Diophantine approximation with improvement of the simultaneous control of the error and of the denominator - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2016

Diophantine approximation with improvement of the simultaneous control of the error and of the denominator

Résumé

In this work we proof the following theorem which is, in addition to some other lemmas, our main result: \noindent \textbf{theorem}. Let$\ X=\left\{ \left( x_{1}\text{, }% t_{1}\right) \text{, }\left( x_{2}\text{, }t_{2}\right) \text{, ..., }\left( x_{n}\text{, }t_{n}\right) \right\} $ be a finite part of $\mathbb{R}\times \mathbb{R}^{\ast +}$, then there exist a finite part $R$ of $\mathbb{R}% ^{\ast +}$ such that for all $\varepsilon >0$ there exists $r\in R$ such that if $0<\varepsilon \leq r$ then there exist rational numbers $\left( \dfrac{p_{i}}{q}\right) _{i=1,2,...,n}$ such that: \begin{equation} \left\{ \begin{array}{c} \left\vert x_{i}-\dfrac{p_{i}}{q}\right\vert \leq \varepsilon t_{i} \\ \varepsilon q\leq t_{i}% \end{array}% \right\vert \text{, }i=1,2,...,n\text{.} \tag{*} \end{equation} \noindent It is clear that the condition $\varepsilon q\leq t_{i}$ for $% i=1,2,...,n$ is equivalent to $\varepsilon q\leq t=\underset{i=1,2,...,n}{Min% }$ $\left( t_{i}\right) $.\ Also, we have (*) for all $\varepsilon $ verifying $0<\varepsilon \leq \varepsilon _{0}=\min R$. The previous theorem is the classical equivalent of the following one which is formulated in the context of the nonstandard analysis ($\left[ 2\right] $% , $\left[ 5\right] $, $\left[ 6\right] $, $\left[ 8\right] $). \noindent \textbf{theorem. }For every positive infinitesimal real $% \varepsilon $, there exists an unlimited integer $q$\ depending only of $% \varepsilon $, such that\textit{\ }$\forall ^{st}x\in \mathbb{R}$ $\exists $ $p_{x}\in \mathbb{Z}$: \begin{equation*} \left\{ \begin{array}{ccc} x & = & \dfrac{p_{x}}{q}+\varepsilon \phi \\ \varepsilon q & \cong & 0% \end{array}% \text{ .}\right. \end{equation*} For this reason,\ to prove the nonstandard version of the main result and to get its classical version\ we place ourselves in the context of the nonstandard analysis.
Fichier principal
Vignette du fichier
A.Boudaoud Simul.Dioph.App .pdf (194.85 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01312603 , version 1 (07-05-2016)

Identifiants

Citer

Abdelmadjid Boudaoud. Diophantine approximation with improvement of the simultaneous control of the error and of the denominator. 2016. ⟨hal-01312603⟩
33 Consultations
30 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More