Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups

Stephan De Bievre 1, 2 Simona Rota Nodari 3
2 MEPHYSTO - Quantitative methods for stochastic models in physics
LPP - Laboratoire Paul Painlevé - UMR 8524, ULB - Université Libre de Bruxelles [Bruxelles], Inria Lille - Nord Europe
Abstract : We consider the orbital stability of relative equilibria of Hamiltonian dynamical systems on Banach spaces, in the presence of a multi-dimensional invariance group for the dynamics. We prove a persistence result for such relative equilibria, present a generalization of the Vakhitov-Kolokolov slope condition to this higher dimensional setting, and show how it allows to prove the local coercivity of the Lyapunov function, which in turn implies orbital stability. The method is applied to study the orbital stability of relative equilibria of nonlinear Schrödinger and Manakov equations. We provide a comparison of our approach to the one by Grillakis-Shatah-Strauss.
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01312534
Contributeur : Simona Rota Nodari <>
Soumis le : lundi 5 février 2018 - 11:56:13
Dernière modification le : mardi 6 février 2018 - 01:17:43

Fichiers

energymomentum_20180201hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01312534, version 2
  • ARXIV : 1605.02523

Collections

Citation

Stephan De Bievre, Simona Rota Nodari. Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups. 2016. 〈hal-01312534v2〉

Partager

Métriques

Consultations de la notice

62

Téléchargements de fichiers

6