Correction: Preferential site substitution of Eu3+ ions in Ca10(PO4)6Cl2 nanoparticles obtained using a microwave stimulated wet chemistry technique
Robert Pązik, J.-M. Nedelec, Rafal J. Wiglusz

To cite this version:
Robert Pązik, J.-M. Nedelec, Rafal J. Wiglusz. Correction: Preferential site substitution of Eu3+ ions in Ca10(PO4)6Cl2 nanoparticles obtained using a microwave stimulated wet chemistry technique. CrystEngComm, Royal Society of Chemistry, 2016, <10.1039/C6CE90050J>. <hal-01312345>

HAL Id: hal-01312345
https://hal.archives-ouvertes.fr/hal-01312345
Submitted on 5 May 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Correction: Preferential site substitution of Eu$^{3+}$ ions in Ca$_{10}$(PO$_4$)$_6$Cl$_2$ nanoparticles obtained using a microwave stimulated wet chemistry technique

Robert Pazik,*a Jean-Marie Nedelecbc and Rafal J. Wiglusz*a

Correction for ‘Preferential site substitution of Eu$^{3+}$ ions in Ca$_{10}$(PO$_4$)$_6$Cl$_2$ nanoparticles obtained using a microwave stimulated wet chemistry technique’ by Robert Pazik et al., CrystEngComm, 2014, 16, 5308–5318.

“In accordance with the rule of 2J + 1 at Cs symmetry a maximum of five sublevels should be present for the 5D$_0$ → 7F$_1$ and eight in the case of the 5D$_0$ → 7F$_2$ transitions whereas at C$_3$ symmetry the 5D$_0$ → 7F$_1$ splits into two and the 5D$_0$ → 7F$_2$ into three Stark components.”

Should have read:

In accordance with the rule of 2J + 1 at Cs symmetry a maximum of three sublevels should be present for the 5D$_0$ → 7F$_1$ and five in the case of the 5D$_0$ → 7F$_2$ transitions whereas at C$_3$ symmetry the 5D$_0$ → 7F$_1$ splits into two and the 5D$_0$ → 7F$_2$ into three Stark components.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.