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Weighted moment estimators for the second order scale parameter

Tertius de Wet ∗

Yuri Goegebeur †

Armelle Guillou ‡

September 14, 2011

Abstract

We consider the estimation of the scale parameter appearing in the second order condition
when the distribution underlying the data is of Pareto-type. Inspired by the work of Goege-
beur, Beirlant and de Wet (2010) on the estimation of the second order rate parameter,
we introduce a flexible class of estimators for the second order scale parameter, which has
weighted sums of scaled log spacings of successive order statistics as basic building blocks.
Under the second order condition, some conditions on the weight functions, and for appro-
priately chosen sequences of intermediate order statistics, we establish the consistency of
our class of estimators. Asymptotic normality is achieved under a further condition on the
tail function 1 − F , the so-called third order condition. As the proposed estimator depends
on the second order rate parameter, we also examine the effect of replacing the latter by a
consistent estimator. The asymptotic performance of some specific examples of our proposed
class of estimators is illustrated numerically, and their finite sample behavior is examined by
a small simulation experiment.
Keywords: Extreme value statistics, Pareto-type model, second order scale parameter,
weighted estimator.

1 Introduction

When interest is in estimating parameters related to the far tail of a distribution function, such
as extreme quantiles or small exceedance probabilities, one has to extend the empirical distri-
bution function beyond the available data. Extreme value theory studies the behavior of the
largest observations in a sample and provides laws governing these values, and as such forms the
natural framework for carrying out this extrapolation step. We refer to the seminal works by
Fréchet (1927) and Fisher and Tippett (1928). In this paper we deal with an estimation problem
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within the class of heavy-tailed or Pareto-type distributions, which constitute the max-domain
of attraction of the Fréchet distribution. Such models find important practical applications in
areas such as non-life insurance, finance, telecommunications and geology, to name but a few.

A distribution is said to be of Pareto-type if for some γ > 0 its survival function is of the form:

1− F (x) = x−1/γℓF (x), x > 0, (1)

where ℓF denotes a slowly varying function at infinity, i.e.

ℓF (λx)

ℓF (x)
→ 1 as x → ∞ for all λ > 0. (2)

The parameter γ is called the extreme value index, and clearly governs the tail behavior, with
larger values indicating heavier tails. The Pareto-type model can also be stated in an equivalent
way in terms of the tail quantile function U , where U(x) := inf{y : F (y) ≥ 1 − 1/x}, x > 1, as
follows

U(x) = xγℓU (x), (3)

with ℓU again a slowly varying function at infinity (Gnedenko, 1943).

A central topic in the analysis of Pareto-type distributions is the estimation of the extreme value
index γ. Several estimators for this parameter have been proposed in the statistical literature,
and their limiting distributions established, usually under a second order condition on the tail
behavior.

Second order condition (R) There exists a positive real parameter γ, a negative real parameter
ρ and a function b with b(t) → 0 for t → ∞, of constant sign for large values of t, such that

lim
t→∞

lnU(tx)− lnU(t)− γ lnx

b(t)
=

xρ − 1

ρ
, ∀x > 0.

We refer to Bingham et al. (1987) and de Haan and Ferreira (2006) for further details. As in
Caeiro and Gomes (2006) and Caeiro et al. (2009), we assume that (R) holds with b(t) = γDtρ,
D 6= 0. Note that as such the parameter ρ controls the rate of convergence in the first order
framework given in (3). When |ρ| is small this convergence is slow and the estimation of tail
parameters is typically difficult in practice. Condition (R) is not too restrictive; for instance
the important Hall-Welsh class of Pareto-type models (Hall and Welsh, 1985) for which the tail
quantile function is of the form

U(x) = Cxγ
(
1 +

γD

ρ
xρ + o(xρ)

)
,

satisfies (R). The estimation of the second order parameters ρ and D are challenging estima-
tion problems. The estimation of the second order rate parameter ρ has received considerable
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attention in the recent extreme value literature; see Gomes et al. (2002), Fraga Alves et al.
(2003), Ciuperca and Mercadier (2010) and Goegebeur et al. (2010) for examples of estimators
that show good practical performance. The estimation of the second order scale parameter D
is less well studied. Gomes and Martins (2002) introduced a maximum likelihood estimator for
D derived from the representation of Beirlant et al. (1999) and Feuerverger and Hall (1999) for
scaled log-spacings of successive order statistics, whereas Gomes et al. (2010) applied a quasi
likelihood estimation method to weighted log-excesses over a high threshold. Caeiro and Gomes
(2006) studied an estimator based on generalized Hill statistics, the type of statistics used in
e.g. Fraga Alves et al. (2003) for the construction of estimators for ρ. In this paper we will
elaborate on the work Goegebeur et al. (2010) performed on the estimation of the second order
rate parameter ρ. In particular, we will consider weighted sums of scaled log spacings of suc-
cessive order statistics, and based on their asymptotic distributional representations introduce
a flexible class of estimators for D. Adequate estimation of the second order scale parameter D
has practical relevance for bias-corrected estimation of the extreme value index γ. Indeed, recent
research on tail index estimation has focused on the development of improved estimators for γ by
explicitly estimating the dominant term of the asymptotic bias. This bias depends on D and ρ,
so an a priori estimation of these parameters is necessary to obtain the bias reduction. We refer
to Beirlant et al. (1999), Feuerverger and Hall (1999), Gomes and Martins (2002), Caeiro et
al. (2005), and more recently Gomes et al. (2008) for examples of such bias-corrected estimators.

The remainder of this paper is organized as follows. In the next section we introduce the
weighted moment estimator for the second order scale parameter and establish its consistency
under the second order condition (R), and some conditions on the weight function and on the
number of upper order statistics used in the estimation. We also show that our estimator, when
appropriately normalized, converges in distribution to a normal random variable, if we invoke
a third order condition on the tail behavior, some further conditions on the weight function
and on the number of upper order statistics the estimator is based upon. The asymptotic and
finite sample behavior of estimators obtained for some specific examples of weight functions are
illustrated numerically in Section 3. The proofs of the main results are deferred to the appendix.

2 Asymptotic properties

2.1 Consistency

In this section we introduce our estimator for D and establish its consistency. Let X1, . . . ,Xn

be independent and identically distributed (i.i.d.) random variables from a distribution function
satisfying (1) and denote byX1,n ≤ . . . ≤ Xn,n the associated order statistics. The basic building
blocks for the estimator are the kernel statistics considered in Goegebeur et al. (2008, 2010):

Tn,k(K) :=
1

k

k∑

j=1

K

(
j

k + 1

)
Zj,

where K is a non-negative weight function and Zj := j(lnXn−j+1,n − lnXn−j,n), j = 1, . . . , k.
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In order to obtain the asymptotic distributional expansion of Tn,k(K) we have to introduce
some conditions on the weight function K. Define ln+(1/u) := max{ln(1/u), 1} with u ∈ (0, 1),
µ(K) :=

∫ 1
0 K(u)du and σ2(K) :=

∫ 1
0 K2(u)du.

Condition (K) Let K be a function defined on (0, 1) such that

(i) K(t) = 1
t

∫ t
0 u(v)dv for some function u satisfying

∣∣∣(k + 1)
∫ j/(k+1)
(j−1)/(k+1) u(t)dt

∣∣∣ ≤ f( j
k+1) for

some positive continuous function f defined on (0, 1) such that
∫ 1
0 ln+(1/w)f(w)dw < ∞,

(ii) σ2(K) < ∞,

(iii) 1
k

∑k
j=1K

(
j

k+1

)
= µ(K) + o(1/

√
k) for k → ∞,

(iv) maxi∈{1,...,k}K
(

i
k+1

)
= o(

√
k) for k → ∞.

Let K1, . . . ,K8 be kernel functions, K
(1) := (K1, . . . ,K4), K

(2) := (K5, . . . ,K8), K
(1,2) :=

(K(1),K(2)),

I(Ki, ρ) :=

∫ 1

0
Ki(u)u

−ρdu, Ī(Ki, ρ) :=
I(Ki, ρ)

µ(Ki)
, Ī(a)(Ki,Kj , ρ) := Īa(Ki, ρ)− Īa(Kj , ρ),

where a = 1, 2 and i, j ∈ {1, 2, . . . , 8}. We assume that Ī(1)(K1,K2, ρ), Ī
(1)(K3,K4, ρ), Ī

(1)(K5,K6, ρ)
and Ī(1)(K7,K8, ρ) are well defined and non-zero.

Consider the statistic

Ψn,k(K
(1), α1, θ) :=

[(
Tn,k(K1)
µ(K1)

)α1

−
(
Tn,k(K2)
µ(K2)

)α1
]θ

(
Tn,k(K3)
µ(K3)

)α1θ
−
(
Tn,k(K4)
µ(K4)

)α1θ
,

where α1 ∈ R and θ ∈ Z \ {0, 1}. Under conditions (R) and (K) we have, for k, n → ∞ such
that k/n → 0 and

√
kb(n/k) → ∞, the following convergence

(
k

n

)ρ(θ−1)

Ψn,k(K
(1), α1, θ)

P→ (α1D)θ−1[Ī(1)(K1,K2, ρ)]
θ

θĪ(1)(K3,K4, ρ)
. (4)

Similarly, under the same conditions

(
k

n

)ρ(θ−2)

Ψn,k(K
(2), α2, θ − 1)

P→ (α2D)θ−2[Ī(1)(K5,K6, ρ)]
θ−1

(θ − 1)Ī(1)(K7,K8, ρ)
, (5)

where α2 ∈ R. Equations (4) and (5) motivate then the following estimator for D:

D̂n,k(K
(1,2), α1, α2, θ, ρ) := c(K(1,2), α1, α2, θ, ρ)

(
k

n

)ρ

Λn,k(K
(1,2), α1, α2, θ),

4



where

c(K(1,2), α1, α2, θ, ρ) :=
θαθ−2

2 Ī(1)(K3,K4, ρ)[Ī
(1)(K5,K6, ρ)]

θ−1

(θ − 1)αθ−1
1 Ī(1)(K7,K8, ρ)[Ī(1)(K1,K2, ρ)]θ

,

Λn,k(K
(1,2), α1, α2, θ) :=

Ψn,k(K
(1), α1, θ)

Ψn,k(K(2), α2, θ − 1)
.

Note that the proposed estimator for D depends on ρ, the rate parameter appearing in the
second order condition, which is typically unknown. If this is the case then one replaces ρ by a
consistent estimator ρ̂k̆.

Theorem 1 Let X1, . . . ,Xn be i.i.d. random variables according to a distribution satisfying (R).
Let K1, . . . ,K8 satisfy condition (K), and suppose Ī(1)(K1,K2, ρ), Ī

(1)(K3,K4, ρ), Ī
(1)(K5,K6, ρ)

and Ī(1)(K7,K8, ρ) are well defined and nonzero. Then, if k, n → ∞ such that k/n → 0 and√
kb(n/k) → ∞ we have D̂n,k(K

(1,2), α1, α2, θ, ρ)
P→ D. Further, under the same conditions,

D̂n,k(K
(1,2), α1, α2, θ, ρ̂k̆)

P→ D for any consistent estimator ρ̂k̆ for ρ that satisfies (ρ̂k̆−ρ) lnn/k =
oP(1).

Goegebeur et al. (2010) introduced a very flexible class of consistent estimators for the second
order rate parameter ρ. Based on the asymptotic expansion of Tn,k(K) they proposed the
following ratio

∆n,k(K
(1,2), ω1, ω2, l) :=

∆̃n,k(K
(1), ω1, ω1 + l)

∆̃n,k(K(2), ω2, ω2 + l)

where ω1, ω2 and l are positive tuning parameters, and with

∆̃n,k(K
(1), ω1, ω2) :=

(
Tn,k(K1)
µ(K1)

)ω1

−
(
Tn,k(K2)
µ(K2)

)ω1

(
Tn,k(K3)
µ(K3)

)ω2

−
(
Tn,k(K4)
µ(K4)

)ω2
.

Under the conditions of Theorem 1 it was shown that ∆n,k(K
(1,2), ω1, ω2, l)

P→ ∆(K(1,2), ω1, ω2, l, ρ),
a function depending on the unknown ρ only, which then leads to the estimator
ρ̂k(K

(1,2), ω1, ω2, l) := ∆−1(K(1,2), ω1, ω2, l,∆n,k(K
(1,2), ω1, ω2, l)), provided the function ρ 7→

∆(K(1,2), ω1, ω2, l, ρ) is bijective. If ∆−1 is continuous then the estimator ρ̂k(K
(1,2), ω1, ω2, l)

is consistent for ρ. Other consistent estimators for ρ can be found in Gomes et al. (2002), Fraga
Alves et al. (2003), and Ciuperca and Mercadier (2010).

2.2 Asymptotic normality

In this section we will establish the asymptotic normality of our estimator for D, when appro-
priately normalized. Similar to the estimation of the second order rate parameter ρ, we need a
third order condition on the tail behavior and some further conditions on the weight functions.
We start by introducing the third order condition on the tail of F .
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Third order condition (R̃) There exists a positive real parameter γ, negative real parameters
ρ and β, functions b and b̃ with b(t) → 0 and b̃(t) → 0 for t → ∞, both of constant sign for large
values of t, such that

lim
t→∞

lnU(tx)−lnU(t)−γ lnx
b(t) − xρ−1

ρ

b̃(t)
=

xρ+β − 1

ρ+ β
, ∀x > 0.

We assume here that b̃(t) = ξtβ, ξ 6= 0. The parameter β thus determines the rate of convergence
in the second order framework given in (R), and hence plays a role that is analogous to that of
the second order rate parameter ρ. Recently, Goegebeur and de Wet (2011) used statistics of the
type Tn,k(K) to introduce a class of estimators for β and studied its asymptotic properties. The
third order condition is not too restrictive and is satisfied for a large subclass of the Hall-Welsh
class of Pareto-type models (Hall and Welsh, 1985). In Table 1 we provide some examples of
Pareto-type models satisfying (R̃), where we derive for each of them the parameter γ, and the
functions b(x) and b̃(x).

Concerning the kernel function K we assume the following:

Condition (K̃) Assume (K) with (i) replaced by

(i′) K(t) = 1
t

∫ t
0 u(v)dv for some function u satisfying

∣∣∣(k + 1)
∫ j/(k+1)
(j−1)/(k+1) u(t)dt

∣∣∣ ≤ f( j
k+1) for

some positive continuous and integrable function f defined on (0, 1),

and the following two extra conditions

(v) 1
k

∑k
j=1K

(
j

k+1

)(
j

k+1

)−ρ
= I1(K, ρ) + o(1/

√
k) for k → ∞,

(vi)
∫ 1
0 K(u)u|ρ|−1−εdu < ∞ for some ε > 0.

Conditions (K) and (K̃) are satisified by the class of weight functions given by

K(u; τ, δ) := (− lnu)τuδ, u ∈ (0, 1); τ, δ ≥ 0. (6)

We refer to Lemma 3 for the details about the verification of (K)–(K̃). The class of weight func-
tions (6) is very flexible and contains for instance the power weight function Pδ := K(.; 0, δ) and
the log weight function Lτ := K(.; τ, 0), considered in Goegebeur et al. (2010) in the framework
of the estimation of ρ.

As will be clear from Theorem 2 given below, if we estimate D and ρ by means of the same
sequence for k, then the asymptotic behavior of D̂n,k(K

(1,2), α1, α2, θ, ρ̂k) is determined by that
of ρ̂k. In the sequel we will concentrate on the estimators for ρ introduced in Goegebeur et al.
(2010), though similar results can be obtained with the ρ estimators of Gomes et al. (2002), Fraga
Alves et al. (2003) and Ciuperca and Mercadier (2010). Goegebeur et al. (2010) showed that if
U satisfies (R̃), the weight functions in K

(1,2) satisfy (K̃), and ∆ is bijective and differentiable
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in ρ, then for k, n → ∞ such that k/n → 0,
√
kb(n/k) → ∞,

√
kb(n/k)b̃(n/k) → λ1 and√

kb2(n/k) → λ2 one obtains the following convergence in distribution

√
kb(n/k)

[
ρ̂n,k(K

(1,2), ω1, ω2, l)− ρ
]

D→ N
(
λ1β c̃1(K

(1,2), ω1, ω2, l, γ, ρ, β) + λ2c̃2(K
(1,2), ω1, ω2, l, γ, ρ), ṽ

2(K(1,2), ω1, ω2, l, γ, ρ)
)
.

We refer to Goegebeur et al. (2010) for details about c̃1(K
(1,2), ω1, ω2, l, γ, ρ, β), c̃2(K

(1,2), ω1, ω2, l, γ, ρ)
and ṽ2(K(1,2), ω1, ω2, l, γ, ρ).

Let

σ̄2(Ki) :=
σ2(Ki)

µ2(Ki)
,

Nk(Ki,Kj) := σ̄(Ki)Nk(Ki)− σ̄(Kj)Nk(Kj),

Nk(K
(1,2), θ, ρ) := γD

[
θNk(K1,K2)

Ī(1)(K1,K2, ρ)
− Nk(K3,K4)

Ī(1)(K3,K4, ρ)
− (θ − 1)Nk(K5,K6)

Ī(1)(K5,K6, ρ)
+

Nk(K7,K8)

Ī(1)(K7,K8, ρ)

]
,

uD(K(1,2), θ, ρ, β) := D

[
θĪ(1)(K1,K2, ρ+ β)

Ī(1)(K1,K2, ρ)
− Ī(1)(K3,K4, ρ+ β)

Ī(1)(K3,K4, ρ)

− (θ − 1)Ī(1)(K5,K6, ρ+ β)

Ī(1)(K5,K6, ρ)
+

Ī(1)(K7,K8, ρ+ β)

Ī(1)(K7,K8, ρ)

]
,

vD(K(1,2), α1, α2, θ, ρ) :=
D

2γ

[
θ(α1 − 1)Ī(2)(K1,K2, ρ)

Ī(1)(K1,K2, ρ)
− (α1θ − 1)Ī(2)(K3,K4, ρ)

Ī(1)(K3,K4, ρ)

− (θ − 1)(α2 − 1)Ī(2)(K5,K6, ρ)

Ī(1)(K5,K6, ρ)
+

(α2(θ − 1)− 1)Ī(2)(K7,K8, ρ)

Ī(1)(K7,K8, ρ)

]
,

w2
D(K(1,2), θ, ρ) := Avar(Nk(K

(1,2), θ, ρ)).

Theorem 2 Let X1, . . . ,Xn be i.i.d. random variables according to a distribution satisfying

(R̃). If the kernel functions K1, . . . ,K8 satisfy assumption (K̃) and are such that Ī
(1)
1 (K1,K2, ρ),

Ī
(1)
1 (K3,K4, ρ), Ī

(1)
1 (K5,K6, ρ), Ī

(1)
1 (K7,K8, ρ) are well defined and nonzero, then for k, n → ∞

such that k/n → 0,
√
kb(n/k) → ∞,

√
kb(n/k)b̃(n/k) → λ1 and

√
kb2(n/k) → λ2 we have

√
kb(n/k)

[
D̂n,k(K

(1,2), α1, α2, θ, ρ)−D
]

D→ N
(
λ1uD(K

(1,2), θ, ρ, β) + λ2vD(K
(1,2), α1, α2, θ, ρ), w

2
D(K

(1,2), θ, ρ)
)
. (7)

The same result continues to hold when ρ in D̂n,k(K
(1,2), α1, α2, θ, ρ) is replaced by an external

estimator ρ̂k̆ which is such that ρ̂k̆ − ρ = OP(1/
√

k̆b(n/k̆)), when
√

k̆b(n/k̆) → ∞, provided

√
kb(n/k) ln n/k√

k̆b(n/k̆)
→ 0. (8)
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Concerning D̂n,k(K
(1,2), α1, α2, θ, ρ̂k), i.e. if we use the same k sequence for the estimation of D

and ρ, we have that if k, n → ∞ such that k/n → 0,
√
kb(n/k)/ ln n/k → ∞,

√
kb(n/k)b̃(n/k) →

λ1 and
√
kb2(n/k) → λ2 then

√
kb(n/k)

lnn/k

[
D̂n,k(K

(1,2), α1, α2, θ, ρ̂k)−D
]

D→ N
(
−D(λ1β c̃1(K

(1,2), ω1, ω2, l, γ, ρ, β) + λ2c̃2(K
(1,2), ω1, ω2, l, γ, ρ)), D

2ṽ2(K(1,2), ω1, ω2, l, γ, ρ)
)
.

Note that when D and ρ are estimated using the same sequence of k then the normalized
estimator of D inherits the asymptotic behavior of the normalized ρ estimator. For a detailed
discussion about k sequences satisfying the conditions of Theorem 2, and that can be used when
estimating ρ we refer to Caeiro and Gomes (2006), Caeiro et al. (2009) and Gomes et al. (2009).

3 Numerical results

In this section we compare several estimators for D, both at the asymptotic level and through
small sample simulations. We consider examples of our class of estimators obtained with the
power and log weight functions, namely D̂n,k(P

(1,2), α1, ρ) := D̂n,k(P
(1,2), α1, 1, 2, ρ) with P

(1) :=

(Pδ1 ,Pδ2 ,Pδ2 ,Pδ4) and P
(2) := (Pδ3 ,Pδ2 ,Pδ2 ,Pδ4), and D̂n,k(L

(1,2), α1, ρ) := D̂n,k(L
(1,2), α1, 1, 2, ρ)

with L
(1) := (Lτ1 ,Lτ2 ,Lτ2 ,Lτ4) and L

(2) := (Lτ3 ,Lτ2 ,Lτ2 ,Lτ4) where for both the power and
the log kernel functions we set δ1 = τ1 = 0.25, δ2 = τ2 = 0.5, δ3 = τ3 = 0.75 and δ4 = τ4 = 1.
The motivation for using these values for the tuning parameters stems from a small preliminary
investigation of the asymptotic mean squared errors of the resulting estimators, in which they
provided a reasonable performance for a wide range of models. These values are however in
no way optimally selected, so further improvements over the presented results are still possible.
The parameter α1 is not fixed in advance, and will be used to fine tune the estimator for a
specific distribution. When reasonable choices are made for the other parameters, this provides
sufficient flexibility for practical applications.

The performance of our estimators will be compared with the following estimators from the
recent extreme value literature:

• The maximum likelihood estimator for D from Gomes and Martins (2002):

D̂
(GM)
n,k (ρ) :=

(
k

n

)ρ

[
1
k

∑k
j=1

(
j
k

)−ρ
] [

1
k

∑k
j=1 Zj

]
− 1

k

∑k
j=1

(
j
k

)−ρ
Zj

[
1
k

∑k
j=1

(
j
k

)−ρ
] [

1
k

∑k
j=1

(
j
k

)−ρ
Zj

]
− 1

k

∑k
j=1

(
j
k

)−2ρ
Zj

.
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• The moment estimator introduced by Caeiro and Gomes (2006):

D̂
(CG,τ)
n,k (ρ) :=





−2(2−ρ)2

τρ

(
k
n

)ρ
[

(

M
(1)
n (k)

)τ
−
(

M
(2)
n (k)/2

)τ/2
]2

(

M
(2)
n (k)/2

)τ
−
(

M
(4)
n (k)/24

)τ/2 , if τ 6= 0,

−2(2−ρ)2

ρ

(
k
n

)ρ
[

ln(M
(1)
n (k))− 1

2
ln(M

(2)
n (k)/2)

]2

ln(M
(2)
n (k)/2)− 1

2
ln(M

(4)
n (k)/24)

, if τ = 0,

where

M (α)
n (k) :=

1

k

k∑

j=1

(lnXn−j+1,n − lnXn−k,n)
α, α > 0.

The latter two estimators have an asymptotic behavior that is in line with that stated in Theorem
2 for D̂n,k(K

(1,2), α1, α2, θ, ρ), namely under (R̃), for k, n → ∞, k/n → 0,
√
kb(n/k) → ∞,√

kb(n/k)b̃(n/k) → λ1 and
√
kb2(n/k) → λ2,

√
kb(n/k)(D̂

(•)
n,k(ρ)−D)

D→ N(λ1u
(•)
D + λ2v

(•)
D , (w

(•)
D )2), (9)

where • is either GM or CG, τ ; see Gomes and Martins (2002) and Caeiro and Gomes (2006)

for further details on u
(•)
D , v

(•)
D and w

(•)
D .

We start with an evaluation of the estimators at the asymptotic level. In Figure 1 we show
the components uD and vD of the asymptotic bias, and the asymptotic standard deviation wD

of the estimators under study as a function of ρ for Pareto-type distributions with ρ = β and
γ = D = 1. Such parameter setting is satisfied by e.g. the Burr distribution (see Table 1).

The estimator D̂
(GM)
n,k (ρ) is a maximum likelihood estimator and hence has minimal asymptotic

variance though through an appropriate selection of the tuning parameter α1 the estimators
D̂n,k(P

(1,2), α1, ρ) and D̂n,k(L
(1,2), α1, ρ) do not lose much. We set α1 = 3.75 and α1 = −3.1

for the estimators based on the power and the log kernel functions, respectively. These values

give a good asymptotic efficiency relative to D̂
(CG,−1.2)
n,k (ρ) for a wide range of ρ values; see

the discussion about the asymptotic relative efficiency given below. The value τ = −1.2 is
taken from Caeiro and Gomes (2006) where it showed in the simulation experiment a good

performance for a wide range of Burr models. Compared to D̂
(GM)
n,k (ρ), D̂n,k(P

(1,2), 3.75, ρ) and

D̂n,k(L
(1,2),−3.1, ρ), the estimator D̂

(CG,−1.2)
n,k (ρ) is characterized by a high asymptotic standard

deviation. For what concerns the asymptotic bias, there are two components, uD and vD, and
therefore the performance of the estimators with respect to bias depends on the way these two
components are combined in the overall bias. From (7) we obtain the following first order
approximation to the asymptotic bias:

Abias(D̂n,k(K
(1,2), α1, α2, θ, ρ)) = b̃(n/k)uD(K

(1,2), θ, ρ, β) + b(n/k)vD(K
(1,2), α1, α2, θ, ρ).

Similar expressions are obtained for D̂
(GM)
n,k (ρ) and D̂

(CG,τ)
n,k (ρ) based on (9). This is illustrated in

Figure 2 with the Burr(1,1,1) distribution, having γ = D = ξ = 1 and ρ = β = −1 (see also Table

9



1). For distributions with ρ = β the bias components of D̂
(GM)
n,k (ρ) satisfy v

(GM)
D = −u

(GM)
D /γ,

which implies that the asymptotic bias is zero for instance for the Burr and GPD distributions.

Consequently, for the class of Burr distributions the estimator D̂
(GM)
n,k (ρ) is asymptotically the

optimal one. From Figure 2 it is clear that for an appropriate selection of the tuning parameter
α1 the asymptotic bias and variance of our estimators can be kept small, so that asymptotically
they perform almost as good as the maximum likelihood estimator. An alternative way to

compare the asymptotic performance of D̂n,k(K
(1,2), α1, ρ), where K

(1,2) is either P(1,2) or L(1,2),

and D̂
(CG,τ)
n,k (ρ), for distributions with ρ = β, is by considering their asymptotic relative efficiency

(AREFF):

AREFF (D̂n,k(K
(1,2), α1, ρ), D̂

(CG,τ)
n,k (ρ)) :=

√√√√ mink AMSE(D̂
(CG,τ)
n,k (ρ))

mink AMSE(D̂n,k(K(1,2), α1, ρ))

=

√√√√
(

(w
(CG,τ)
D )2

w2
D(K(1,2), 2, ρ)

)−2ρ/(1−4ρ) (
(B(CG,τ))2

B2(K(1,2), α1, ρ)

)(1−2ρ)/(1−4ρ)

,

where

B(K(1,2), α1, ρ) := ξuD(K
(1,2), 2, ρ, ρ) + γDvD(K

(1,2), α1, 1, 2, ρ),

B(CG,τ) := ξu
(CG,τ)
D + γDv

(CG,τ)
D .

In Figure 3 we show AREFF (D̂n,k(P
(1,2), 3.75, ρ), D̂

(CG,−1.2)
n,k (ρ)) and

AREFF (D̂n,k(L
(1,2),−3.1, ρ), D̂

(CG,−1.2)
n,k (ρ)) as a function of ρ for the Burr(ζ, λ, δ) family. Our

estimators show clearly a very attractive behavior over a wide range of ρ values. As mentioned

above, D̂
(GM)
n,k (ρ) is asymptotically optimal for the Burr distributions, and therefore it is not

included in the comparison based on AREFF.

In case of the |Tν | distribution, where |Tν | refers here to the absolute value of a Student t ran-

dom variable with ν degrees of freedom, the asymptotic bias of D̂
(GM)
n,k (ρ) will not necessarily

be equal to zero, and hence the estimators D̂n,k(P
(1,2), α1, ρ), D̂n,k(L

(1,2), α1, ρ) and D̂
(CG,τ)
n,k (ρ)

may asymptotically outperform the former. In Figure 4 we show the asymptotic bias, standard

deviation and mean squared error of D̂n,k(P
(1,2), 1.75, ρ), D̂n,k(L

(1,2),−1.75, ρ), D̂
(GM)
n,k (ρ) and

D̂
(CG,−0.25)
n,k (ρ) as a function of k in case of a sample of size n = 5000 from |T2|. The tuning

parameters were chosen in such a way that the asymptotic bias and standard deviation were
both reasonably small, though the used values are not optimal. From Figure 4 it is clear that

D̂n,k(P
(1,2), 1.75, ρ), D̂n,k(L

(1,2),−1.75, ρ) and D̂
(CG,−0.25)
n,k (ρ) are nearly asymptotically unbiased,

and that D̂n,k(P
(1,2), 1.75, ρ) and D̂n,k(L

(1,2),−1.75, ρ) have an asymptotic standard deviation

that is close to that of the maximum likelihood estimator D̂
(GM)
n,k (ρ). The asymptotic bias of

D̂
(GM)
n,k (ρ) is considerable and therefore D̂n,k(P

(1,2), 1.75, ρ) and D̂n,k(L
(1,2),−1.75, ρ) reach the

smallest minimum AMSE of the estimators under consideration. The plot of

AREFF (D̂n,k(P
(1,2), 1.75, ρ), D̂

(CG,−0.25)
n,k (ρ)) and AREFF (D̂n,k(L

(1,2),−1.75, ρ), D̂
(CG,−0.25)
n,k (ρ))

versus ν given in Figure 5 illustrates also here the very attractive asymptotic behavior of
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D̂n,k(P
(1,2), 1.75, ρ) and D̂n,k(L

(1,2),−1.75, ρ) versus D̂
(CG,−0.25)
n,k (ρ) for a wide range of |Tν | dis-

tributions. Compared to D̂
(GM)
n,k (ρ), the estimators D̂n,k(P

(1,2), 1.75, ρ) and D̂n,k(L
(1,2),−1.75, ρ)

perform only better for ν ≤ 6, corresponding to γ ≥ 1/6 and ρ ≤ −1/3.

Note: The expressions for the bias components suggest that in case ρ = β we can make the

asymptotic bias of the estimators D̂n,k(P
(1,2), α1, ρ), D̂n,k(L

(1,2), α1, ρ) and D̂
(CG,τ)
n,k zero by an

appropriate choice of α1 and τ , respectively, and hence for an asymptotic evaluation of the
estimators it suffices in principle to compare the asymptotic standard deviations. However, the
bias-eliminating values for the tuning parameters are distribution dependent, and are in prac-
tical applications unknown, so therefore it is relevant to have values for the tuning parameters
that work well for a reasonable range of members of a particular family of distributions, which
motivates the above analyses based on AREFF.

It is a well known fact that when estimating higher order parameters, the differences between the
asymptotic and finite sample results may become considerable (Draisma, 2000, p 43–59, Gomes
et al., 2002). Therefore, we also investigate the properties of the four considered estimators with
a small simulation study. The distributions considered in the simulation are

• the Burr(1,1,1) distribution: γ = 1, ρ = −1, D = 1;

• the Burr(1,0.5,2) distribution: γ = 1, ρ = −2, D = 1;

• the Fréchet(1) distribution: γ = 1, ρ = −1, D = 0.5;

• the |T1| distribution: γ = 1, ρ = −2, D = 1.645;

• the |T2| distribution: γ = 0.5, ρ = −1, D = 1.5;

we refer to Table 1 for further details. For each of the considered distributions we generated
1000 data sets of size n = 5000, and computed the four estimators under study for k = 10 to
k = 4990 in steps of 10. The estimators are implemented with the power kernel ρ estimator of
Goegebeur et al. (2010), with k̆ = ⌊n0.95⌋ in case ρ = −1 and k̆ = ⌊n0.975⌋ in case ρ = −2. Note
that, in case one would use the AMSE optimal sequence of k for the estimation of D, given by
k = O(n−4ρ/(1−4ρ)) (according to (7)), these choices for k̆ would satisfy condition (8). We refer to
Caeiro et al. (2009) for a more detailed discussion about the choice of k̆. The results are reported
in Figures 6 to 9. The considered values of α1 for D̂n,k(P

(1,2), α1, ρ̂k̆) and D̂n,k(L
(1,2), α1, ρ̂k̆) were

inspired by the above asymptotic evaluations. For what concerns D̂
(CG,τ)
n,k (ρ) we set τ at the

value that worked best in the simulations reported in Caeiro and Gomes (2006), i.e. −1.2 for
Burr distributions and −3 for the Fréchet(1) distribution. For the |T1| and |T2| distributions we
tried several values and report here only the results for τ = −0.25, which worked best.

Although the simulation experiment is limited we can draw the following provisional conclusions:

• Consistent with the asymptotic evaluation we find that D̂
(GM)
n,k (ρ̂k̆) shows the best per-

formance in terms of minimal MSE on the Burr distributions, though the difference with

D̂n,k(P
(1,2), 3.25, ρ̂k̆) is small. For the Fréchet(1), |T1| and |T2| distributions, D̂(GM)

n,k (ρ̂k̆)
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has considerable bias, and is outperformed in terms of minimal MSE by D̂n,k(P
(1,2), α1, ρ̂k̆),

D̂n,k(L
(1,2), α1, ρ̂k̆) and D̂

(CG,τ)
n,k (ρ̂k̆), for appropriate choices of the tuning parameters α1

and τ . Despite its considerable bias on the Fréchet distribution, the estimator D̂
(GM)
n,k (ρ̂k̆)

performs reasonably well in terms of minimal MSE.

• Unlike the estimation of the second order rate parameter ρ, the performance of the estima-
tors for D depends on the appropriate selection of the tuning parameter α1, an observation
that was also made in Caeiro and Gomes (2006) concerning their tuning parameter τ . It is
however rather easy to find values for the tuning parameters that give a good performance
for a wide range of distributions within a particular family.

• The estimators D̂n,k(P
(1,2), α1, ρ̂k̆) and D̂n,k(L

(1,2), α1, ρ̂k̆) have sample paths that are more

stable than those of D̂
(CG,τ)
n,k (ρ̂k̆), an observation that is in line with the smaller asymptotic

variance of the former two found in the above asymptotic evaluation.

• The best (in terms of minimal MSE, and considered over the values of α1) estimator
D̂n,k(P

(1,2), α1, ρ̂k̆) seems to perform slightly better than the best D̂n,k(L
(1,2), α1, ρ̂k̆).

• Overall our estimators are competitive with D̂
(GM)
n,k (ρ̂k̆) and D̂

(CG,τ)
n,k (ρ̂k̆), though none of

the considered estimators performs uniformly best. For practical applications we therefore
suggest to consider several estimators for the parameter D and to use the common stable
part of their sample paths to infer about the true value of D. Further work is in progress on
the appropriate selection of the tuning parameters, and on the evaluation of other kernel
functions.

Finally we illustrate the use of the considered weighted estimators for D on bias corrected
estimation of the extreme value index γ. For the Hill estimator (Hill, 1975), Hk,n := Tn,k(K),
withK(u) = 1(0,1)(u), we have under the second order condition (R), and for k, n → ∞, k/n → 0

and
√
kb(n/k) → λ that

√
k(Hk,n − γ)

D→ N

(
λ

1− ρ
, γ2
)
, (10)

from which we deduce the following bias-corrected estimator

H
(BC)
k,n := Hk,n

(
1− D

1− ρ

(n
k

)ρ)
.

This bias-corrected estimator for γ was first considered in Caeiro et al. (2005). We now exam-
ine the finite sample behavior of this estimator implemented with the power weighted estimator
for ρ of Goegebeur et al. (2010), and the estimators D̂n,k̃(P

(1,2), α1, ρ̂k̃), D̂n,k̃(L
(1,2), α1, ρ̂k̃),

D̂
(GM)

n,k̃
(ρ̂k̃) and D̂

(CG,τ)

n,k̃
(ρ̂k̃) for D, in a small simulation experiment. In this the tuning pa-

rameters of the estimators for D are set as above. Note that, as in Caeiro and Gomes (2008)
and Caeiro et al. (2009), we estimate D and ρ at the same level of k̃, which is as above taken
as k̃ = ⌊n0.95⌋ in case ρ ≥ −1 and k̃ = ⌊n0.975⌋ otherwise. We consider the distributions
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Burr(1, 2, 0.5), having γ = 1 and ρ = −0.5, Burr(1, 1, 1), having γ = 1 and ρ = −1, and |T1|,
having γ = 1 and ρ = −2. For each of these distributions we simulate 1000 data sets of size
n = 1000, and compute the estimators for k = 5, 6, . . . , 999. In Figure 10 we show the mean and
the empirical mean squared error (MSE) of the Hill estimator and its bias-corrected versions, as
a function of k. As is clear from Figure 10, the bias of the Hill estimator becomes more prob-
lematic as ρ gets closer to zero, an observation which is in line with the asymptotic result stated

in (10). Also, the bias correction used in H
(BC)
k,n is effective in that the estimators for γ show a

longer stable portion around the true value, though the Burr distribution with ρ = −0.5 remains
difficult. For what concerns the MSE it is clear that the use of estimator D̂n,k̃(L

(1,2), α1, ρ̂k̃) in

H
(BC)
k,n is highly competitive compared to D̂

(GM)

n,k̃
(ρ̂k̃), despite the asymptotic optimality of the

latter on Burr distributions.

4 Conclusion

In this paper we introduced a very flexible class of estimators for the second order scale pa-
rameter, which has weighted sums of scaled log-spacings of successive order statistics as basic
building blocks. Its consistency and asymptotic normality were established under appropriate
conditions on the underlying distribution, the weight functions, and the sequences k and n. The
asymptotic and finite sample evaluations indicated that the members from the class obtained
for the power and log weight functions show an attractive behavior compared to the alternatives
from the recent literature. Further work is in progress on, among others, the evaluation of other
weight functions, the development of algorithms for the automatic determination of the tuning
parameters, and for the selection of k.

5 Appendix

5.1 Proof of Theorem 1

Let E1, . . . , Ek denote independent unit exponential random variables. Under the conditions of
Theorem 1, Goegebeur et al. (2010) derived the following asymptotic distributional representa-
tion

Tn,k(K)
D
= γµ(K) + γσ(K)

Nk(K)√
k

(1 + oP(1)) + b(n/k)I(K, ρ)(1 + oP(1)),

with

Nk(K) :=
√
k

1
k

∑k
j=1K

(
j

k+1

)
(Ej − 1)

σ(K)
,

which is asymptotically a standard normal random variable. Straightforward application of
Taylor’s theorem gives

(
Tn,k(K)

µ(K)

)α1
D
= γα1 + α1γ

α1 σ̄(K)
Nk(K)√

k
(1 + oP(1)) + b(n/k)α1γ

α1−1Ī(K, ρ)(1 + oP(1)),
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and thus
(

Tn,k(K1)
µ(K1)

)α1

−
(

Tn,k(K2)
µ(K2)

)α1

b(n/k)

D
= α1γ

α1−1Ī(1)(K1,K2, ρ)(1 + oP(1)) + α1γ
α1

Nk(K1,K2)√
kb(n/k)

(1 + oP(1)), (11)

whereNk(K1,K2) := σ̄(K1)Nk(K1)−σ̄(K2)Nk(K2). By another application of Taylor’s theorem
we obtain




(
Tn,k(K1)
µ(K1)

)α1

−
(

Tn,k(K2)
µ(K2)

)α1

b(n/k)



θ

D
= αθ

1γ
θ(α1−1)[Ī(1)(K1,K2, ρ)]

θ(1 + oP(1)) (12)

+θαθ
1γ

θ(α1−1)+1[Ī(1)(K1,K2, ρ)]
θ−1 Nk(K1,K2)√

kb(n/k)
(1 + oP(1)).

By combining (11), (12) and using the fact that b(x) = γDxρ we have, if k, n → ∞ such that
k/n → 0 and

√
kb(n/k) → ∞
(
k

n

)ρ(θ−1)

Ψn,k(K
(1), α1, θ)

P→ (α1D)θ−1[Ī(1)(K1,K2, ρ)]
θ

θĪ(1)(K3,K4, ρ)
,

and similarly,

(
k

n

)ρ(θ−2)

Ψn,k(K
(2), α2, θ − 1)

P→ (α2D)θ−2[Ī(1)(K5,K6, ρ)]
θ−1

(θ − 1)Ī(1)(K7,K8, ρ)
.

This then yields

(
k

n

)ρ

Λn,k(K
(1,2), α1, α2, θ)

P→ D
(θ − 1)αθ−1

1 Ī(1)(K7,K8, ρ)[Ī
(1)(K1,K2, ρ)]

θ

θαθ−2
2 Ī(1)(K3,K4, ρ)[Ī(1)(K5,K6, ρ)]θ−1

,

from which the consistency of D̂n,k(K
(1,2), α1, α2, θ, ρ) for D follows.

In case ρ is replaced by a consistent estimator, we apply Taylor’s theorem and obtain

D̂n,k(K
(1,2), α1, α2, θ, ρ̂k̆) =

D̂n,k(K
(1,2), α1, α2, θ, ρ)− D̂n,k(K

(1,2), α1, α2, θ, ρ) ln(n/k)(ρ̂k̆ − ρ)(1 + oP(1)), (13)

so that we have consistency if ln(n/k)(ρ̂k̆ − ρ) = oP(1). �

5.2 Some lemmas

The first lemma gives the asymptotic expansion of Tn,k(K) under (R̃) and (K̃). Let Y1,n ≤ . . . ≤
Yn,n denote the order statistics of a random sample of size n from the unit Pareto distribution.
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Lemma 1 Let X1, . . . ,Xn be i.i.d. random variables according to a distribution satisfying (R̃).
If (K̃) holds, then for k, n → ∞ such that k/n → 0 we have

Tn,k(K)
D
= γµ(K) + γσ(K)

Nk(K)√
k

(1 + oP(1)) + b(Yn−k,n)I(K, ρ)

+b(Yn−k,n)b̃(Yn−k,n)I(K, ρ + β)(1 + oP(1)) + b(Yn−k,n)OP

(
1√
k

)
,

where Nk(K) is an asymptotic standard normally distributed random variable.

Proof:

The proof of the lemma proceeds along the lines of argumentation used in Theorem 2 of Goege-
beur et al. (2010), where the asymptotic expansion of Tn,k(K) is derived under a slightly different

version of condition (R̃), and therefore we focus here only on the development of the terms that
are different.

From the inverse probability integral transform we have that Xj,n
D
= U(Yj,n), j = 1, . . . , n, where

Y1,n ≤ . . . ≤ Yn,n denote the order statistics of a random sample of size n from the unit Pareto

distribution. Further Yn−j+1,n/Yn−k,n
D
= Yk−j+1,k, j = 1, . . . , k, independently from Yn−k,n.

This enables us to write

lnXn−j+1,n − lnXn−k,n
D
= γ lnYk−j+1,k + ln

ℓU (Yk−j+1,kYn−k,n)

ℓU (Yn−k,n)

= γ lnYk−j+1,k + b(Yn−k,n)
Y ρ
k−j+1,k − 1

ρ

+b(Yn−k,n)b̃(Yn−k,n)
Y ρ+β
k−j+1,k − 1

ρ+ β

+b(Yn−k,n)b̃(Yn−k,n)Bn,k(j),

where

Bn,k(j) :=

ln ℓU (Yk−j+1,kYn−k,n)−ln ℓU (Yn−k,n)
b(Yn−k,n)

− Y ρ
k−j+1,k−1

ρ

b̃(Yn−k,n)
−

Y ρ+β
k−j+1,k − 1

ρ+ β
,

j = 1, . . . , k.
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Using Rényi’s representation (Rényi, 1953) for exponential order statistics we obtain

Tn,k(K)
D
= γ

1

k

k∑

j=1

K

(
j

k + 1

)
Ej + b(Yn−k,n)

1

k

k∑

j=1

K

(
j

k + 1

)
j
Y ρ
k−j+1,k − Y ρ

k−j,k

ρ

+b(Yn−k,n)b̃(Yn−k,n)
1

k

k∑

j=1

K

(
j

k + 1

)
j
Y ρ+β
k−j+1,k − Y ρ+β

k−j,k

ρ+ β

+b(Yn−k,n)b̃(Yn−k,n)
1

k

k∑

j=1

K

(
j

k + 1

)
ηj

=: T̃
(1)
n,k + T̃

(2)
n,k + T̃

(3)
n,k + T̃

(4)
n,k,

where E1, . . . , Ek are independent unit exponential random variables, and ηj := j(Bn,k(j) −
Bn,k(j + 1)), j = 1, . . . , k, Bn,k(k + 1) := 0. The terms T̃

(1)
n,k and T̃

(2)
n,k are identical to those in

Goegebeur et al. (2010) where it was shown that

T̃
(1)
n,k = γµ(K) + γσ(K)

Nk(K)√
k

(1 + oP(1)),

T̃
(2)
n,k = b(Yn−k,n)I(K, ρ) + b(Yn−k,n)OP(1/

√
k).

Note that the weighted average in T̃
(3)
n,k is of the same form as that appearing in T̃

(2)
n,k, and hence

T̃
(3)
n,k = b(Yn−k,n)b̃(Yn−k,n)I(K, ρ + β)(1 + oP(1)).

Finally consider T̃
(4)
n,k. From (K̃) (i′) we have

1

k

k∑

j=1

K

(
j

k + 1

)
ηj =

k + 1

k

k∑

j=1

ηj
j

j∑

i=1

∫ i/(k+1)

(i−1)/(k+1)
u(v)dv

=
k + 1

k

k∑

i=1

∫ i/(k+1)

(i−1)/(k+1)
u(v)dv

k∑

j=i

ηj
j

=
k + 1

k

k∑

i=1

Bn,k(i)

∫ i/(k+1)

(i−1)/(k+1)
u(v)dv

and ∣∣∣∣∣∣
1

k

k∑

j=1

K

(
j

k + 1

)
ηj

∣∣∣∣∣∣
≤ 1

k

k∑

i=1

f

(
i

k + 1

)
|Bn,k(i)|.

Concerning Bn,k(i) we use Drees (1998), from which it follows that for every ε > 0 there exists
n0 such that for any n ≥ n0, with arbitrary large probability, for i = 1, . . . , k,

|Bn,k(i)| ≤ εmax
{
Y ρ+β+δ
k−i+1,k, Y

ρ+β−δ
k−i+1,k

}

= εY ρ+β+δ
k−i+1,k

≤ ε,
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provided 0 < δ < −ρ− β, and thus

sup
i∈{1,...,k}

|Bn,k(i)| = oP(1),

leading to

∣∣∣∣∣∣
1

k

k∑

j=1

K

(
j

k + 1

)
ηj

∣∣∣∣∣∣
≤ oP(1)

1

k

k∑

i=1

f

(
i

k + 1

)
,

which, by assumption (K̃)(i′) is oP(1). Thus T̃
(4)
n,k = b(Yn−k,n)b̃(Yn−k,n)oP(1).

The combination of the above results establishes Lemma 1. �

Lemma 2 Let Y1,n ≤ . . . ≤ Yn,n denote the order statistics from a random sample of size n from
the unit Pareto distribution. If ρ < 0 and k, n → ∞ such that k/n → 0 and

√
k(n/k)ρ → ∞ we

have that
(
Yn−k,n

n/k

)ρ
D
= 1 + oP

(
1√

k(n/k)ρ

)
.

Proof:

Let E1,n ≤ . . . ≤ En,n denote the order statistics of a random sample of size n from the unit
exponential distribution. We have

Y ρ
n−k,n

D
= eρEn−k,n

= eρ lnn/k + ρeρQn,k(En−k,n − lnn/k),

where Qn,k is a random value between En−k,n and lnn/k. From Lemma 1 of Girard (2004) we
have that En−k,n − lnn/k = OP(1/

√
k) and hence eρQn,k = oP(1). This then gives

Y ρ
n−k,n

D
=
(n
k

)ρ
+ oP

(
1√
k

)
,

from which the result follows. �

Lemma 3 The kernel function

K(u; τ, δ) = (− ln u)τuδ, u ∈ (0, 1); τ, δ ≥ 0,

satisfies conditions (K) and (K̃).

Proof:

17



For part (i) of (K) we have that

u(t) = tδ[(1 + δ)(− ln t)τ − τ(− ln t)τ−1],

and hence
∣∣∣∣∣(k + 1)

∫ j/(k+1)

(j−1)/(k+1)
u(t)dt

∣∣∣∣∣ ≤ (k + 1)

[
(1 + δ)

∫ j/(k+1)

(j−1)/(k+1)
(− ln t)τdt+ τ

∫ j/(k+1)

(j−1)/(k+1)
(− ln t)τ−1dt

]
.

We distinguish two cases.

Case 1: τ ≥ 1. We have
∣∣∣∣∣(k + 1)

∫ j/(k+1)

(j−1)/(k+1)
u(t)dt

∣∣∣∣∣ ≤
k + 1

j

[
(1 + δ)

∫ j/(k+1)

0
(− ln t)τdt+ τ

∫ j/(k+1)

0
(− ln t)τ−1dt

]
,

and thus

f(x) =
1 + δ

x

∫ x

0
(− ln t)τdt+

τ

x

∫ x

0
(− ln t)τ−1dt

which satisfies
∫ 1
0 ln+(1/x)f(x)dx < ∞.

Case 2: τ < 1. In this case
∣∣∣∣∣(k + 1)

∫ j/(k+1)

(j−1)/(k+1)
u(t)dt

∣∣∣∣∣ ≤ (1 + δ)
k + 1

j

∫ j/(k+1)

0
(− ln t)τdt+ τ

(
− ln

j

k + 1

)τ−1

,

so

f(x) =
1 + δ

x

∫ x

0
(− ln t)τdt+ τ(− lnx)τ−1,

also satisfying
∫ 1
0 ln+(1/x)f(x)dx < ∞.

Condition (K)(ii) is trivially satisfied as
∫ 1
0 K2(u; τ, δ)du = Γ(1 + 2τ)/(1 + 2δ)1+2τ < ∞.

Concerning (K)(iii) observe that
∣∣∣∣∣∣
1

k

k∑

j=1

K

(
j

k + 1
; τ, δ

)
−
∫ 1

0
K(u; τ, δ)du

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
1

k + 1

k∑

j=1

K

(
j

k + 1
; τ, δ

)
−
∫ 1

1/(k+1)
K(u; τ, δ)du

∣∣∣∣∣∣

+

∫ 1/(k+1)

0
K(u; τ, δ)du +O

(
1

k

)

=

∣∣∣∣∣∣
1

k + 1

k∑

j=1

[
K

(
j

k + 1
; τ, δ

)
−K(ũj; τ, δ)

]∣∣∣∣∣∣

+O

(
(ln k)τ

k

)
,
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where ũj is a value between j/(k + 1) and (j + 1)/(k + 1). Thus

∣∣∣∣∣∣
1

k + 1

k∑

j=1

[
K

(
j

k + 1
; τ, δ

)
−K(ũj; τ, δ)

]∣∣∣∣∣∣
≤ 1

k + 1

k∑

j=1

(
j

k + 1

)δ [(
− ln

j

k + 1

)τ

− (− ln ũj)
τ

]

+
1

k + 1

k∑

j=1

(− ln ũj)
τ

[
ũδj −

(
j

k + 1

)δ
]

=: L1 + L2.

For L1 and L2 one easily obtains the following

L1 ≤ 1

k + 1

k∑

j=1

[(
− ln

j

k + 1

)τ

−
(
− ln

j + 1

k + 1

)τ]

=
(ln(k + 1))τ

k + 1

L2 ≤ (ln(k + 1))τ

k + 1

k∑

j=1

[(
j + 1

k + 1

)δ

−
(

j

k + 1

)δ
]

= O

(
(ln k)τ

k

)
.

Combining the above we have that

1

k

k∑

j=1

K

(
j

k + 1
; τ, δ

)
=

∫ 1

0
K(u; τ, δ)du +O

(
(ln k)τ

k

)
,

and hence (K)(iii) is satisfied.

As for (K)(iv) we have

max
i∈{1,...,k}

K

(
i

k + 1
; τ, δ

)
≤ (ln(k + 1))τ ,

and (ln(k + 1))τ = o(
√
k).

We now turn to the verification of (K̃). Condition (i′) follows from (K)(i) and (v) can be
obtained from (K)(iii). As for (vi) we easily obtain

∫ 1

0
(− lnu)τuδ+|ρ|−1−εdu =

Γ(1 + τ)

(δ + |ρ| − ε)1+τ
,

provided ε < |ρ|+ δ. �
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5.3 Proof of Theorem 2

From Lemma 1 and Taylor’s theorem we obtain easily

(
Tn,k(K1)
µ(K1)

)α1

−
(
Tn,k(K2)
µ(K2)

)α1

b(Yn−k,n)

D
= α1γ

α1−1Ī(1)(K1,K2, ρ)

+α1γ
α1

Nk(K1,K2)√
kb(Yn−k,n)

(1 + oP(1)) + b̃(Yn−k,n)α1γ
α1−1Ī(1)(K1,K2, ρ+ β)(1 + oP(1))

+b(Yn−k,n)
α1(α1 − 1)

2
γα1−2Ī(2)(K1,K2, ρ)(1 + oP(1)), (14)

and




(
Tn,k(K1)
µ(K1)

)α1

−
(
Tn,k(K2)
µ(K2)

)α1

b(Yn−k,n)



θ

D
= αθ

1γ
θ(α1−1)[Ī(1)(K1,K2, ρ)]

θ

+
1√

kb(Yn−k,n)
θαθ

1γ
θ(α1−1)+1[Ī(1)(K1,K2, ρ)]

θ−1Nk(K1,K2)(1 + oP(1))

+b̃(Yn−k,n)θα
θ
1γ

θ(α1−1)[Ī(1)(K1,K2, ρ)]
θ−1Ī(1)(K1,K2, ρ+ β)(1 + oP(1))

+b(Yn−k,n)θ
αθ
1(α1 − 1)

2
γθ(α1−1)−1[Ī(1)(K1,K2, ρ)]

θ−1Ī(2)(K1,K2, ρ)(1 + oP(1)).

From (14) we also derive

(
Tn,k(K3)
µ(K3)

)α1θ
−
(
Tn,k(K4)
µ(K4)

)α1θ

b(Yn−k,n)

D
= α1θγ

α1θ−1Ī(1)(K3,K4, ρ)

+α1θγ
α1θ Nk(K3,K4)√

kb(Yn−k,n)
(1 + oP(1)) + b̃(Yn−k,n)α1θγ

α1θ−1Ī(1)(K3,K4, ρ+ β)(1 + oP(1))

+b(Yn−k,n)
α1θ(α1θ − 1)

2
γα1θ−2Ī(2)(K3,K4, ρ)(1 + oP(1)),

and hence

Y
ρ(1−θ)
n−k,n

θĪ(1)(K3,K4, ρ)

αθ−1
1 [Ī(1)(K1,K2, ρ)]θ

Ψn,k(K
(1), α1, θ)

D
=

Dθ−1 +
1√

kb(Yn−k,n)
γDθ−1

[
θNk(K1,K2)

Ī(1)(K1,K2, ρ)
− Nk(K3,K4)

Ī(1)(K3,K4, ρ)

]
(1 + oP(1))

+b̃(Yn−k,n)D
θ−1

[
θĪ(1)(K1,K2, ρ+ β)

Ī(1)(K1,K2, ρ)
− Ī(1)(K3,K4, ρ+ β)

Ī(1)(K3,K4, ρ)

]
(1 + oP(1))

+b(Yn−k,n)
Dθ−1

2γ

[
θ(α1 − 1)Ī(2)(K1,K2, ρ)

Ī(1)(K1,K2, ρ)
− (α1θ − 1)Ī(2)(K3,K4, ρ)

Ī(1)(K3,K4, ρ)

]
(1 + oP(1)).
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Also

Y
ρ(2−θ)
n−k,n

(θ − 1)Ī(1)(K7,K8, ρ)

αθ−2
2 [Ī(1)(K5,K6, ρ)]θ−1

Ψn,k(K
(2), α2, θ − 1)

D
=

Dθ−2 +
1√

kb(Yn−k,n)
γDθ−2

[
(θ − 1)Nk(K5,K6)

Ī(1)(K5,K6, ρ)
− Nk(K7,K8)

Ī(1)(K7,K8, ρ)

]
(1 + oP(1))

+b̃(Yn−k,n)D
θ−2

[
(θ − 1)Ī(1)(K5,K6, ρ+ β)

Ī(1)(K5,K6, ρ)
− Ī(1)(K7,K8, ρ+ β)

Ī(1)(K7,K8, ρ)

]
(1 + oP(1))

+b(Yn−k,n)
Dθ−2

2γ

[
(θ − 1)(α2 − 1)Ī(2)(K5,K6, ρ)

Ī(1)(K5,K6, ρ)
− (α2(θ − 1)− 1)Ī(2)(K7,K8, ρ)

Ī(1)(K7,K8, ρ)

]
(1 + oP(1)),

so that by another application of Taylor’s theorem we obtain

Y −ρ
n−k,nc(K

(1,2), α1, α2, θ, ρ)Λn,k(K
(1,2), α1, α2, θ)

D
=

D +
1√

kb(Yn−k,n)
Nk(K

(1,2), θ, ρ)(1 + oP(1)) + b̃(Yn−k,n)uD(K
(1,2), θ, ρ, β)(1 + oP(1))

+b(Yn−k,n)vD(K
(1,2), α1, α2, θ, ρ)(1 + oP(1)).

Finally, by using Lemma 2 we establish the asymptotic normality of the normalized
D̂n,k(K

(1,2), α1, α2, θ, ρ).

The last part of Theorem 2, dealing with the replacement of ρ by an estimator in
D̂n,k(K

(1,2), α1, α2, θ, ρ) follows easily from expansion (13). �
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Figure 1: Pareto-type models with ρ = β and γ = D = 1: (a) bias component uD, (b) bias com-
ponent vD, and (c) asymptotic standard deviation as a function of ρ for D̂n,k(P

(1,2), 3.75, ρ) (black

solid line), D̂n,k(L
(1,2),−3.1, ρ) (black dashed line), D̂

(GM)
n,k (ρ) (grey solid line) and D̂

(CG,−1.2)
n,k (ρ)

(grey dashed line).
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Figure 2: Burr(1,1,1) distribution: (a) asymptotic bias, (b) asymptotic standard deviation
and (c) AMSE of D̂n,k(P

(1,2), 3.75, ρ) (black solid line), D̂n,k(L
(1,2),−3.1, ρ) (black dashed line),

D̂
(GM)
n,k (ρ) (grey solid line) and D̂

(CG,−1.2)
n,k (ρ) (grey dashed line) as a function of k when n = 5000.
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Figure 3: Burr(ζ, λ, δ) distribution: (a) AREFF (D̂n,k(P
(1,2), 3.75, ρ), D̂

(CG,−1.2)
n,k (ρ)) and (b)

AREFF (D̂n,k(L
(1,2),−3.1, ρ), D̂

(CG,−1.2)
n,k (ρ)) as a function of ρ.
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Figure 4: |T2| distribution: (a) asymptotic bias, (b) asymptotic standard deviation and
(c) AMSE of D̂n,k(P

(1,2), 1.75, ρ) (black solid line), D̂n,k(L
(1,2),−1.75, ρ) (black dashed line),

D̂
(GM)
n,k (ρ) (grey solid line) and D̂

(CG,−0.25)
n,k (ρ) (grey dashed line) as a function of k when

n = 5000.
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Figure 5: |Tν | distribution: (a) AREFF (D̂n,k(P
(1,2), 1.75, ρ), D̂

(CG,−0.25)
n,k (ρ))

(solid line) and AREFF (D̂n,k(L
(1,2),−1.75, ρ), D̂

(CG,−0.25)
n,k (ρ)) (dashed

line), and (b) AREFF (D̂n,k(P
(1,2), 1.75, ρ), D̂

(GM)
n,k (ρ)) (solid line) and

AREFF (D̂n,k(L
(1,2),−1.75, ρ), D̂

(GM)
n,k (ρ)) (dashed line) as a function of ν.

28



3000 3500 4000 4500 5000

0.
6

0.
8

1.
0

1.
2

1.
4

k

D

(a)

3000 3500 4000 4500 5000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

k

M
S

E

(b)

2000 2500 3000 3500 4000 4500 5000

0.
6

0.
8

1.
0

1.
2

1.
4

k

D

(a)

2000 2500 3000 3500 4000 4500 5000

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

k

M
S

E
(b)

3000 3500 4000 4500 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

D

(a)

3000 3500 4000 4500 5000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

k

M
S

E

(b)

Figure 6: Sample mean (left) and empirical MSE (right) as a function of k when n = 5000.
Burr(1,1,1) (top) and Burr(1,0.5,2) (middle) distributions: D̂n,k(P

(1,2), α1, ρ̂k̆) with α1 = 3.25

(black solid line), 3.5 (black dashed line) and 3.75 (black dotted line), and D̂
(CG,τ)
n,k (ρ̂k̆) with

τ = −1.2 (grey dashed line). Fréchet(1) distribution (bottom): D̂n,k(P
(1,2), α1, ρ̂k̆) with α1 = 6.0

(black solid line), 7.0 (black dashed line) and 8.0 (black dotted line), and D̂
(CG,τ)
n,k (ρ̂k̆) with

τ = −3 (grey dashed line). The grey solid line represents D̂
(GM)
n,k (ρ̂k̆).
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Figure 7: Sample mean (left) and empirical MSE (right) as a function of k when n = 5000. |T1|
(top) and |T2| (bottom) distributions: D̂n,k(P

(1,2), α1, ρ̂k̆) with α1 = 1.5 (black solid line), 1.75

(black dashed line) and 2.0 (black dotted line), and D̂
(CG,τ)
n,k (ρ̂k̆) with τ = −0.25 (grey dashed

line). The grey solid line represents D̂
(GM)
n,k (ρ̂k̆).

30



3000 3500 4000 4500 5000

0.
6

0.
8

1.
0

1.
2

1.
4

k

D

(a)

3000 3500 4000 4500 5000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

k

M
S

E

(b)

2000 2500 3000 3500 4000 4500 5000

0.
6

0.
8

1.
0

1.
2

1.
4

k

D

(a)

2000 2500 3000 3500 4000 4500 5000

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

k

M
S

E
(b)

3000 3500 4000 4500 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

D

(a)

3000 3500 4000 4500 5000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

k

M
S

E

(b)

Figure 8: Sample mean (left) and empirical MSE (right) as a function of k when n = 5000.
Burr(1,1,1) (top) and Burr(1,0.5,2) (middle) distributions: D̂n,k(L

(1,2), α1, ρ̂k̆) with α1 = −3.25

(black solid line), −3.1 (black dashed line) and −3.0 (black dotted line), and D̂
(CG,τ)
n,k (ρ̂k̆) with

τ = −1.2 (grey dashed line). Fréchet(1) distribution (bottom): D̂n,k(L
(1,2), α1, ρ̂k̆) with α1 =

−5.5 (black solid line), −5.0 (black dashed line) and −4.5 (black dotted line), and D̂
(CG,τ)
n,k (ρ̂k̆)

with τ = −3 (grey dashed line). The grey solid line represents D̂
(GM)
n,k (ρ̂k̆).
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Figure 9: Sample mean (left) and empirical MSE (right) as a function of k when n = 5000.
|T1| (top) and |T2| (bottom) distributions: D̂n,k(L

(1,2), α1, ρ̂k̆) with α1 = −2.0 (black solid line),

−1.75 (black dashed line) and −1.5 (black dotted line), and D̂
(CG,τ)
n,k (ρ̂k̆) with τ = −0.25 (grey

dashed line). The grey solid line represents D̂
(GM)
n,k (ρ̂k̆).
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Figure 10: (a) Sample mean and (b) empirical MSE of Hk,n (black solid line), and H
(BC)
k,n

implemented with D̂n,k̃(P
(1,2), α1, ρ̂k̃) (black dashed line), D̂n,k̃(L

(1,2), α1, ρ̂k̃) (black dotted line),

D̂
(GM)

n,k̃
(ρ̂k̃) (grey dashed line), and D̂

(CG,τ)

n,k̃
(ρ̂k̃) (grey dotted line), as a function of k. Top:

Burr(1,2,0.5), Middle: Burr(1,1,1), Bottom: |T1|
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Table 1: Examples of Pareto-type distributions satisfying (R̃)

Distribution 1− F (x) γ b(x) b̃(x)

Burr(ζ, λ, δ)
(

ζ
ζ+xδ

)λ
1
λδ γx−1/λ x−1/λ

x > 0; ζ, λ, δ > 0

Fν1,ν2
Γ((ν1+ν2)/2)
Γ(ν1/2)Γ(ν2/2)

(
ν1
ν2

)ν1/2 ∫∞
x

uν1/2−1
(
1 + ν1

ν2
u
)−(ν1+ν2)/2

du 2
ν2

2D1

ν2
x−2/ν2

(
D1 − 2D2

D1

)
x−2/ν2

x > 0; ν1, ν2 > 0 D1 := 2
ν2
C1C

−2/ν2
0 D2 :=

(
2C2

ν2
− ν2+2

ν2
2

C2
1

)
C

−4/ν2
0

C0 := Γ((ν1+ν2)/2)
Γ(ν1/2)Γ(ν2/2+1)

(
ν1
ν2

)−ν2/2

C2 := ν2(ν1+ν2)(ν1+ν2+2)
8(ν2+4)

(
ν2
ν1

)2

C1 :=
ν2
2 (ν1+ν2)

2ν1(ν2+2)

Fréchet(α) 1− exp(−x−α) 1
α

γ
2x

5
6x

x > 0; α > 0

GPD(κ, σ)
(
1 + κ x

σ

)−1/κ
κ γx−γ x−γ

x > 0; κ, σ > 0

|Tν | 2Γ((ν+1)/2)√
νπΓ(ν/2)

∫∞
x

(
1 + u2

ν

)−(ν+1)/2

du 1
ν

2D1

ν x−2/ν
(
D1 − 2D2

D1

)
x−2/ν

x > 0; ν > 0 D1 := 1
νC1C

−2/ν
0 D2 :=

(
C2

ν − ν+3
2ν2 C

2
1

)
C

−4/ν
0

C0 := 2ν(ν−1)/2Γ((ν+1)/2)√
νπΓ(ν/2)

C2 := ν3(ν+1)(ν+3)
8(ν+4)

C1 := ν2(ν+1)
2(ν+2)
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