Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups

Stephan De Bievre 1, 2 Simona Rota Nodari 3
2 MEPHYSTO - Quantitative methods for stochastic models in physics
LPP - Laboratoire Paul Painlevé - UMR 8524, ULB - Université Libre de Bruxelles [Bruxelles], Inria Lille - Nord Europe
Abstract : We consider the orbital stability of relative equilibria of Hamiltonian dynamical systems on Banach spaces, in the presence of a multi-dimensional invariance group for the dynamics. We prove a persistence result for such relative equilibria, present a generalization of the Vakhitov-Kolokolov slope condition to this higher dimensional setting, and show how it allows to prove the local coercivity of the Lyapunov function, which in turn implies orbital stability. The method is applied to study the orbital stability of relative equilibria of nonlinear Schrödinger and Manakov equations. We provide a comparison of our approach to the one by Grillakis-Shatah-Strauss.
Type de document :
Article dans une revue
Archive for Rational Mechanics and Analysis, Springer Verlag, In press, 〈10.1007/s00205-018-1278-5〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01312534
Contributeur : Simona Rota Nodari <>
Soumis le : mercredi 11 juillet 2018 - 19:36:49
Dernière modification le : vendredi 13 juillet 2018 - 01:18:10

Fichiers

energymomentum_revision_201806...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Stephan De Bievre, Simona Rota Nodari. Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups. Archive for Rational Mechanics and Analysis, Springer Verlag, In press, 〈10.1007/s00205-018-1278-5〉. 〈hal-01312534v3〉

Partager

Métriques

Consultations de la notice

28

Téléchargements de fichiers

7