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An estimator for the tail index of an integrated conditional

Pareto-Weibull-type model

Yuri Goegebeur ∗

Armelle Guillou †

Michael Osmann ‡

Abstract. We introduce a nonparametric regression estimator for a tail heaviness parameter

in an integrated conditional Pareto-Weibull-type model. The estimator is based on local log ex-

cesses over a high random threshold. Asymptotic properties are derived under proper regularity

conditions.

Key words and phrases: Extremes, local estimation, regression, tail index.

1 Introduction

In the recent years, a lot of attention in extreme value theory has been devoted to situations

where the variable of interest Y is observed together with a random covariate X. Goegebeur et

al. (2014) introduced an estimator for the conditional extreme value index γ(x) when γ(x) > 0,

while de Wet et al. (2015) introduced an estimator for the conditional Weibull-tail coefficient.

In both of these cases, a weighted average of the log-excesses over a threshold is used, where

the threshold is considered to be non-random. The aim of the present paper is to construct

an estimator that can be used for both conditional Weibull-tail distributions and Pareto-type
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Descartes, 67084 Strasbourg cedex, France (email: armelle.guillou@math.unistra.fr).
‡Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230

Odense M, Denmark (email: mosma@imada.sdu.dk).

1



distributions. To this end, we use a two parameter family of distributions, which contain both

the Pareto-type distributions and the Weibull-tail distributions. The estimator is based on a

random threshold, as was also done in Stupfler (2013), who introduced an estimator for the

conditional extreme value index γ(x) with γ(x) ∈ R.

Let F (y;x) := P(Y ≤ y|X = x), the conditional response distribution function, and F (.;x) :=

1− F (.;x). Assume

F (y;x) = exp
(
−D←τ(x) (lnH (y;x))

)
, (1)

where

• y > y∗(x) with y∗(x) > 0,

• Dτ(x)(y) =
∫ y
1 u

τ(x)−1du, with τ(x) ∈ [0, 1],

• H is an increasing function that satisfies H← (t;x) := inf{y : H(y;x) ≥ t} = tθ(x)`(t;x),

where θ(x) > 0, and ` is a slowly varying function at infinity, i.e. `(λy;x)
`(y;x) → 1 as y → ∞

for all λ > 0.

As noted in Gardes et al. (2011), this model includes Weibull-tail distributions with Weibull-tail

coefficient θ(x) if τ(x) = 0, and Pareto-type tails with extreme value index θ(x) if τ(x) = 1,

while τ(x) ∈ (0, 1) is an intermediate class of distributions. In the following, we let (Xi, Yi),

i = 1, . . . , n, be independent copies of the random vector (X,Y ) ∈ Rq×R+ with q ≥ 1, where the

conditional distribution of Y given X = x satisfies (1). Furthermore, let x ∈ Rq be arbitrary and

denote by B(x, h), the ball with center x and radius h, i.e. B(x, h) := {z ∈ Rq : d(x, z) ≤ h},

with d(x, z) being the distance between x and z. The number of observations in the ball is

given by Nn,x,h :=
∑n

i=1 1l{Xi∈B(x,h)}, where 1l{·} is the indicator function, and denote by nx the

expected number of observations in B(x, h), i.e. nx := nP (X ∈ B(x, h)).

Conditional on Nn,x,h = p, p ≥ 1, we introduce Zj , j = 1, . . . , p, as the response variables for

which the covariate Xj is in the ball B(x, h), and denote by Z1,p ≤ . . . ≤ Zp,p the associated
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order statistics. In this setting we define our estimator of θ(x) as

θ̂(kx;x) :=
1

µτ(x)

(
ln p

kx

) 1

kx

kx∑
i=1

[lnZp−i+1,p − lnZp−kx,p]

with

µτ(x)(t) :=

∫ ∞
0

(
Dτ(x)(u+ t)−Dτ(x)(t)

)
exp(−u)du,

and assuming that kx ∈ {1, . . . , p − 1}. This estimator is an adaptation of the estimator pro-

posed by Gardes et al. (2011) to the regression context. It consists mainly in averaging the

log-spacings between the upper order statistics of the response variables for which the covariates

are in the ball centered at x.

In the following, we will let Uh(t;x) and U(t;x) be the tail quantile functions corresponding

to the conditional distribution function Fh(y;x) := P(Y ≤ y|X ∈ B(x, h)) and F (y;x), re-

spectively, i.e. Uh(.;x) := (1/F h(.;x))← and U(.;x) := (1/F (.;x))←, where the superscript ←

denotes the generalised inverse as introduced above. In order to control the difference between

Uh(t;x) and U(t;x), we define ω(u, v, x, h) := supz∈[u,v] |logUh(z;x)− logU(z;x)|, with u ≤ v.

The asymptotic properties of θ̂(kx;x) will be examined under the following second order condi-

tion.

Assumption A(ρ(x)) There exist ρ(x) < 0 and b(y;x)→ 0 for y →∞ such that

ln
`(λy;x)

`(y;x)
= b(y;x)Dρ(x)(λ)(1 + o(1)),

where o(1) is uniform on λ ∈ [1,∞).

Note that this assumption immediately implies that the function |b(y;x)| is regularly varying

with index ρ(x).

2 Asymptotic properties

In this section we examine the asymptotic properties of our estimator. We start by establishing

the consistency of θ̂(kx;x).
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Theorem 1 Assume that F (.;x) satisfies (1) and that A(ρ(x)) holds. If nx →∞, kx →∞ and

kx
nx
→ 0 in such a way that for some δ > 0,

1

µτ(x)

(
ln nx

kx

) ω( nx
(1 + δ)kx

, n1+δx , x, h

)
−→ 0,

then

θ̂(kx;x)
P−→ θ(x).

Proof: Let Ix := N∩ [(1−n−1/4x )nx, (1 +n
−1/4
x )nx]. According to Lemma 1 in Stupfler (2013),

one has that P(Nn,x,h ∈ Ix)→ 1 as nx →∞. For any t > 0, define the event

S(t;x) :=
{∣∣∣θ̂ (kx;x)− θ(x)

∣∣∣ > t
}
.

Note that after applying the law of total probability one obtains the inequality

P(S(t;x)) ≤ sup
p∈Ix

P (S(t;x)|Nn,x,h = p) + P(Nn,x,h /∈ Ix).

We have thus to show that supp∈Ix P (S(t;x)|Nn,x,h = p)→ 0.

To this aim, let Ti, i = 1, . . . , p, be unit Pareto random variables, with T1,p ≤ . . . ≤ Tp,p

the associated order statistics. Given Nn,x,h = p ≥ 1, the distribution of the random vector

(Z1, . . . , Zp), is the same as that of the random vector (Uh (T1;x) , . . . , Uh (Tp;x)); see Lemma 2

in Stupfler (2013). Thus, denoting

θ̆(kx;x) :=
1

µτ(x)

(
ln p

kx

) 1

kx

kx∑
i=1

[lnUh (Tp−i+1,p;x)− lnUh (Tp−kx,p;x)] ,

θ̃(kx;x) :=
1

µτ(x)

(
ln p

kx

) 1

kx

kx∑
i=1

[lnU (Tp−i+1,p;x)− lnU (Tp−kx,p;x)] ,

and

Rp(x) :=
1

µτ(x)

(
ln p

kx

) 1

kx

kx∑
i=1

[lnUh (Tp−i+1,p;x)− lnUh (Tp−kx,p;x)− (lnU (Tp−i+1,p;x)− lnU (Tp−kx,p;x))] ,

we have

P (S(t;x)|Nn,x,h = p) = P
(∣∣∣θ̆(kx;x)− θ(x)

∣∣∣ > t
)
≤ P

(∣∣∣θ̃(kx;x)− θ(x)
∣∣∣ > t

2

)
+ P

(
|Rp(x)| > t

2

)
. (2)
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The two probabilities on the right-hand side of (2) are now studied separately. Concerning the

first one, note that, with T ∗i (p) :=
Tp−i+1,p

Tp−kx,p
, i = 1, . . . , kx,

θ̃(kx;x) = θ(x)
1

µτ(x)

(
ln p

kx

) 1

kx

kx∑
i=1

[
Dτ(x) (lnTp−kx,p + lnT ∗i (p))−Dτ(x) (lnTp−kx,p)

]

+
1

µτ(x)

(
ln p

kx

) 1

kx

kx∑
i=1

ln
`
(
exp

(
Dτ(x) (lnTp−kx,p + lnT ∗i (p))

)
;x
)

`
(
exp

(
Dτ(x) (lnTp−kx,p)

)
;x
)

=: θ̃1(kx;x) + θ̃2(kx;x).

For the sequel, it is important to keep in mind that (T ∗kx−i+1(p), i = 1, . . . , kx)
D
= (T1,kx , . . . , Tkx,kx),

independently of Tp−kx,p. Application of a Taylor series expansion to θ̃1(kx;x) gives

θ̃1(kx;x) = θ(x)
(lnTp−kx,p)

τ(x)−1(
ln p

kx

)τ(x)−1
(

ln p
kx

)τ(x)−1
µτ(x)

(
ln p

kx

) 1

kx

kx∑
i=1

lnT ∗i (p)

+
θ(x)

2

τ(x)− 1

µτ(x)

(
ln p

kx

) 1

kx

kx∑
i=1

(
lnTp−kx,p + ln T̃i(p)

)τ(x)−2
(lnT ∗i (p))2

=: θ̃11(kx;x) + θ̃12(kx;x)

where ln T̃i(p) is a random value between 0 and lnT ∗i (p). The cases τ(x) = 1 and τ(x) 6= 1

can now be studied separately. If τ(x) = 1, we have that θ̃11(kx;x) = θ(x) 1
kx

∑kx
i=1 lnT ∗i (p) and

θ̃12(kx;x) = 0, and thus for any t > 0

sup
p∈Ix

P
(∣∣∣θ̃1(kx;x)− θ(x)

∣∣∣ > t
)

= sup
p∈Ix

P

(∣∣∣∣∣θ(x)
1

kx

kx∑
i=1

lnT ∗i (p)− θ(x)

∣∣∣∣∣ > t

)

= sup
p∈Ix

P

(∣∣∣∣∣θ(x)
1

kx

kx∑
i=1

lnTkx−i+1,kx − θ(x)

∣∣∣∣∣ > t

)

= P

(∣∣∣∣∣θ(x)
1

kx

kx∑
i=1

lnTi − θ(x)

∣∣∣∣∣ > t

)
−→ 0,

by the law of large numbers. Otherwise, if τ(x) < 1, by combining Lemma 6 in Stupfler (2013)

with our Lemmas 1 and 3, we deduce that

sup
p∈Ix

P
(∣∣∣θ̃11(kx;x)− θ(x)

∣∣∣ > t
)
−→ 0,
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while concerning θ̃12(kx;x),

∣∣∣θ̃12(kx;x)
∣∣∣ ≤ θ(x)

2
(lnTp−kx,p)

−1 (lnTp−kx,p)
τ(x)−1(

ln p
kx

)τ(x)−1
(

ln p
kx

)τ(x)−1
µτ(x)

(
ln p

kx

) 1

kx

kx∑
i=1

(lnT ∗i (p))2 .

Using again the law of large numbers combining with the convergence supp∈Ix P
(

(lnTp−kx,p)
−1 > t

)
→

0 and our Lemma 3, we deduce that

sup
p∈Ix

P
(∣∣∣θ̃12(kx;x)

∣∣∣ > t
)
−→ 0.

This leads also for τ(x) < 1 to

sup
p∈Ix

P
(∣∣∣θ̃1(kx;x)− θ(x)

∣∣∣ > t
)
−→ 0. (3)

Concerning now θ̃2(kx;x), we have to use assumption A(ρ(x)) which ensures that

θ̃2(kx;x) =
1

µτ(x)

(
ln p

kx

)
· 1

kx

kx∑
i=1

ln
`
(
exp

(
Dτ(x) (lnTp−kx,p + lnT ∗i (p))−Dτ(x) (lnTp−kx,p)

)
exp

(
Dτ(x) (lnTp−kx,p)

)
;x
)

`
(
exp

(
Dτ(x) (lnTp−kx,p)

)
;x
)

=
b
(
exp

(
Dτ(x) (lnTp−kx,p)

)
;x
)

µτ(x)

(
ln p

kx

)
· 1

kx

kx∑
i=1

Dρ(x)

(
exp

(
Dτ(x) (ln (Tp−kx,pT

∗
i (p)))−Dτ(x) (ln (Tp−kx,p))

))
(1 + δn)

where δn
P−→ 0 uniformly in i and p. An application of the mean value theorem, shows that

Dρ(x)

(
exp

(
Dτ(x) (ln (Tp−kx,pT

∗
i (p)))−Dτ(x) (ln (Tp−kx,p))

))
=
[
exp

(
Dτ(x)(ln T̃i(p) + lnTp−kx,p)−Dτ(x)(lnTp−kx,p)

)]ρ(x) (
ln T̃i(p) + lnTp−kx,p

)τ(x)−1
lnT ∗i (p),

where ln T̃i(p) is a random value between 0 and lnT ∗i (p). Since[
exp

(
Dτ(x)(ln T̃i(p) + lnTp−kx,p)−Dτ(x)(lnTp−kx,p)

)]ρ(x)
≤ 1,

it follows that

∣∣∣θ̃2(kx;x)
∣∣∣ ≤

∣∣∣∣∣∣∣(1 + δn)
(lnTp−kx,p)

τ(x)−1(
ln p

kx

)τ(x)−1
(

ln p
kx

)τ(x)−1
µτ(x)

(
ln p

kx

) b (exp
(
Dτ(x) (lnTp−kx,p)

)
;x
) 1

kx

kx∑
i=1

lnT ∗i (p)

∣∣∣∣∣∣∣ .
6



Clearly,

sup
p∈Ix

P (|(1 + δn)− 1| > t) −→ 0

and

sup
p∈Ix

P
(∣∣b (exp

(
Dτ(x) (lnTp−kx,p)

)
;x
)∣∣ > t

)
−→ 0,

(observe that b(exp(Dτ(x)(ln y));x) is regularly varying at infinity, and apply Lemma 6 of

Stupfler, 2013), from which we deduce that

sup
p∈Ix

P
(∣∣∣θ̃2(kx;x)

∣∣∣ > t
)
−→ 0

according to our Lemma 3. Finally, coming back to Rp(x), we have

|Rp(x)| ≤
2ω(Tp−kx,p, Tp,p, x, h)

µτ(x)

(
ln nx

kx

) µτ(x)

(
ln nx

kx

)
µτ(x)

(
ln p

kx

) . (4)

Since ω(u, v, x, h) is a decreasing function in u and an increasing function in v, it is clear that

for all t > 0,
∣∣∣∣∣∣
2ω
(

nx
(1+δ)kx

, n1+δx , x, h
)

µτ(x)

(
ln nx

kx

)
∣∣∣∣∣∣ ≤ t

∩
{
Tp−kx,p ≥

nx
(1 + δ)kx

}
∩
{
Tp,p ≤ n1+δx

}
⊆


∣∣∣∣∣∣2ω(Tp−kx,p, Tp,p, x, h)

µτ(x)

(
ln nx

kx

)
∣∣∣∣∣∣ ≤ t

 .

By considering the complementary event, we have
∣∣∣∣∣∣2ω(Tp−kx,p, Tp,p, x, h)

µτ(x)

(
ln nx

kx

)
∣∣∣∣∣∣ > t

 ⊆

∣∣∣∣∣∣
2ω
(

nx
(1+δ)kx

, n1+δx , x, h
)

µτ(x)

(
ln nx

kx

)
∣∣∣∣∣∣ > t

 ∪
{
Tp−kx,p <

nx
(1 + δ)kx

}
∪
{
Tp,p > n1+δx

}
.

Taking nx sufficiently large, under the assumption of Theorem 1, we have

sup
p∈Ix

P

∣∣∣∣∣∣2ω(Tp−kx,p, Tp,p, x, h)

µτ(x)

(
ln nx

kx

)
∣∣∣∣∣∣ > t

 ≤ sup
p∈Ix

P
(
Tp−kx,p <

nx
(1 + δ)kx

)
+ sup
p∈Ix

P
(
Tp,p > n1+δx

)
−→ 0,

by Lemma 6 in Stupfler (2013) and using the properties of the largest order statistic Tp,p. This

ensures then under our Lemma 2 that

sup
p∈Ix

P (|Rp(x)| > t) −→ 0.

Combining the above results, Theorem 1 follows.

Now we establish the asymptotic normality of θ̂(kx;x), when properly normalised.
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Theorem 2 Assume that F (.;x) satisfies (1) and that A(ρ(x)) holds. If nx →∞, kx →∞ and

kx
nx
→ 0 in such a way that for some δ > 0,

√
kx

µτ(x)

(
ln nx

kx

) ω( nx
(1 + δ)kx

, n1+δx , x, h

)
−→ 0,

and if additionally √
kx b

(
exp

(
Dτ(x)

(
ln
nx
kx

))
;x

)
−→ λ ∈ R

and for τ(x) < 1 √
kx

ln nx
kx

−→ 0

then √
kx

(
θ̂(kx;x)− θ(x)

)
D→ N

(
λ

1− ρ(x)
1l{τ(x)=1} + λ1l{τ(x)<1}, θ

2(x)

)
.

Proof: Given Nn,x,h = p ≥ 1, the distribution of
√
kx(θ̂(kx;x) − θ(x)) is the same as that of

√
kx(θ̆(kx;x) − θ(x)). Thus according to Lemma 5 in Stupfler (2013), it is sufficient to prove

that the latter has the same distribution as a triangular array of the form

Dn + φnp

where Dn
D→ N

(
λ

1−ρ(x)1l{τ(x)=1} + λ1l{τ(x)<1}, θ
2(x)

)
and supp∈Ix P (|φnp| > t)→ 0 for all t > 0,

as nx →∞. We can use the same decomposition of θ̆(kx;x) as in the proof of Theorem 1, that is

in terms of θ̃11(kx;x), θ̃12(kx;x), θ̃2(kx;x) and Rp(x). Expanding further on the term θ̃11(kx;x)

gives

θ̃11(kx;x)
D
= θ(x)

1

kx

kx∑
i=1

lnTi + θ(x)

(lnTp−kx,p)
τ(x)−1(

ln p
kx

)τ(x)−1
(

ln p
kx

)τ(x)−1
µτ(x)

(
ln p

kx

) − 1

 1

kx

kx∑
i=1

lnTi

=: θ̃111(kx;x) + θ̃112(kx;x).

The first term θ̃111(kx;x) can be dealt with directly with the central limit theorem

√
kx

(
θ̃111(kx;x)− θ(x)

)
D→ N

(
0, θ2(x)

)
.
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Note that θ̃112(kx;x) = 0 if τ(x) = 1, so we only need to consider the case τ(x) < 1. For

θ̃112(kx;x), we have thus to show that for all t > 0

sup
p∈Ix

P

(√
kx

∣∣∣∣∣
(

lnTp−kx,p
ln p/kx

)τ(x)−1
− 1

∣∣∣∣∣ > t

)
−→ 0.

From the mean value theorem we get

sup
p∈Ix

P

(√
kx

∣∣∣∣∣
(

lnTp−kx,p
ln p/kx

)τ(x)−1
− 1

∣∣∣∣∣ > t

)

≤ sup
p∈Ix

P

(1−

∣∣∣∣∣ ln(kxp Tp−kx,p)

ln(p/kx)

∣∣∣∣∣
)τ(x)−2 √

kx

ln[(1− n−1/4x )nx/kx]

∣∣∣∣ln(kxp Tp−kx,p
)∣∣∣∣ > t

 .

Taylor’s theorem gives now

sup
p∈Ix

P
(∣∣∣∣ln(kxp Tp−kx,p

)∣∣∣∣ > t

)
≤ sup

p∈Ix
P


∣∣∣kxp Tp−kx,p − 1

∣∣∣
1−

∣∣∣kxp Tp−kx,p − 1
∣∣∣ > t

 = sup
p∈Ix

P
(∣∣∣∣kxp Tp−kx,p − 1

∣∣∣∣ > t

1 + t

)
,

which tends to zero by Lemma 6 in Stupfler (2013), and, with a > 1,

sup
p∈Ix

P

∣∣∣∣∣∣
(

1−

∣∣∣∣∣ ln(kxp Tp−kx,p)

ln(p/kx)

∣∣∣∣∣
)τ(x)−2

− 1

∣∣∣∣∣∣ > t


≤ sup

p∈Ix
P

((
1−

∣∣∣∣ lnTp−kx,pln(p/kx)
− 1

∣∣∣∣)τ(x)−3 > a

)
+ sup
p∈Ix

P
(∣∣∣∣ lnTp−kx,pln(p/kx)

− 1

∣∣∣∣ > t

2a

)
= sup

p∈Ix
P
(∣∣∣∣ lnTp−kx,pln(p/kx)

− 1

∣∣∣∣ > 1− a
1

τ(x)−3

)
+ sup
p∈Ix

P
(∣∣∣∣ lnTp−kx,pln(p/kx)

− 1

∣∣∣∣ > t

2a

)
→ 0.

Concerning now the term θ̃12(kx;x) (which only needs to be considered in case τ(x) < 1), remark

that

∣∣∣√kx θ̃12(kx;x)
∣∣∣ ≤
∣∣∣∣∣∣∣
θ(x)

2

√
kx

ln nx
kx

ln nx
kx

lnTp−kx,p

(lnTp−kx,p)
τ(x)−1(

ln p
kx

)τ(x)−1
(

ln p
kx

)τ(x)−1
µτ(x)

(
ln p

kx

) 1

kx

kx∑
i=1

(lnT ∗i (p))2

∣∣∣∣∣∣∣ .
Combining again Lemma 6 in Stupfler (2013) with our Lemmas 1 and 3 together with our

assumptions, we infer that

sup
p∈Ix

P
(∣∣∣√kx θ̃12(kx;x)

∣∣∣ > t
)
−→ 0.
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For θ̃2(kx;x), we need also to distinguish between the two cases τ(x) = 1 and τ(x) < 1. We

first consider the case τ(x) = 1, where we use the fact that b(.;x) is regularly varying at infinity

combining with Lemma 6 in Stupfler (2013) and the law of large numbers according to which

sup
p∈Ix

P

(∣∣∣∣∣ 1

kx

kx∑
i=1

(T ∗i (p))ρ(x) − 1

ρ(x)
− 1

1− ρ(x)

∣∣∣∣∣ > t

)
= P

(∣∣∣∣∣ 1

kx

kx∑
i=1

T
ρ(x)
i − 1

ρ(x)
− 1

1− ρ(x)

∣∣∣∣∣ > t

)
−→ 0.

The convergence

sup
p∈Ix

P
(∣∣∣∣√kx θ̃2(kx;x)− λ

1− ρ(x)

∣∣∣∣ > t

)
−→ 0

then follows from our assumptions and our Lemma 3. In the case where τ(x) < 1, using the

same arguments as in the proof of Theorem 1, we have the following decomposition

θ̃2(kx;x) =: θ̃21(kx;x) + θ̃22(kx;x) + θ̃23(kx;x),

where

θ̃21(kx;x) := (1 + δn) b
(
exp

(
Dτ(x) (lnTp−kx,p)

)
;x
) (lnTp−kx,p)

τ(x)−1

µτ(x)

(
ln p

kx

) 1

kx

kx∑
i=1

lnT ∗i (p)

θ̃22(kx;x) := (1 + δn)
b
(
exp

(
Dτ(x) (lnTp−kx,p)

)
;x
)

µτ(x)

(
ln p

kx

) 1

kx

kx∑
i=1

lnT ∗i (p)

·eρ(x)[Dτ(x)(ln T̃i(p)+lnTp−kx,p)−Dτ(x)(lnTp−kx,p)]
{(

lnTp−kx,p + ln T̃i(p)
)τ(x)−1

− (lnTp−kx,p)
τ(x)−1

}
θ̃23(kx;x) := (1 + δn) b

(
exp

(
Dτ(x) (lnTp−kx,p)

)
;x
) (lnTp−kx,p)

τ(x)−1

µτ(x)

(
ln p

kx

)
· 1

kx

kx∑
i=1

lnT ∗i (p)
{
eρ(x)[Dτ(x)(ln T̃i(p)+lnTp−kx,p)−Dτ(x)(lnTp−kx,p)] − 1

}
.

Using the regularly varying property of b(.;x), the law of large numbers, our Lemmas 1-3 and our

assumptions, combining with the mean value theorem for θ̃22(kx;x) and θ̃23(kx;x), we deduce

that

sup
p∈Ix

P
(∣∣∣√kx θ̃21(kx;x)− λ

∣∣∣ > t
)
−→ 0,

sup
p∈Ix

P
(∣∣∣√kx θ̃22(kx;x)

∣∣∣ > t
)
−→ 0,

sup
p∈Ix

P
(∣∣∣√kx θ̃23(kx;x)

∣∣∣ > t
)
−→ 0.
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For what concerns the remainder term Rp(x), using the same arguments as in the proof of

Theorem 1, we get for all t > 0, that
∣∣∣∣∣∣
√
kx

2ω(Tp−kx,p, Tp,p, x, h)

µτ(x)

(
ln nx

kx

)
∣∣∣∣∣∣ > t

 ⊆

∣∣∣∣∣∣
√
kx

2ω
(

nx
(1+δ)kx

, n1+δx , x, h
)

µτ(x)

(
ln nx

kx

)
∣∣∣∣∣∣ > t

 ∪
{
Tp−kx,p <

nx
(1 + δ)kx

}

∪
{
Tp,p > n1+δx

}
.

Taking now nx sufficiently large, this implies by assumption that

sup
p∈Ix

P

∣∣∣∣∣∣
√
kx

2ω(Tp−kx,p, Tp,p, x, h)

µτ(x)

(
ln nx

kx

)
∣∣∣∣∣∣ > t

 ≤ sup
p∈Ix

P
(
Tp−kx,p <

nx
(1 + δ)kx

)
+ sup
p∈Ix

P
(
Tp,p > n1+δx

)
−→ 0.

This convergence combined with (4) and Lemma 2 ensures that

sup
p∈Ix

P
(∣∣∣√kxRp(x)

∣∣∣ > t
)
−→ 0.

Combining all these convergences yield our Theorem 2.

Appendix

In this section we introduce some lemmas which are useful for establishing the main results.

Lemma 1 Assume that nx → ∞, kx → ∞ such that kx
nx
→ 0. If τ(x) < 1, then there exist a

constant C > 0, such that

sup
p∈Ix

∣∣∣∣∣∣∣
(

ln p
kx

)τ(x)−1
µτ(x)

(
ln p

kx

) − 1

∣∣∣∣∣∣∣ ≤ C
(

ln
nx
kx

)−1
.

Proof: First note that we have µτ(x)(y) = yτ(x)−1 + R̃(y), with

R̃(y) :=
τ(x)− 1

2
yτ(x)−2

∫ ∞
0

(1 + ξ)τ(x)−2u2e−udu,

where ξ is a value between 0 and u
y . Hence |R̃(y)| ≤ yτ(x)−2. Consequently∣∣∣∣∣∣∣

(
ln p

kx

)τ(x)−1
µτ(x)

(
ln p

kx

) − 1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
R̃
(

ln p
kx

)
(

ln p
kx

)τ(x)−1
+ R̃

(
ln p

kx

)
∣∣∣∣∣∣∣ ≤

(
ln

p

kx

)−1(
1 +O

((
ln

p

kx

)−1))−1
.
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Since

sup
p∈Ix

(
ln

p

kx

)−1
≤

ln

nx

(
1− n−

1
4

x

)
kx


−1

,

the result easily follows.

Lemma 2 Assume that nx →∞, kx →∞ such that kx
nx
→ 0. Then

µτ(x)

(
ln p

kx

)
µτ(x)

(
ln nx

kx

) → 1

uniformly in p ∈ Ix.

Proof: We start by rewriting the term
µτ(x)

(
ln p
kx

)
µτ(x)

(
ln nx

kx

) − 1 as

µτ(x)

(
ln p

kx

)
µτ(x)

(
ln nx

kx

) − 1 =

 µτ(x)

(
ln p

kx

)
(

ln p
kx

)τ(x)−1 − 1


(

ln p
kx

)τ(x)−1
µτ(x)

(
ln nx

kx

) +

(
ln p

kx

)τ(x)−1
µτ(x)

(
ln nx

kx

) − 1.

According to Lemma 2 in Gardes et al. (2011), µτ(x)

(
ln nx

kx

)
∼
(

ln nx
kx

)τ(x)−1
. Thus, using a

Taylor series expansion combining with the fact that uniformly in p ∈ Ix, ln p
nx
→ 0, we have∣∣∣∣∣∣∣

(
ln p

kx

)τ(x)−1
µτ(x)

(
ln nx

kx

) − 1

∣∣∣∣∣∣∣ ∼
∣∣∣∣∣∣
(

1 +
ln p

nx

ln nx
kx

)τ(x)−1
− 1

∣∣∣∣∣∣ −→ 0 (5)

uniformly in p ∈ Ix. Moreover, from the proof of Lemma 1, we know that∣∣∣∣∣∣∣
µτ(x)

(
ln p

kx

)
(

ln p
kx

)τ(x)−1 − 1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
R̃
(

ln p
kx

)
(

ln p
kx

)τ(x)−1
∣∣∣∣∣∣∣ ≤

(
ln

p

kx

)−1
−→ 0 (6)

uniformly in p ∈ Ix. Combining (5) and (6), our Lemma 2 follows.

Lemma 3 Assume that In is some index set, and, for p ∈ In let (Xn(p))n and (Yn(p))n be

sequences of random variables. If for all ε > 0 and some x, y ∈ R,

sup
p∈In

P (|Xn(p)− x| > ε) −→ 0
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and

sup
p∈In

P (|Yn(p)− y| > ε) −→ 0

as n→∞, then

sup
p∈In

P (|Xn(p)Yn(p)− xy| > ε) −→ 0

as n→∞.

Proof: Note that for all p ∈ In,

{|Xn(p)Yn(p)− xy| > ε} ⊆ {|(Xn(p)− x)| > 1} ∪
{
|(Yn(p)− y)| > ε

3

}
∪
{
|y (Xn(p)− x)| > ε

3

}
∪
{
|x (Yn(p)− y)| > ε

3

}
.

Lemma 3 then follows using the subadditivity property of a probability measure.
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