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Abstract

We propose a new method which could be part of a warning system for the early

detection of time clusters applied to public health surveillance data. This method

is based on the extreme value theory (EVT). To any new count of a particular

infection reported to a surveillance system, we associate a return period which

corresponds to the time that we expect to be able to see again such a level.

If such a level is reached, an alarm is generated. Although standard EVT is

only defined in the context of continuous observations, our approach allows to

handle the case of discrete observations occurring in the public health surveil-

lance framework. Moreover it applies without any assumption on the underlying

unknown distribution function. The performance of our method is assessed on

an extensive simulation study and is illustrated on real data from Salmonella

surveillance in France.

∗Univ. de Strasbourg & CNRS, IRMA UMR 7501, France; Email: armelle.guillou@math.unistra.fr
†ESSEC Business School, CREAR risk research center, France; Email: kratz@essec.edu.

M.Kratz is also member of MAP5, UMR 8145, Univ. Paris Descartes, France.
‡French Institute for Public Health Surveillance, Saint-Maurice, France; Email:

y.lestrat@invs.sante.fr

1



1 Introduction

Since the pioneering work of Serfling ([1]), several statistical models have been proposed

to detect time clusters from surveillance data recorded as time series count in a given

geographic area. A time cluster is defined as a time interval in which the observed

number of events is significantly higher than the expected number of events. The term

‘event’ is generic enough to include any event of interest such as a case of illness, an

admission to an emergency department, a death or any other health event.

The early prospective detection of time clusters represents a statistical challenge as the

models must take the main features of the data into account such as secular trends,

seasonality, past outbreaks but are also faced with idiosyncrasies in reporting, such

as delays, incomplete or inaccurate reporting or other artefacts of the surveillance

systems. Reporting delays are particularly problematic for surveillance systems that

are not based on electronic reporting. Concerning syndromic surveillance systems,

the same difficulties are encountered, excepted for the reporting delays because these

surveillance systems are mostly based on electronic reporting.

The main statistical approaches introduced in the literature have been recently re-

viewed by Unkel et al [2] with a discussion of statistical issues involved in evaluat-

ing and comparing methods. As mentioned by Unkel et al [2], the published models

are sometimes presented into broad classes such as regression techniques, time series

methodology or statistical process control ([3]; [4]; [5]) but this presentation is some-

what artificial as several methods can be classified into more than one of these classes.

However, in most cases they are based on two steps: (i) the calculation of an expected

0This work was partially supported by the ESSEC Research Center, project #043.203.5.1.0.7.07.

2000 AMSC Primary: 62G32 ; Secondary: 62G05, 62G30
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value of the event of interest for the current time unit (generally a week or a day); (ii)

a statistical comparison between this expected value and the observed value. A statis-

tical alarm is triggered if the observed value is noticeably different from the expected

value.

The first step is based on the past counts, or more often on a sample of the past counts,

that takes the seasonality pattern(s) into account. Thus, the current count is compared

to counts that occurred in the past during the same time periods, e.g. 3 weeks around

the current week from 5 previous years. Alternatively, sinusoidal seasonal components

can be incorporated into regression models to deal with the seasonality and to easily

take secular trends into account. More rarely, models try to reduce the influence of

weeks coinciding with past outbreaks. One solution to avoid that such outbreaks reduce

the sensitivity of the model is to associate low weights to these weeks in the estimation

of the expectation (e.g. [6]).

The intentional release of anthrax in the USA in October 2001 emphasized the need to

develop new early warning surveillance systems ([7]; [8]). These surveillance systems

treat an increasing number of data provided from multiple sources of information ([9]).

One logical consequence is to perform statistical analyses with a daily frequency.

Developing automated statistical prospective methods for the early detection of time

clusters is thus essential. It is important for a public health surveillance agency to run

several statistical methods concomitantly in order to compare the alarms generated by

these methods.

To this aim, we propose in this paper a new approach based on Extreme Value Theory

(EVT) (e.g. [10]) for the early detection of time clusters. EVT has not been used so

far in the context of surveillance; adapting and combining in a specific way EVT tools

introduces an innovative and interesting alternative to existing methods for surveillance

data, not so numerous. One of the main advantages of the EVT approach is that we

do not need any model to fit the time series and no assumption is required on the
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underlying distribution.

The main idea of our method is the following. First, we associate to each observation

of the dataset a return period, which corresponds to the time that we expect to be able

to see again such a level (and not earlier). Then, whenever we have a new observation,

we look backward on its return period to see if already at least one observation exceeds

it. If it does, we consider the new observation as ”abnormal” (e.g. the potential start

of an epidemic), in the sense of ”not expected” as defined by our rule, and we set off

an alarm.

To evaluate the method, we ran it on simulated data generated by an extensive sim-

ulation study based on recent work [11]. Then to illustrate the method, we applied

it to the detection of time clusters from weekly counts of Salmonella isolates reported

to the national surveillance system in France. Salmonellosis is a major cause of bac-

terial enteric illness in both humans and animals, with bacteria called Salmonella. In

France, Salmonella is the first cause of laboratory confirmed bacterial gastroenteritis,

of hospitalization and of death. In 2005, a study estimated that between 92 and 535

deaths attributable to non typhoidal Salmonella occurred each year ([12]).

The paper is organized as follows. The surveillance system and the data are presented

in Section 2. A description of our method to check if each new observation corresponds

to an unusual/extremal event is given in Section 3. Applications to simulated data and

real counts of Salmonella are developed in Section 4. A discussion follows in the last

section.

2 Data

We will consider, in our paper, simulated datasets in order to test the performance of

our method and real datasets in order to illustrate it. Concerning the latter, let us

present in this section the real data, the counts of Salmonella, on which we will be

working. The National Reference Center for Salmonella contributes to the surveillance
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of salmonellosis by performing serotyping of about 10000 clinical isolates each year.

Salmonella surveillance is based on a network of 1500 medical laboratories that volun-

tarily send their isolates. Salmonella enterica serotypes Typhimurium and Enteritidis

represent 70 % of all Salmonella isolates in humans among many hundreds of serotypes;

that is why we consider in this paper mainly these two serotypes. For illustrative pur-

pose, four other less frequent serotypes (Manhattan, Derby, Agona and Virchow) are

also considered; Figure 1 shows the weekly number of isolates for these six serotypes

from January 1, 1995 to December 31, 2008. It highlights the great variability in terms

of seasonality, secular trend and weekly number of reported isolates and frequencies of

unusual events. The number of cases is recorded by week of reporting to the National

Reference Center because some dates of typing are missing.

Figure 1: Weekly counts of isolates reported to the National Reference Center for
Salmonella in France, January 1, 1995 to December 31, 2008: (a) Salmonella Man-
hattan; (b) Salmonella Derby; (c) Salmonella Agona; (d) Salmonella Virchow; (e)
Salmonella Typhimurium; (f) Salmonella Enteritidis.

Let Y = {Yt; t = 1, . . . , T} be the univariate initial time series corresponding to the

number of isolates at time point t for a given serotype. If the series Y exhibits a trend,

we estimate it from a linear regression trend component, then we substract it.

Concerning the possible seasonality of Y , as mentioned by many authors (e.g. [7]; [13]),

seasonal effects may have a strong impact in generating a statistical alarm. A common

way to prepare the dataset is to select counts from comparable periods in past years,

as described in the literature ([6]; [14]). The dataset is restricted to the counts that

occurred during the times within these comparable periods. For instance, if the current

time is t of year y, then only the counts for the n = b(2w+ 1) times from t−w to t+w

of years from y− b to y−1 (b > 1, w > 1) are used. Another way to handle seasonality

is to include seasonal factors in the statistical model running on a restricted dataset,

as recently proposed by Noufaily et al. [11].
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As an illustration Figure 2 represents the restricted dataset for Salmonella Typhimurium,

for a given current week with w = 3 and b = 5.

Figure 2: Weekly counts of isolates for Salmonella Typhimurium. The current week,
represented by the arrow, is the last week of December 2008. The counts that occurred
in comparable periods (± 3 weeks) in the five previous years, and used to generate or
not an alarm, are represented by the striped bands.

In all the sequel, X = (Xt) will denote the transformed (i.e. the detrended subset) time

series from (Yt). To each new observation will correspond a new sample, indifferently

named X or (Xt), to simplify. Each step of the method will apply on X itself.

3 An EVT approach

Suppose we have at our disposal n successive observations that we consider as realiza-

tions of a sample (Xi) of independent and identically distributed (i.i.d.) non-negative

random variables defined on a probability space (Ω,A,P), from an unknown distribu-

tion function F . We do not make any assumption on F and do not need any to develop

our method, which constitutes a great advantage of this approach.

We want to detect extreme events, which justifies an EVT framework. Extreme events

have been extensively studied in the literature (e.g. [10]), with two main approaches

developed in the i.i.d. setting, one based on the distributions of maxima (e.g. [15]) and

the other one based on exceedances above some threshold, known as the Peak-Over-

Threshold (POT) method (e.g. [16]).

Assuming independence might appear as a rough approximation to analyze epidemio-

logical discrete time series; however we obtain quite reasonable and interesting results

under this assumption, usual when introducing an EVT approach. Note also that in

most of the existing methods for surveillance data the residuals from the models are

assumed to be independent.
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Moreover, the method we propose also allows handling the case of a discrete phe-

nomenon, whereas the classic EVT method requires continuous distributions only.

We will face this issue of using extreme tools for discrete data in one step of our method,

when having to estimate extreme quantiles (or return levels); instead of estimating

them explicitly as we do in the continuous framework, we will estimate their upper

bounds, using bounds introduced in [17] which do not require any strong assumption

(such as continuity) on the tail behavior of the distribution function. The practitioner,

e.g. a biostatistician or an epidemiologist, is often ready to accept more alarms if he

knows that the upper bound is well estimated and can provide a reasonable ‘worst

case scenario’. In that sense, our method, in particular the use of an upper bound

for the return level, should be viewed as an alternative tool which provides additional

information for the practitioner.

Now let us present the fundamentals of our method.

Associated with a given return period T which corresponds to T time units over the

past, a return level zT is defined as the level expected to be exceeded on average once

every T time units, i.e. such that

E

(
T∑
i=1

1l{Xi>zT }

)
= 1 (1)

where 1l{A} represents the indicator function that is equal to 1 if A is true and to 0

otherwise. The last equality can be rewritten as 1 − F (zT ) = 1/T . Hence, the return

level zT corresponds simply to a pT−quantile with pT = 1− 1/T , zT = F←(1− 1/T ),

F← denoting the generalized inverse function of F .

Notice that in (1), we may have chosen to replace the right-hand side of the equation by

any small integer, say c. The value of c is related to the height of the threshold above

which observations are considered as exceedances (above this threshold). The smaller

c, the higher the threshold. If we want to select what we call extreme/unusual values,
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it is preferable to select a high threshold, which means a small value of c. We chose

here to make it really extreme, not asking for more than one exceedance, in average,

above the last observation. We could relax a bit this choice, by taking for instance

c = 2, but we prefer to be on the safe side. As mentioned in the discussion of Section

5, an optimal value of c, or a prescribed value in order to match the performance of

other methods already proposed in the literature is an interesting open question which

will lead to further investigations.

The idea of the method is to associate with each observation xs a return period Ts

defined theoretically as (1 − F (xs))
−1 to be able to determine the return period Tt

associated to each new observation xt at time t. Then, we look backwards (and not

forwards as in the ‘standard’ way) in the interval (t − Tt; t) for the existence of an

observation that would exceed xt. If it exists, we set the rule to generate an alarm at

time t based on the fact that, on average, we do not expect two or more exceedances

on (t− Tt; t].

Notice that in our discrete framework it will not be possible to estimate explicitly the

return levels; instead estimated bounds will be considered.

Therefore, after a preliminary analysis of the data and definition of our sample, we will

compute the estimated bounds of the return levels in order to obtain a graph of the

return periods and levels. Then, we will allocate a return period to any new observation

xt to test if t corresponds to a warning time according to our definition.

Looking at extremal events leads us to the crucial problem of high quantile estimation,

well-studied in the EVT literature (e.g. [10]), based on a sample of observations.

However, EVT is only valid in the case where the underlying distribution function F

of these observations is continuous. This is not the case in the surveillance context

where the observations are counts and thus F is discrete. Therefore, we propose to use

instead upper and lower bounds for the return level zt and estimate them as in [17];

this approach has several advantages: the upper and lower bounds can be computed for
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any value of t (in particular it holds for large values), it does work for both small and

large samples, and for F continuous or discrete. So it is well-adapted to our context,

when assuming the random variables associated to the i.i.d. observations.

Note that using bounds for a return level zt will imply that the return period defined

theoretically by (1− F (zt))
−1 cannot be explicitly estimated and we have

T` ≤ (1− F (zt))
−1 ≤ Tb (2)

where T` and Tb denote the return periods of the lower and upper bounds `t(u,w, q)

and bt(u, v) respectively, defined in the on-line Web Appendix and estimated below.

Here u, v and w are suitable power functions and q > 1.

Now let us present our method to define an alarm system. For each new observation

xti , i ≥ 1:

• First we check if the new observation is the largest on all the sample. If it is the case,

we generate an alarm. This conservative condition may be weakened, applying it only

when observing a local non decreasing trend.

• Otherwise, we proceed as follows.

Step 1: We draw the plot of the return period on the x-axis and the corresponding

estimate of the upper bound of the return level (instead of the return level itself):(
t, b̂t

)
, where

b̂t = b̂t

(
α̂t, β̂t

)
=

tθ̂n
(
α̂t, β̂t

)
(1− 1/t)β̂t

1/α̂t

, with θ̂n(α, β) =
1

n

n∑
i=1

xαi,n(i/n)β. (3)

Step 2: We allocate to each observation xti , i ≥ 1, a return time Ti using the previous

plot. Namely, xti corresponds to a value b̂Ti of the y-axis of the plot from which we
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deduce the associated return level Ti. Reading an observation as an upper bound of a

return level means that Ti is in fact the lower bound of the theoretical return period

(1− F (xti))
−1 that should be associated to the observation xti , because of (2).

We justify our choice as follows. Considering ̂̀Ti instead of b̂Ti in the above method

would have led to underestimate the return period associated to the observation xti ,

which could be a problem in the context of alarms (it is better to have more alarms

than less), except if the plots
(
t, ̂̀t) and

(
t, b̂t

)
were close enough, but it is generally

not the case for our datasets where ̂̀t appeared approximately as a constant function

of time ([18]).

Step 3: We use the fact that if (Xj) are i.i.d. random variables, then we have for any

time interval I (T ) with length T

E

(
T∑
i=1

1l{Xi>zT }

)
= 1⇔ E

∑
i∈I(T )

1l{Xi>zT }

 = 1. (4)

This remark is important since we want to define for each new observation a warning

time, which means to look backward in time.

Hence for each new observation xti , to which a return time Ti has been associated (via

Step 2), we will look in the interval (ti − Ti; ti) to see if there exists an observation

exceeding xti , considered as the new exceedances threshold; if it does, we ring an alarm

at this time ti.

• To finish this section, let us summarize our method as an iterative algorithm.

For each new observation xti , i ≥ 1:

1. If xti > max
j<ti

xj, then generate an alarm time at time ti. Note that this conser-

vative condition may be weakened, applying it only when observing a local non

decreasing trend.

2. Otherwise,
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(a) associate the time Ti to xti , read from the plot
(
t, b̂t

)
when xti is regarded

as a return level b̂Ti ;

(b) consider I (Ti) = (ti − Ti, ti];

(c) look for the existence of an observation xt ≥ b̂Ti , for t ∈ (ti − Ti, ti);

if there exists at least such an observation, then generate a warning time at

ti.

Remarks: in practice, if the return period of the new observation xti is larger than the

length of the sample (Xt), then we choose to be conservative by generating an alarm

at time ti. Other choices may of course be considered. Also, in some sense, detecting

outbreaks when two or more ”extreme” observations in a period are observed, instead

of one, might be considered as a ”heuristic rule”. But, as illustrated in the next section,

our detections are in accordance with the ones obtained with other classical approaches

already used in the literature. Nevertheless, a possible alternative, which would require

further investigations, might consist in replacing the expectation by an estimation of

the probability P
(∑

j∈I(Ti) 1l{xj≥b̂Ti}
> 1
)

.

• Now to illustrate our method, let us consider the example of the number of Salmonella

Virchow isolates. In Figure 3, the x-axis corresponds to the values of t from 2 to 100

weeks and the y-axis to b̂t, calculated for the last week of 2008; the two dashed lines

indicate the 95% confidence interval bounds of bt.

Figure 3: The return level/return period graph for Salmonella Virchow, calculated
for the last week of 2008. The black curve represents the upper bound of the return
level. Dashed curves represent the 95% confidence interval of this upper bound. To the
observation y = 20 (respectively y = 15) does correspond on the x-axis b̂91 (respectively

b̂7) from which we deduce the return period equals to T = 91 (respectively T = 7)
weeks.
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4 Applications

4.1 Simulated data

We generated simulated data following the approach proposed by Noufaily et al. [11].

Let us summarize briefly the procedure:

• First, simulated baseline data (i.e. time series of counts in the absence of out-

breaks) were generated using a negative binomial model with a mean including

trend and seasonality determined by Fourier terms. More precisely, these data

were simulated from 42 different parameter combinations (called scenarios and

presented in Table 1 in [11]) with different trends, seasonalities, baseline fre-

quencies of counts and dispersions. The simulations of the baseline data use 100

replicates from each scenario of size 624 weeks. The last 49 weeks were used as

current weeks leading to 4900 replicates for each of the 42 scenarios.

• Secondly, outbreaks were simulated both in baseline and current weeks. Given a

constant k, the size of a simulated outbreak, starting in week ti, follows a Poisson

distribution with mean equal to k times the standard deviation of the count at

ti. Then outbreak cases were randomly distributed according to a lognormal

distribution with mean 0 and standard deviation 0.5. Finally, four outbreaks

were generated in baseline weeks and one outbreak was generated in current

weeks. Outbreaks start times were chosen randomly. We chose the values of k to

be 3 and 5 in baseline weeks and from 1 to 10 in current weeks.

• Next, we used two measures, named FPR and POD, introduced in [11] to assess

the performance of the EVT method. For each scenario, we calculated the false

positive rate (FPR) as the proportion of the current 49 weeks and 100 replicates,

in which the method generated an alarm in the absence of outbreak. The second

measure, called the probability that an outbreak is detected (POD) was also
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calculated. For each scenario and for each current week, if an alarm is generated

at least once between the start and end times of the outbreak, the outbreak is

considered as detected. The POD is the proportion of outbreaks detected in 100

runs.

Figure 4: False positive rates obtained for outbreaks of 3 (a) standard deviations and of
5 (b) standard deviations. Proportions of detected outbreaks of k standard deviations
corresponding to the 42 scenarios. Outbreaks of 3 (c) and 5 (d) standard deviations
are included in baselines.

Results of this simulation study are presented in Figure 4 showing the FPRs and

the POD when outbreaks of 3 (plots (a), (c)) and 5 (plots (b), (d)) standard

deviations are included in baselines. We show the central estimates of the FPRs

associated to their 95% confidence intervals. As noted in [11], the FPRs are

highest for scenarios 10-12 with low baseline and over-dispersed data. In our

study, the FPR is also high for scenario 16. Concerning the POD, as expected it

increased with k for each scenario. The PODs are not so different when outbreaks

of 3 standard deviations and 5 standard deviations are present in the baselines.

• Finally, we compared the results obtained for each of the 42 simulated scenarios

respectively with the EVT approach and with the Model 0 of Farrington’s method

(see Noufaily et al., 2012) run with α = 1%. We chose the Farrington method

for two main reasons. First the aim of the Farrington algorithm was to develop

a robust method for the routine monitoring of weekly reports on infections for

many different pathogens at the Communicable Disease Surveillance Center in

UK. This method was applied in particular to the detection of Salmonella out-

breaks. Second, this method has been applied in France for the surveillance of

human Salmonella since 2006 and for the surveillance of Salmonella isolated in

the agro-food chain in France for the last two years ([19]) and has shown good
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performances. In 2008, performances of five methods were evaluated for the early

detection of excess legionella cases in France ([20]) concluding that the Farrington

method had the best positive predictive value, equal to 67%. More specifically,

we presented in Figure 5 the POD obtained from the 100 runs for each scenario

with the Farrington method when outbreaks of 3 standard deviations are in-

cluded in baselines. This plot can be compared to Figure 4(c) obtained with the

EVT approach. As expected, this proportion increases with k for each scenario.

For completeness, we also represented on a same plot the false positive rates

obtained respectively with the EVT approach (black circles) and with the Far-

rington method (white triangles). The means represented by the dots together

with the 95% confidence intervals are based again on these 100 replicates. It is

fairly clear that the performances of the methods depend both on the character-

istics of the time series summarized by the different scenarios and the magnitude

of past and current epidemics. However, both methods favor a good specificity

rather than high sensitivity, and they have a close performance, with a slightly

better one for the EVT.

Figure 5: POD obtained with the Farrington method, Model 0 with α = 1%. Propor-
tions of detected outbreaks of k standard deviations corresponding to the 42 scenarios.
Outbreaks of 3 standard deviations are included in baselines.

Figure 6: False positive rates obtained for outbreaks with the EVT approach (black
circles) and with the Farrington method, Model 0 with α = 1%, (white triangles), for
42 scenarios.
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4.2 Real data

For each week from January 2000 to December 2008, the EVT method was applied to

two time series presented in Section 2 (Agona and Manhattan). For each time series

Y and for a week t:

1. We note xt the observed number of cases at week t, that we will compare to

selected counts of weeks from t−3 to t+ 3 of years from y−5 to y−1 (to handle

the seasonality as explained in Section 2). This restricted dataset corresponds to

the resulting time series X on which we apply our EVT method.

2. We calculate the upper bound for xt regarded as the return level, using equation

(3).

3. We calculate a return period associated to the upper bound of the return level.

In practice we calculate for t = 2 to Tmax (e.g. Tmax = 100) the increasing upper

bounds b̂t=2, b̂t=3, . . . , b̂t=Tmax . The return period is determined by the rank of the

first upper bound greater than the observed number of cases xt.

4. We generate an alarm at time t if:

(a) the return period is larger than the length of the sample X, because we have

not enough past data to claim that xt is not an unusual event;

(b) xt is larger than the maximum number of counts observed in the sample X;

(c) we observe, over the return period, a number of cases greater than xt.

Moreover, in order to reduce the probability that an alarm could be triggered for few

sporadic cases, a standard rule, put as an option in the program because specific to

Salmonella, has been adopted to keep an alarm at week t if at least 5 cases were ob-

served during the 4 last weeks preceding t. This rule has already been applied at the

former Communicable Disease Surveillance Center (CDSC, now Center for Infections
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of the Health Protection Agency) in the UK using the method developed by Farrington

et al. ([6]). It is an empirical rule, which avoids too numerous alarms whenever the

time series concerns a rare serotype only. In this specific case, an alternative could be

to transform equation (1) into E
(∑T

i=1 1l{Xi>zT }

)
= c with a suited small value c > 1

as previously discussed.

We applied the EVT method on the weekly number of isolates for serotypes Manhattan

and Agona. We compared the alarms generated by the EVT method with those gen-

erated by the Farrington method (corresponding to Model 0 in [11] with the threshold

value at time t defined as the upper 99% prediction limit).

Figures 7 and 8 represent both the alarms and the weekly counts over time for the

serotypes Manhattan and Agona. Each triangle represents a statistical alarm. Triangles

on the first line represent the alarms generated by the EVT method, whereas the ones

generated by the Farrington method are given on the second line.

Figure 7: Salmonella Manhattan: Weekly counts from January 1, 2000 to December
31, 2008. Roman numerals refer to the quarters of the years. Alarms generated by the
EVT method are represented by triangles on the first line. Alarms generated by the
Farrington method are represented by triangles on the second line. The documented
outbreak is delimited by the two dashed lines.

In Figure 7, the alarms generated by the two methods occurred in the same period

that corresponds to a documented outbreak, delimited by the dashed lines, for the

serotype Manhattan ([21]). From August 2005 to February 2006, a community-wide

outbreak of Salmonella Manhattan infections occurred in France. The investigation

incriminated pork products from a slaughterhouse as being the most likely source of

this outbreak. There was a concordance between the temporal (October-December
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2005) and the geographical (south-eastern France) occurrence of the majority of cases

and the distribution of products from the slaughterhouse.

Figure 8: Salmonella Agona: Weekly counts from January 1, 2000 to December 31,
2008. Roman numerals refer to the quarters of the years. Alarms generated by the
EVT method are represented by triangles on the first line. Alarms generated by the
Farrington method are represented by triangles on the second line. The documented
outbreak is delimited by the two dashed lines.

In Figure 8, alarms for the serotype Agona are distributed from 2000 to 2008. There

is a concordance between the two methods during three periods. The first period,

corresponding to 5 weeks in August and September 2003, was not documented as an

outbreak. The second concordance period, corresponds to 15 consecutive weeks from

the last week in December 2004 to week 15 in April 2005. This second period is more

interesting as it corresponds to the beginning of a large outbreak of infections in infants

linked to the consumption of powdered infant formula ([22]). The outbreak period, de-

limited by the two dashed lines, took place in two stages: the first stage from week 53

in December 2004 to week 10 in March 2005 and the second from week 11 to week 21.

A total of 47 cases less than 12 months age were identified during the first stage and

94 cases less than 12 months age were identified during the second stage. The third

period corresponds to the week 29 in July 2008. It included five cases, two of them

coming from a foodborne disease outbreak involving piglet consumption, and the three

others being probably sporadic cases.

The EVT method was implemented using R version 2.9 ([23]). The R-code is avail-

able on request. The function called algo.farrington, implemented into the R-Package

surveillance ([24]) was used to apply the Farrington method.

17



5 Discussion

We believe that the EVT method meets a number of requirements, listed by Farrington

et al. ([3]), for the outbreak detection algorithms implemented in surveillance systems.

Indeed, this method is able to monitor a large number of time series which became

an absolute necessity in modern computerized surveillance systems. It can deal with a

wide range of events as it is the case for the Salmonella infections with the routinely

analyses of several hundred serotypes per week. It can handle time series with great

numbers of cases (such as Salmonella Enteritidis) or small numbers of cases (such

as Salmonella Manhattan). Seasonality is taken into account by comparing counts

over the same periods of time. Other methods propose a direct way to treat the past

aberrations, for instance by associating low weights to the weeks coinciding with past

outbreaks. There is no such need when using the EVT method since the return period

is not a constant but depends on each observed count; alarms can then be generated

even if past outbreaks exist. If a past outbreak is contained in the return period inter-

val, then an alarm will be triggered at time t if the observation at t has been exceeded

by this outbreak. Finally, the method is implemented in a function using the R lan-

guage, allowing to run it in an automated procedure with minimal user intervention.

This method could be easily included into the R surveillance package and used by

public health surveillance practitioners. Recently, several papers have shown that R is

routinely used for the early detection of outbreaks in Europe ([25]; [19]; [26]; [27]; [28]).

Although the model developed by Farrington et al. ([6]) became a standard refer-

ence method, routinely used in France since many years and incorporated in several

surveillance systems, the EVT method seems also to be a valuable and interesting tool

for the recognition of time clusters. It could be integrated in the family of outbreak

detection algorithms used by the public health surveillance agencies since developing

effective computer-assisted outbreak detection systems still remains a necessity to en-
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sure timely public health intervention.

Obviously our approach does not pretend answering all the issues and could be im-

proved. This paper must be viewed as an exploratory study and constitutes a first

step for further developments already quite promising. The main two advantages of

our approach is that it does not require any assumption on the underlying (unknown)

distribution function and leads to a good specificity. Unfortunately, as the Farrington

one, it is less sensitive than other methods. That is why it should not be used solely

but combined with other more sensitive methods. Due to its competitiveness against

standard approaches, it should help practitioners in the detection of epidemics.

The overall potential of our approach, theoretical as practical, together with a fuller

comparison to other methods will be the subject of a forthcoming paper. In particular,

an interesting open question is the choice of an optimal value c for the right-hand side

in equation (1). This question comes back to discuss the choice of the threshold. In

this paper we fixed c = 1. As emphasized in the simulation study, this value leads to

competitive results of our approach with respect to the Model 0 of Farrington’s method

in a large panel of situations, in terms of parameter combinations, trends, seasonalities,

baseline frequencies of counts and dispersions, but this choice might be improved by

an optimal selection. This leads to further investigations.
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