 2)^{-(r+k)/2t}$$

where y_i are control points uniformly distributed in the interval $[0,70]$, including the points where f has its least local minima. We get a polynomial R whose factors R_j are good candidates to enlarge the set of polynomials (Q_1, Q_2, \ldots, Q_J). We only keep the polynomials R_j which have a nonzero coefficient c_j in the new optimized auxiliary function f. After optimization, some previous polynomials Q_j may have a zero coefficient and are removed.

In order to get the constant of Theorem 3, we take k from 4 to 15 successively.

The polynomials Q_j of degree d_j and the coefficients c_j involved in the auxiliary function of Theorem 3 are listed in the Table 1 below. Only polynomials numbered 1, 2, 4, 6, 9 and 13 from the list have r_2 measure less than the constant in the theorem.
<table>
<thead>
<tr>
<th>j</th>
<th>c_j</th>
<th>d_j</th>
<th>Highest half coefficients of Q_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.097723</td>
<td>2</td>
<td>1 -2</td>
</tr>
<tr>
<td>2</td>
<td>0.051674</td>
<td>2</td>
<td>1 -3</td>
</tr>
<tr>
<td>3</td>
<td>0.000533</td>
<td>2</td>
<td>1 -4 1</td>
</tr>
<tr>
<td>4</td>
<td>0.017814</td>
<td>4</td>
<td>1 -7 13</td>
</tr>
<tr>
<td>5</td>
<td>0.000985</td>
<td>4</td>
<td>1 -8 15</td>
</tr>
<tr>
<td>6</td>
<td>0.003163</td>
<td>6</td>
<td>1 -11 41 -63</td>
</tr>
<tr>
<td>7</td>
<td>0.000202</td>
<td>6</td>
<td>1 -12 48 -77</td>
</tr>
<tr>
<td>8</td>
<td>0.000371</td>
<td>6</td>
<td>1 -12 44 -67</td>
</tr>
<tr>
<td>9</td>
<td>0.001273</td>
<td>8</td>
<td>1 -15 84 -225 311</td>
</tr>
<tr>
<td>10</td>
<td>0.000221</td>
<td>8</td>
<td>1 -16 91 -244 337</td>
</tr>
<tr>
<td>11</td>
<td>0.000131</td>
<td>8</td>
<td>1 -16 92 -249 345</td>
</tr>
<tr>
<td>12</td>
<td>0.000060</td>
<td>8</td>
<td>1 -16 92 -248 343</td>
</tr>
<tr>
<td>13</td>
<td>0.006621</td>
<td>8</td>
<td>1 -15 83 -220 303</td>
</tr>
<tr>
<td>14</td>
<td>0.000284</td>
<td>10</td>
<td>1 -19 143 -557 1231 -1599</td>
</tr>
<tr>
<td>15</td>
<td>0.000069</td>
<td>10</td>
<td>1 -19 142 -548 1202 -1557</td>
</tr>
<tr>
<td>16</td>
<td>0.000418</td>
<td>12</td>
<td>1 -23 218 -1118 3438 -6651 8271</td>
</tr>
<tr>
<td>17</td>
<td>0.000145</td>
<td>12</td>
<td>1 -23 218 -1119 3446 -6675 8305</td>
</tr>
<tr>
<td>18</td>
<td>0.000044</td>
<td>14</td>
<td>1 -27 308 -1964 7800 -20348 35853 -43247 35853</td>
</tr>
<tr>
<td>19</td>
<td>0.000017</td>
<td>14</td>
<td>1 -27 309 -1979 7893 -20661 36484 -44041 36484</td>
</tr>
<tr>
<td>20</td>
<td>0.000023</td>
<td>14</td>
<td>1 -26 289 -1812 7124 -18484 32488 -39161</td>
</tr>
<tr>
<td>21</td>
<td>0.000202</td>
<td>14</td>
<td>1 -27 308 -1964 7790 -20307 35763 -43131</td>
</tr>
<tr>
<td>22</td>
<td>0.000496</td>
<td>14</td>
<td>1 -26 290 -1826 7205 -18741 32986 -39779</td>
</tr>
<tr>
<td>23</td>
<td>0.000278</td>
<td>14</td>
<td>1 -27 308 -1965 7812 -20404 35986 -43423</td>
</tr>
<tr>
<td>24</td>
<td>0.000376</td>
<td>14</td>
<td>1 -27 309 -1979 7894 -20668 36503 -44067</td>
</tr>
<tr>
<td>25</td>
<td>0.000232</td>
<td>16</td>
<td>1 -31 415 -3177 15538 -51389 118680 -194903 229733</td>
</tr>
<tr>
<td>26</td>
<td>0.000290</td>
<td>16</td>
<td>1 -30 391 -2932 14123 -46215 106000 -173418 204161</td>
</tr>
<tr>
<td>27</td>
<td>0.000092</td>
<td>16</td>
<td>1 -31 414 -3160 15414 -50875 117330 -192534 226883</td>
</tr>
<tr>
<td>28</td>
<td>0.000043</td>
<td>16</td>
<td>1 -31 415 -3179 15566 -51554 119216 -195961 231055</td>
</tr>
<tr>
<td>29</td>
<td>0.001203</td>
<td>16</td>
<td>1 -31 413 -3141 15261 -50187 115410 -189096 222621</td>
</tr>
<tr>
<td>30</td>
<td>0.000084</td>
<td>16</td>
<td>2 -58 732 -5330 25023 -80175 181020 -293277 344127</td>
</tr>
<tr>
<td>31</td>
<td>0.000045</td>
<td>18</td>
<td>1 -35 541 -4891 28887 -117982 344282 -731869 1146235 -1330340</td>
</tr>
<tr>
<td>32</td>
<td>0.000160</td>
<td>20</td>
<td>1 -38 645 -6492 43388 -204358 702800 -1804604 3509324 -5213890 5946449</td>
</tr>
</tbody>
</table>
References

