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Wavelet-Galerkin Solution of Boundary Value
Problems

K. Amaratunga and J.R. Williams
Intelligent Engineering Systems Laboratory,
Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

In this paper we review the application of wavelets to the solution of partial di�erential equations. We
consider in detail both the single scale and the multiscale Wavelet Galerkin method. The theory of wavelets
is described here using the language and mathematics of signal processing. We show a method of adapting
wavelets to an interval using an extrapolation technique called Wavelet Extrapolation. Wavelets on an
interval allow boundary conditions to be enforced in partial di�erential equations and image boundary
problems to be overcome in image processing. Finally, we discuss the fast inversion of matrices arising
from di�erential operators by preconditioning the multiscale wavelet matrix. Wavelet preconditioning is
shown to limit the growth of the matrix condition number, such that Krylov subspace iteration methods
can accomplish fast inversion of large matrices.

1 ORGANIZATION OF PAPER

We have found that wavelets can be most easily understood when they are viewed as �lters.
In this paper we seek to provide a roadmap for those in computational mechanics who wish
to understand how wavelets can be used to solve initial and boundary value problems.

The properties of wavelets can be deduced from considerations of functional spaces, as
was shown by Morlet [1][2], Meyer [4] [5], and Daubechies [6] [7]. However, wavelets can also
be viewed from a signal processing perspective, as proposed by Mallat [8],[9]. The wavelet
transform is then viewed as a �lter which acts upon an input signal to give an output signal.
By understanding the properties of �lters we can develop the numerical tools necessary for
designing wavelets which satisfy conditions of accuracy and orthogonality.

First, we remind the reader of how a function can be approximated by projection onto a
subspace spanned by a set of base functions. We note that some subspaces can be spanned
by the translates of a single function. This is called a Reisz basis.

The projection of a function onto a subspace can be viewed as a �ltering process. The
�lter is determined by the �lter coeÆcients and our goal is to choose good coeÆcients.
We discuss the properties of �lters which are desirable in the context of solving partial
di�erential equations. In Section 3 we revise some key concepts of signal processing which
indicate how to design these �lter coeÆcients. Using signal processing concepts we show
that wavelet �lters should be constrained to be linear time invariant, stable, causal systems.
These constraints determine the form that the wavelet frequency response must take and we
can deduce that the poles and the zeros of a wavelet system must lie within the unit circle.
With this background in place, we proceed to describe the method used by Daubechies for
designing orthogonal wavelets.

We then address the solution of partial di�erential equations using wavelets as the
basis of our approximation. We note that the frequency responses of the wavelet �lters
are intimately linked to their approximation properties, via the Strang-Fix condition. We
examine the imposition of boundary conditions which leads to the problem of applying
wavelets on a �nite domain. A solution to this problem called the Wavelet Extrapolation
Method is described. Finally results using wavelet based preconditioners for the solution
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Figure 1. Haar Function. (a) �(x). (b) �(x� 1). (c) �(2x� 1). (d)  (x� 1)

of partial di�erential equations are presented. It is shown that these preconditioners lead
to order O(N) algorithms for matrix inversion.

2 BASIS FUNCTIONS DEFINING A SUBSPACE

In this section we show how we can project a function onto a subspace spanned by a
given set of basis functions. Given this approximation, we then show how to �lter it
into two separate pieces. One �lter picks out the low frequency content and the other
the high frequency content. This �ltering into two subbands is the key to developing a
multiresolution analysis.

First, lets see how to project a function onto a subspace spanned by a set of basis
functions. We introduce the Haar function (Figure 1) as an example wavelet scaling function
which is easily visualized. The Haar function is relatively simple but illustrates admirably
most of the propeties of wavelets.

�(x) = f 1 0 � x < 1
0 otherwise:

(1)

In our discussion of wavelets we shall be concerned with two functions, namely the
scaling function �(x) and its corresponding wavelet function  (x). The �lter related to
�(x) �lters out the low frequency part of a signal and the �lter related to  (x) �lters
out the high frequency part. As we shall see by examining a simple example, the scaling
function and wavelet are intimately related. Once one is de�ned, then the other can be
easily deduced. The Haar function corresponds to a scaling function �.
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Let us examine the behavior of the Haar function � under translation and scaling. Let
�n;k be de�ned as,

�n;k(x) = 2
n

2� (2nx� k) : (2)

Consider �rst the general scaling function at level n = 0, �0;k ,

�0;k = �(x� k): (3)

These functions, for integer k, are orthogonal under translation, as illustrated in Figure
1(a), which shows �0;0 and (b), which shows �0;1. We note that the �0;k span the whole
function space and we can approximate any function f(x) using �0;k as a basis, as given
below:

f �
1X

k=�1
ck�0;k =

1X
k=�1

ck�(x� k) (4)

The approximation at the level n = 0 is called the projection of f onto the subspace V0
spanned by �0;k and is written,

P0f =

1X
k=�1

c0k�0;k (5)

The accuracy of the approximation depends on the span of the Haar function. In the
case of the �0;k, the span is 1, and the structure of the function cannot be resolved below
this limit.

Now, we can change the scale of the function by changing n from n = 0 to say n = 1.
Figure 1(c) shows the Haar function at this scale for the translation k = 1 i.e. �1;1.
Once again we note that the function spans the space but at a higher resolution. We can
improve the accuracy of the approximation by using narrower and narrower Haar functions.
However, the apporximation is always piecewise constant and the order of convergence is
�xed. Later we shall seek wavelets with better convergence properties.

The functions which we normally deal with in engineering belong to the space of square
integrable functions, L2(R), and are referred to as L2-functions. The Pnf sampling of the
L2-function f belongs to a subspace, which we shall call Vn. The Pnf form a family of
embedded subspaces,

� � � � V�1 � V0 � V1 � V2 � � � (6)

For example, suppose we have a function f(x) de�ned in [0; 1]. We can sample the
function at 2n uniformly spaced points and create a vector

�
f0 f1 f2 f3 ::: f2n�2 f2n�1

�T
where

fk = f

�
k

2n

�
: (7)

This vector represents a discrete sampling of the function and is said to be the projection
of the function on the space represented by the vector. As noted previously the projection
is written Pnf and the space is written as Vn.

Suppose now we sample at half the number of points (2n�1). We call this is the projec-
tion of f on Vn�1 and we write it as Pn�1f . For uniformly spaced points this is essentially
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the same as discarding every other point. Thus, the space Vn�1 is contained in the space
Vn. This leads to the sequence of embedded subspaces

� � � � V�1 � V0 � V1 � V2 � � � (8)

In this concrete example we have chosen the fk to be the value of the function at the
point x = k

2n , so that the projection of the function on Vn is

Pnf(x) =
2n�1X
k=0

fk 2nÆ(2nx� k) ; k � Z (9)

Here, the basis functions are delta functions. In general we can choose to expand the
function in terms of any set of basis functions we please. If the basis functions for Vn are

chosen to be the functions �n;k de�ned by the notation �n;k = 2
n

2�(2nx � k), then the
projection on Vn is

Pnf(x) =
2n�1X
k=0

ck �n;k ; k � Z (10)

and the vector is �
c0; c1; c2; c3; ::: c2n�2; c2n�1

�
T

We note that the translates (de�ned by �(x � k)) of such a function span and de�ne
a subspace. The factor of 2n which multiplies the free variable x in a scaling function
determines span of each function.

We have seen that we can project a function onto a subspace spanned by a set of basis
functions. Below we shall require that the basis functions satisfy certain properties. At this
stage we do not know if such basis functions can be found. However, if they do exist we
shall require that they satisfy the constraints which we now develop. (To convince yourself
that they do exist you may want to substitute in the Haar function.)

We now consider the property which gives wavelets their multiresoltion character,
namely the scaling relationship. In general, a scaling function �(x) is taken as the so-
lution to a dilation equation of the form

�(x) =
1X

k=�1
ak �(Sx� k) (11)

A convenient choice of the dilation factor is S = 2, in which case the equation becomes

�(x) =
1X

k=�1
ak �(2x� k) (12)

This equation states that the function �(x) can be described in terms of the same function,
but at a higher resolution. (Of course, it remains for us to �nd functions for which this is
true.) The constant coeÆcients ak are called �lter coeÆcients and it is often the case that
only a �nite number of these are non zero. The �lter coeÆcients are derived by imposing
certain conditions on the scaling function. One of these conditions is that that scaling
function and its translates should form an orthonormal set i.e.

R1
�1 �(x)�(x+ l)dx = Æ0;l l�Z
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where

Æ0;l = f 1; l = 0;
0; otherwise;

The wavelet  (x) is chosen to be a function which is orthogonal to the scaling function.
A suitable de�nition for  (x) is

 (x) =
1X

k=�1
(�1)k aN�1�k �(2x� k) (13)

where N is an even integer.� This satis�es orthogonality since

h�(x);  (x)i = R1
�1

P1
k=�1 ak �(2x� k)

P1
l=�1 (�1)l aN�1�l �(2x� l)dx

= 1
2

P1
k=�1(�1)k akaN�1�k

= 0

The scaling relationship de�nes two subspaces, Vn and Vn�1 onto which we can project
a given function. The question now arises as to what is the di�erence between these two
projections. Let us postulate a subspace Wn�1 that is orthogonal to Vn�1 such that:

Vn = Vn�1 �Wn�1

We are at liberty to project the function onto the subspace Wn�1. Consider a wavelet

basis  n;k = 2
n

2  (2nx � k) which spans the subspace Wn. Then, the projection of f on
Wn�1 is Qn�1f . Since

Pnf = Qn�1f + Pn�1f ,

and the bases �n;k and  n;k are orthogonal,Wn�1 is referred to as the orthogonal complement

of Vn�1 in Vn.
Now we know that Wn is orthogonal to Vn, i.e. Wn ? Vn. Therefore, since Wn ?

(Vn�1 �Wn�1) we can deduce that Wn is also orthogonal to Wn�1. Each level of wavelet
subspace is orthogonal to every other. Thus  n;k are orthogonal for all n and all k.

Multiresolution analysis therefore breaks down the original L2 space into a series of
orthogonal subspaces at di�erent resolutions. The problem we now face is how to design the
basis functions � and  with the requisite properties. This is the problem that Daubechies
solved and that we shall now tackle.

3 INTRODUCTION TO SIGNAL PROCESSING

The design of the wavelet basis functions is most easily understood in terms of signal
processing �lter theory. We now indicate some of the key concepts of �lter theory. The
interested reader is referred to the excellent book by Gilbert Strang and Truong Nguyen
[11].

�Some texts de�ne the �lter coeÆcients of the wavelet as (�1)k a1�k. Equation (13), however, is more
convenient to use when there are only a �nite number of �lter coeÆcients a0 � � � aN�1, since it leads to a
wavelet that has support over the same interval, [0; N � 1], as the scaling function.
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3.1 Discrete Time Signals

A continuous time dependent signal is represented as x(t) where t is a continous independent
variable.

A discrete time signal is represented as a sequence of numbers in which the nth. number
is denoted by x[n], such that,

x = x[n];�1 < n <1 (14)

It is a function whose domain is the set of integers. For example a continuous signal
sampled at intervals of T can be represented by the sequence x[n], where,

x[n] = x(nT ) (15)

3.2 Impulse and Step Function Signal

Two special signals are the unit impulse denoted by Æ[n], where,

Æ[n] = f 1 n = 0
0 n 6= 0:

(16)

and the unit step function denoted by u[n], where

u[n] = f 0 n < 0
1 n � 0:

(17)

For linear systems (see discussion later) an arbitrary sequence can be represented as a
sum of scaled delayed impulses.

x[n] =
1X

k=�1
a[k]Æ[n� k] (18)

3.3 Discrete Time System

A discrete time system is an operator or transformation T that maps an input sequence
x[n] into an output sequence y[n], such that,

y[n] = T (x[n]) (19)

3.3.1 Linear systems

A subclass of all such discrete time systems are linear systems de�ned by the principle of
superposition. If yk[n] is the response of the system to the kth input sequence xk[n] and
the system is linear, then

T

 
NX
k=1

xk[n]

!
=

NX
k=1

T (xk[n]) =
NX
k=1

yk[n] (20)

T (a:x[n]) = a:y[n] (21)
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3.3.2 Time invariant systems

Another subclass of all such discrete time systems are time invariant systems. These are
systems for which a time shift of the input x[n � n0] causes a corresponding time shift of
the output y[n� n0].

An example of a system which is not time invariant is a system de�ned by,

y[n] = x[M:n] (22)

In this system the output takes every Mth. input. Suppose we shift the input signal
by M then the output signal shifts by 1.

y[n+ 1] = x[M:(n+ 1)] = x[M:n+M ] (23)

3.3.3 Causal systems

A causal system is one for which the output y[n0] depends only on the input sequence x[n],
where n � n0.

3.3.4 Stable systems

A stable system is called Bounded Input Bounded Output (BIBO) if and only if every
bounded input sequence produces a bounded output sequence. A sequence is bounded if
there exists a �xed positive �nite value A, such that

jx[n]j � A <1 ; �1 < n <1 (24)

An example of an unstable system is given below, where the input sequence u[n] is
the step function.

y[n] =
NX
k=1

u[n� k] = f 0 n < 0
n+ 1 n � 0:

(25)

3.3.5 Linear Time Invariant (LTI) systems

These two subclasses when combined allow an especially convenient representation of these
systems. Consider the response of an LTI system to a sequence of scaled impulses.

y[n] = T

0
@ 1X
k=�1

x[k]Æ[n � k]

1
A (26)

Then, using the superposition principle we can write

y[n] =
1X

k=�1
x[k]T (Æ[n � k]) =

1X
k=�1

x[k]hk[n] (27)

Now here we take hk[n] as the response of the system to the impulse Æ[n � k]. If the
system is only linear then hk[n] depends on both n and k. However, the time invariance
property implies that if h[n] is the response to the impulse Æ[n] then the response to Æ[n�k]
is h[n� k]. Thus, we can write the above as

y[n] =
1X

k=�1
x[k]h[n � k] (28)
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Figure 2. Convolution Sequence to form H[n-k]

An LTI system is completely characterized by its response to an impulse. Once this is
known the response of the system to any input can be computed.

We note that this is a convolution and can be written as

y[n] = x[n] � h[n] (29)

3.3.6 Reminder - convolution

The convolution is formed for say y[n] by taking the sum of all the products x[k]h[n�k] as
k for �1 < k <1. The sequence x[k] is straightforward. Notice the sequence h[n� k] is
just h[�(k � n)]. This is obtained by 1) reecting h[k] about the origin to give h[�k] then
shifting the origin to k = n, as shown in Figure 2.

3.3.7 Linear constant-coeÆcient di�erence equations

These systems satisfy the Nth-order linear constant coeÆcient di�erence equation of the
form

MX
k=0

aky[n� k] =
NX
k=0

bkx[n� k] (30)

This can be rearranged in the form

y[n] =
NX
k=1

aky[n� k] +
MX
k=0

bkx[n� k] (31)

3.3.8 Signal energy

The energy of a signal is given by

E =
1X

n=�1
jx[n]j2 = 1

2�

Z
�

��
jX(ej!)j2d! (32)
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where jX(ej!)j2 is the energy density spectrum of the signal. Equation (32) is well known
as Parseval's theorem.

3.3.9 Convolution theorem

Using the shifting propery it can be shown that if

y[n] =
1X

k=�1
x[k]h[n� k] = x[n] � h[n] (33)

then the Fourier transform of the output is the term by term product of the Fourier trans-
forms of the input and the signal.

Y (ej!) = X(ej!):H(ej!) (34)

This leads to an important property of LTI systems. Given an input x[n] = ej!n then
the output is given by

y[n] =
X
k

x[k]h[n � k] =
X
k

ej!kh[n � k] = (
X
p

h[p]e�j!p)ej!n = H(ej!)ej!n (35)

where we have changed variables n� k ! p. We rewrite this as

y[n] = H(ej!)ej!n = H(ej!)x[n] (36)

Thus, for every LTI system the sequence of complex exponentials is an eigenfunction
with an eigenvalue of H(ej!).

3.4 The z-Transform

3.4.1 De�nition

The z-transform of a sequence is a generalization of the Fourier transform

X(z) =
1X

k=�1
x[n]z�n (37)

where z is in general a complex number z = rej!.
Writing

X(z) =
1X

k=�1
(x[n]r�n)ej!n (38)

We can interpret the z-transform as the Fourier transform of the product of x[n] and
r�n. Thus when r = 1 the z-transform is equivalent to the Fourier transform.

3.4.2 Region of convergence

As with the Fourier transform we must consider convergence of the series which requires

jX(z)j �
1X

n=�1
jx[n]r�nj <1: (39)

The values of z for which the z-transform converges is called the Region of Conver-

gence (ROC). The region of convergence is a ring in the z-plane, as shown in Figure 3.
We shall see when discussing the generation of wavelets that the properties of LTI systems
that are both stable and causal provide the constraints that we need to calculate wavelet
coeÆcients.
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Figure 3. Region of convergence as a ring in the z-plane

3.4.3 Rational form - zeros and poles

For many systems the z-transform, within the ROC, can be expressed as a rational function,
such that

X(z) =
P (z)

Q(z)
(40)

The values of z for which X(z) = 0 are called the zeros, and the values of z for which
X(z) = �1 are called the poles. It is customary that the zeros are represented in the
z-plane by by circles and the poles by crosses. The zeros and poles and the ROC determine
important characteristics of the system.

3.4.4 Examples of poles and ROC

Example 1

Consider the signal x[n] = anu[n] where u[n] is the step function.

X(z) =
1X

n=�1
anu[n]z�n =

1X
n=0

(az�1)n (41)

For convergence we see by inspection that j(az�1)j < 1 or that jzj > jaj. Thus, the
ROC is all the region outside the circle of radius jaj (Figure 4). The reason that the ROC
is larger than a certain value rather than smaller is due to the de�nition of the z-transform
as powers of z�1.

Within the ROC we can write the analytic expression for X(z)

X(z) =
1X
n=0

(az�1)n =
1

1� az�1
=

z

z � a
(42)

We note that there is a pole at z = a and that the ROC is outside this pole. We will
note later that if a system response is causal then the ROC for the system will always be
outside the largest pole.
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Figure 4. Region of convergence and pole plot for step function

Example 2

Now consider the signal x[n] = �anu[�n� 1]. This is a time reversed step function.

X(z) =
1X

n=�1
�anu[�n� 1]z�n =

�1X
n=�1

�anz�n = 1�
1X
n=0

(a�1z)n (43)

For convergence we see by inspection that j(a�1z)j < 1 or that jzj < jaj. Thus, the ROC
is the region inside the circle of radius jaj (Figure 5).

Within the ROC we can write the analytic expression for X(z)

X(z) =
1

1� az�1
=

z

z � a
; for jzj < jaj (44)

Note that the zeros and poles are exactly the same but that the ROC is di�erent. Thus,
to characterize a system it is necessary to specify both the algebraic expression of the
response function for the system and the ROC.

REAL

IMAG

Unit Circle

ROC
a 1

Figure 5. Region of convergence and pole plot for time reversed step function
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3.4.5 Important properties of ROC

1. If x[n] is right sided ie. a sequence which is zero for n < N < 1 then the ROC is
outside the outermost �nite pole.

2. If x[n] is left sided ie. a sequence which is zero for n > N > �1 then the ROC is
inside the innermost non zero pole.

3. If x[n] is two sided ie. a sequence which is neither left nor right sided then the ROC
is a ring bounded by the innermost non zero pole and the outermost �nite pole. It
cannot contain any poles.

4. The Fourier transform of x[n] converges absolutely if and only if the ROC of the
z-transform includes the unit circle.

4 WAVELET TRANSFORM AS A FILTER

Let us assume that the wavelet transform of a discrete signal x[n], is an LTI system that
maps an input sequence x[n] into an output sequence y[n], such that,

y[n] =W (x[n]) (45)

Since it is an LTI system we can express this as

y[n] =
NX
k=1

h[n� k]x[k] (46)

where h[n] is the impulse response of the system. For our wavelet system let h[n] be non-
zero on a �nite interval. For example, let h[0] = c0; h[1] = c1; h[2] = c2; h[3] = c3.
In matrix form the in�nite convolution can be written in terms of the so called wavelet
coeÆcients, ci, as2

666666664

:
y[�1]
y[0]
y[1]
y[2]
y[3]
:::

3
777777775
=

2
666666664

::: : : : ::: :::
: c0 : : ::: :::
: c1 c0 : ::: :::
: c2 c1 c0 ::: :::
: c3 c2 c1 c0 ::: ::: :::
: 0 c3 c2 c1 c0 ::: :::
::: ::: ::: ::: ::: ::: ::: :::

3
777777775

2
666666664

:
x[�1]
x[0]
x[1]
x[2]
x[3]
:::

3
777777775

We note that the matrix is a Toeplitz matrix ie. one in which the value of element (i; j)
depends only on ji� jj.

Using the properties of the Fourier transform of a convolution and changing our notation
X(ej!)! X(!)

Y (!) = C(!)X(!) (47)

Comparing this with our previous knowledge of the impulse response function H(!)

Y (!) = H(!)X(!) (48)

We note that the system response of the wavelet �lter is completely characterized by
the Fourier transform C(!) of the wavelet coeÆcients. We also note that the system is
causal.
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A typical response spectrum for C(!) is shown in Figure 6.
We shall return to investigate the form of �lter frequency response C(!), but �rst let

us examine how the wavelet �lter is used in practice.

4.1 Quadrature Mirror Filters

The idea behind Quadrature Mirror Filters (QMF) is to design two �lters, that break an
input signal into a low-pass signal and a high-pass signal as shown diagrammatically in
Figure 7.

c   [k]m H(z) 2

G(z) 2
d     [k]m-2

H(z) 2
c     [k]m-1

G(z) 2
d     [k]m-1

c     [k]m-2

Figure 7. A simple �lter bank for low-pass and high-pass �ltering

If the two �lters are symmetric about the frequency �

2 the �lters are said to be quadrature
mirror �lters. They have the property of being power complementary, ie.

1X
k=0

�Hk(e
j!)�2 = 1 (49)
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Smith and Barnwell showed that once H0 is determined H1 is given by

H1(z) = �z�L ~H0(�z); L = odd (50)

where ~H(z) is the paraconjugate of H(z). To form ~H(z) for a rational function we �rst
conjugate the coeÆcients and then replace z with z�1. Furthermore, Smith and Barnwell
showed that the synthesis �lters F0 and F1 needed for perfect reconstruction are given by:

F0(z) = ~H0(z); F1(z) = ~H1(z) (51)

For the Haar function, H0(z) = 1 + z�1, and it is easy to check that H1(z) = 1 � z�1
is the quadrature mirror �lter, and that they are power complementary.

It can also be shown that

�H1(e
j!)
��� = ���H0(�ej!)

��� = ���H0(e
j(!��))� (52)

so that the magnitude of response of H1 is just that of H0 shifted by �.
In order to avoid redundant information we downsample (decimate) each �ltered signal

by a factor of 2. Let the decimated signals be L(x) and H(x) respectively.
The e�ect of downsampling can be expressed in matrix form as

L =#2 C =

2
666666664

::: : : : ::: ::: :::
: c1 c0 0 ::: ::: :::
: c3 c2 c1 c0 ::: ::: :::
: 0 0 c3 c2 c1 c0 :::
: 0 0 0 0 c3 ::: :::
::: ::: ::: ::: ::: ::: ::: :::
::: ::: ::: ::: ::: ::: ::: :::

3
777777775

4.2 Haar Filters

For Haar wavelets [11] we choose the low-pass �lter coeÆcients to be c0 = c1 = 1 and the
high-pass coeÆcients to be d0 = �1; d1 = 1.

L =#2 C =

2
666666664

::: : : : ::: ::: :::
: 1 1 0 ::: ::: :::
: 0 0 1 1 ::: ::: :::
: 0 0 0 0 1 1 :::
: 0 0 0 0 0 ::: :::
::: ::: ::: ::: ::: ::: ::: :::
::: ::: ::: ::: ::: ::: ::: :::

3
777777775

H =#2 D =

2
666666664

::: : : : ::: ::: :::
: �1 1 0 ::: ::: :::
: 0 0 �1 1 ::: ::: :::
: 0 0 0 0 �1 1 :::
: 0 0 0 0 0 ::: :::
::: ::: ::: ::: ::: ::: ::: :::
::: ::: ::: ::: ::: ::: ::: :::

3
777777775

The low pass frequency response is given by

jC(!)j = j
X
n

c[n]e�j!nj = j1 + e�j!j = j2cos(!
2
)j (53)
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Figure 8. Frequency response of the Haar �lter

and the highpass frequency response is given by

jD(!)j =
X
n

jd[n]e�j!nj = j1� e�j!j = 2sin(
!

2
) (54)

as shown in Figure 8.

The Haar �lters act like low-pass and high-pass �lters but are relatively poor in their
ability to separate low and high frequencies.

Symbolically we can express this �lter bank as the matrix F

F =

�
L
H

�
!

2
6666666666664

::: 1 1 : ::: ::: :::
: �1 1 0 ::: ::: :::
: 0 0 1 1 ::: ::: :::
: 0 0 �1 1 ::: ::: :::
: 0 0 0 0 1 1 :::
: 0 0 0 0 �1 1 :::
: 0 0 0 0 0 ::: :::
::: ::: ::: ::: ::: ::: ::: :::
::: ::: ::: ::: ::: ::: ::: :::

3
7777777777775

where we have shu�ed the rows of the matrix. We note that if we take 1p
2
F then the

matrix is unitary i.e. the columns are orthonormal to each other and the inverse is just
the transpose.

Using this property we note that

F T =

�
L
H

� �
LT HT

�
=

�
LLT LHT

HLT HHT

�
=

�
2I 0
0 2I

�
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4.3 Perfect Reconstruction

The inverse �lter bank de�ned by F T gives us perfect reconstruction of the input signal
so long as the matrix is unitary. (Note that FF T 6= F TF in general.)

Symbolically we have

x!

2
664

C ! # 2 = Lx ! " 2 ! CT = LTLx

D ! # 2 = Hx ! " 2 ! DT = HTHx

3
775! x

4.4 Downsampling

The e�ect of downsampling a signal is described in detail in Openheim [12]. The result
of downsampling by a factor of two is to cause the frequency content of the signal to be
doubled and the frequency spectrum to be replicated at periodic intervals. Since the Fourier
transform is already a 2� periodic function, the doubling of the �ltered spectrum can cause
the scaled and replicated spectra to overlap. This e�ect is called aliasing. Here we merely
observe that no aliasing will occur if the low-pass signal contains no frequencies greater
than �=2.

4.5 Prescription for Designing Wavelets

4.5.1 Orthonormality condition in frequency space

We require that our wavelet basis function are orthonormal.

1X
k=�1

 m;k n;l = Æ[n�m]Æ[k � l] (55)

It is shown by Vaidyanathan [13] that the wavelet orthogonality condition is equivalent

to the paraunitary condition ~F (z)F (z) = 2I:
The design process follows the following prescription:

1. Design the frequency response of a half band �lter F (z). Note that jF (z)j= ~H0(z)H(z).

Also that the roots of H(z) and ~H0(z) are complex conjugates i.e. are reected in the
unit circle.

2. Find H0(z), the spectral factor of F (z).

3. Find H1(z), F0(z) and F1(z) according to the rules of Smith and Barnwell, such that
the matrix is paraunitary.

4.5.2 Daubechies and the Maxat Condition

The problem with the Haar wavelet is that it has poor approximation abilities in that it is
piecewise constant. We seek wavelets which can approximate a polynomial exactly up to
some given order. It is shown by Daubechies and others that this approximation condition
in physical space is equivalent to a constraint on the zeros of the analysis �lter H0 at � in
frequency space. In particular, Daubechies showed that constraining the atness of jH0(z)j
to be maximally at at both zero and at � gives rise to wavelets with the fewest possible
coeÆcients for the given order of polynomial approximation accuracy. Here we will just
outline the steps necessary to design the halfband �lter F0 according to these conditions.
The reader is refered to Vaidyanathan (pp532-535)[13] for details.

16



Consider F (ej!) as a zero phase low pass �lter, with F (ej�) = 0. Change variables, such
that sin2(!=2) = y. The z-transform of the �lter can now be expressed as a polynomial in
y.

P (y) =
NX
n=0

pny
n (56)

Maximal atness means that the derivative dP=dy has all its zeros concentrated at y = 0
and y = 1 and that there are no other zeros in between. Thus

P (y) = Q(y)(1� y)K ; Q(y) =
L�1X
l=0

qly
l (57)

and further if K = L, (Daubechies' choice,) we have a half-band maximally at �lter.
By imposing the atness conditions we can �nd the ql. The result is that

F (z) = zK
 
1 + z�1

2

!2K L�1X
l=0

2(�z)l
�
K+l�1
l

� 
1� z�1

2

!2l

| {z }
F̂ (z)

(58)

Vaidyanathan notes that only the spectral factor S(z) of the function F̂ (z) needs to be
calculated to derive the lowpass �lter.

H0(z) =

 
1 + z�1

2

!
K

S(z) (59)

5 IMPORTANT PROPERTIES OF WAVELETS

5.1 Derivatives of the Scaling Function

If we are to use wavelets for solving partial di�erential equations then we need to calculate
wavelet derivatives, such as

�00(x) =
d2�

dx2
(60)

Surprisingly, these quantities can be calculated analytically. To do this we expand the
derivative in terms of the scaling function basis.

�00(x) =
1X

k=�1
ck�(x� k) (61)

where

ck =

Z 1

�1
�00(x)�(x� k)dx (62)

These coeÆcients are called connection coeÆcients and we will write them as 
k, to
distinguish them from other wavelet coeÆcients. Thus,


k =

Z 1

�1
�00(x)�(x� k)dx (63)
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5.2 Connection CoeÆcients

Latto, Resniko� and Tenenbaum [14] outline a method of evaluating connection coeÆcients
which is both general and exact. The evaluation of connection coeÆcients for the operator
dr=dtr is also discussed by Beylkin [16]. For r = 1 he tabulates in rational form the
connection coeÆcients corresponding to Daubechies scaling functions. In this section, we
summarize the procedure given in [14].

We consider �rst the evaluation of two-term connection coeÆcients for orthogonal
wavelets. Let


[n] =

Z 1

�1
�(r)(t) �(t� n) dt ; r > 0 : (64)

The case r = 2, for example, corresponds to the coeÆcients required for the solution of
Laplace's equation. The basic solution strategy is to use the dilation equation (12). This
gives

�(r)(t) = 2r
N�1X
k=0

a[k] �(r)(2t� k) ; (65)

�(t� n) =

N�1X
l=0

a[l] �(2t� 2n� l) : (66)

Substituting in equation (64) and making a change of variables leads to


[n] = 2r�1
N�1X
k=0

N�1X
l=0

a[k] a[l] 
[2n+ l � k] : (67)

This can be conveniently rewritten as two separate convolution sums:

v[i] =

iX
j=i�N+1

a[i� j] 
[j] ; (68)


[n] = 2r�1
2n+N�1X
i=2n

a[i� 2n] v[i] : (69)

In matrix form, therefore, we have

v = A1 
 ; (70)


 = 2r�1A2 v ; (71)

which results in the homogeneous system�
A2 A1 � 1

2r�1
I

�

 = 0 : (72)

This system has rank de�ciency 1, and so we require a single inhomogeneous equation to
determine the solution uniquely.

To obtain an equation which normalizes equation (72), we make use of the polynomial
approximation properties of Daubechies wavelets. Recall that this condition allows us to
expand the monomial tr (r < p) as a linear combination of the translates of the scaling
function: X

k

�rk �(t� k) = tr : (73)
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The expansion coeÆcients, �r
k
, are just the moments of the scaling function, and they can

be computed using the approach described in Section 5.4. Di�erentiating r times, we have

X
k

�rk �
(r)(t� k) = r! : (74)

Multiplying by �(t) and integrating leads to the following normalizing condition:

X
k

�r
k

[�k] = r! : (75)

Equations (72) and (75) form the theoretical basis for computing 
[n]. In addition to 
[n]
we may require the integrals

�[n] =

Z 1

�1
 (r)(t)  (t� n) dt ; (76)

�[n] =

Z 1

�1
�(r)(t)  (t � n) dt ; (77)

[n] =

Z 1

�1
 (r)(t) �(t� n) dt : (78)

These integrals can be computed from 
[n], using an approach similar to the one described
above. Thus we have

�[n] = 2r�1
2n+N�1X
i=2n

b[i� 2n] w[i] ; (79)

�[n] = 2r�1
2n+N�1X
i=2n

b[i� 2n] v[i] ; (80)

[n] = 2r�1
2n+N�1X
i=2n

a[i� 2n] w[i] ; (81)

where v[i] is given by equation (68) and w[i] is given by

w[i] =
iX

j=i�N+1

b[i� j] 
[j] : (82)

5.3 Moments

Here we review another important property of wavelets, calculating the moments of scaling
functions.

The accuracy condition that Daubechies imposed on the scaling functions of her wavelets
is that they should represent exactly a polynomial up to order p� 1.

f(x) = �0 + �1x+ �2x
2:::�p�1xp�1 (83)
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This is equivalent to forcing the �rst p moments of the associated wavelet  (a) to be
zero, since

< f(x);  (x) > =
X

ck < �(x� k);  (x) > (84)

=

Z
�0 (x)dx+

Z
�1 (x)xdx+ :::

Z
�p�1 (x)xp�1dx = 0 (85)

This is true for all values of �, thereforeZ
 (x)xldx = 0; for l = 0; 1; 2; :::p� 1 (86)

This accuracy condition imposes a further condition on the values of the scaling function
coeÆcients ak. The condition can be written as

X
(�1)kaN�k�1kn = 0; for n = 0; 1; 2; :::p� 1 (87)

Here we shall not derive this equation other than to note its validity is easily proved by
induction.

While equations can be derived which de�ne the ak they are not particularly useful
for calculating their values and we shall use other methods based on the Z-transform to
calculate them.

5.4 Moments of the Scaling Function

There are many cases in which we will need to calculate the moments of the scaling function
cl
k

clk =

Z 1

�1
xl�(x� k)dx (88)

Substituting the scaling relationship in the above we get

clk =

Z 1

�1
xl
X
j

aj�(2x� 2k � j)dx (89)

Let y = 2x

clk =
X
j

aj

Z 1

�1

�
y

2

�
l

�(y � 2k � j)
dy

2
=

1

2l+1

X
j

ajc
l

j+2k (90)

We now develop a recursive relationship between the coeÆcients

cl
k
=

1

2l+1

X
i

ai�2kcli (91)

This is an in�nite set of equations and we must develop one more. Starting with

clk =

Z
xl�(x� k)dx (92)

and letting x� k = y, it can be shown that

cl
k
=

lX
i=0

�
l

i

�
kl�ici0 (93)
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and that

cl0 =
1

2(2l � 1)

l�1X
i=0

�
l

i

� N�1X
k=0

akk
l�ici0

!
(94)

where c00 = 1.

6 WAVELETS ON AN INTERVAL

Wavelet extrapolation can be regarded as a solution to the problem of wavelets on an interval
(see e.g. Andersson, Hall, Jawerth and Peters[17] and Cohen, Daubechies, Jawerth and
Vial[18].) However, it has the advantage that it does not involve the explicit construction
of boundary wavelets [19]. We design the extrapolated DWT to be well conditioned and to
have a critically sampled output. The construction of the inverse is also outlined. We use
Daubechies' orthogonal compactly supported wavelets throughout our discussion, although
the extension to biorthogonal wavelet bases is straightforward.

We note that the discussion here is limited to orthogonal non-symmetric wavelets and
that other solutions using symmetric or anti-symmetric wavelets exist in non-orthogonal or
bi-orthogonal settings.

6.1 Standard Multiresolution Analysis Using Orthogonal Wavelets

Let a[k] be the �lter coeÆcients associated with Daubechies N coeÆcient scaling function,
�(x) i.e.

�(x) =
N�1X
k=0

a[k] �(2x� k) (95)

Also let b[k] = (�1)k a[N�1�k] be the �lter coeÆcients associated with the corresponding
wavelet. Then, the multiresolution decomposition equations [9] for �ltering a sequence cm[n]
at scale m, into its components at scale m� 1 are given by

cm�1[n] =
1p
2

2n+N�1X
k=2n

cm[k] a[k � 2n] (96)

dm�1[n] =
1p
2

2n+N�1X
k=2n

cm[k] b[k � 2n] (97)

The multiresolution reconstruction algorithm to obtain the sequence cm[n] from its scale
m� 1 components, cm�1[n] and dm�1[n], is

cm[n] =
1p
2

bn=2cX
k=d(n�N+1)=2e

cm�1[k] a[n� 2k] +
1p
2

bn=2cX
k=d(n�N+1)=2e

dm�1[k] b[n� 2k] (98)

6.2 The Elimination of Edge E�ects in Finite Length Sequences

The multiresolution analysis equations of the previous section implicitly assume that the
sequences cm[n], cm�1[n] and dm�1[n] are of in�nite length. If the equations are applied to
�nite length sequences, undesirable edge e�ects will occur. Figure 9 shows the image of a
geometric pattern and then the lowpass subband after a two level wavelet transform using
zero padding at the edges and the Daubechies D4 wavelet. Note that serious artifacts are
introduced at the edges.
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Figure 9. (a) Geometric image with symmetry (b) Lowpass subband after 3 level

D4 wavelet decomposition showing artifacts produced by using zero

padding at edges

Our goal, therefore, is to develop a discrete wavelet transform which can be applied to
�nite length sequences without producing edge e�ects.

Assume that we are given a �nite length sequence, cm[n], which is zero outside the
interval 0 � n � L�1, where the length of the sequence, L, is a power of 2. In order to apply
equations (96) and (97), we require the sequence values cm[L]; cm[L+1]; � � � ; cm[L+N �3].
The fact that these values are zero instead of representing a smooth continuation of the
sequence is the underlying reason for the appearance of edge e�ects in the decomposed
data. To eliminate edge e�ects in the discrete wavelet transform, therefore, we need to
extrapolate the sequence cm[n] at the right boundary of the interval [0; L� 1].

A somewhat similar situation exists with the inverse discrete wavelet transform. In
order to apply equation (98), we require the sequence values cm�1[�N=2+1]; cm�1[�N=2+
2]; � � � ; cm�1[�1] and dm�1[�N=2+1]; dm�1[�N=2+2]; � � � ; dm�1[�1]. However, in order to
determine these values in the �rst place using equations (96) and (97), we need the sequence
values cm[�N + 2]; cm[�N + 3]; � � � ; cm[�1]. Thus, to eliminate edge e�ects in the inverse

discrete wavelet transform, we must extrapolate the sequence cm[n] at the left boundary of
the interval [0; L� 1] before applying the original forward discrete wavelet transform.

6.3 The Extrapolated Discrete Wavelet Transform

The aim of the extrapolated discrete wavelet transform is to use the given �nite length scale
m sequence, cm[n] ; n = 0; 1; 2; � � � ; L�1, to obtain two �nite length scale m�1 sequences:
a coarse resolution sequence, cm�1[n] ; n = �N=2+ 1;�N=2+ 2; � � � ; L=2� 1, and a detail
sequence, dm�1[n] ; n = �N=2 + 1;�N=2 + 2; � � � ; L=2� 1.

We start by regarding the given sequence, cm[n] ; n = 0; 1; 2; � � � ; L � 1, as the scaling
function coeÆcients of a function f(x) at scale m. The scale m scaling functions, �m;k(x) =

2m=2�(2mx� k), span a subspace, Vm, of the space of square integrable functions, L
2(R).

Then the projection of f(x) onto Vm is

Pmf(x) =
1X

k=�1
cm[k] �m;k(x) (99)

Using the transformation F (y) = f(x) where y = 2mx, we obtain

PmF (y) = 2m=2
1X

k=�1
cm[k] �(y � k) (100)

22



Note that while the index k in equations (99) and (100) implicitly runs from �1 to 1, we
are only concerned with the coeÆcients cm[n] for n = �N+2;�N+3; � � � ; L+N�4; L+N�3
i.e. the given data as well as the sequence values to be obtained by extrapolation.

6.3.1 Extrapolation at the left boundary

The weightings of the transform coeÆcients at a given point are not symmetric and therefore
the algorithm for the left and the right boundaries are di�erent.

Figure 10 illustrates the scalem scaling functions, �m;k(x) ; k = �N+2;�N+3; � � � ;�1,
which are associated with the sequence values to be extrapolated at the left boundary, for
the case N = 6. We refer to these scaling functions as the exterior scaling functions at
the left boundary at scale m. Figure 11 illustrates the scaling functions, �m�1;k(x) ; k =
�N=2 + 1;�N=2 + 2; � � � ;�1. These are the exterior scaling functions at scale m � 1. For
clarity, the scaling functions are represented by triangles.

Figure 10. D6 scaling functions associated with the data at scale m around the

left boundary

Figure 11. D6 scaling functions associated with the data at scale m�1 around the

left boundary

Recall that the N coeÆcient Daubechies scaling function has p = N

2
vanishing moments,

and that its translates can be combined to give exact representations of polynomials of order
p�1. Assume now, that F (y) has a polynomial representation of order p�1 in the vicinity
of the left boundary, y = 0. Considering a polynomial expansion about y = 0, we have

PmF (y) = 2m=2
X
k

cm[k] �(y � k) =

p�1X
l=0

�l y
l (101)
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where �l are constant coeÆcients. By taking the inner product of equation (101) with
�(y � k), we obtain

cm[k] = 2�m=2
p�1X
l=0

�l �
l

k (102)

where �l
k
are the moments of the scaling function:

�l
k
=
D
yl; �(y � k)

E
(103)

The moments of the scaling function are easily calculated from the following recursion:

�00 =

Z 1

�1
�(y) dy = 1 (104)

�l0 =
1

2(2l � 1)

l�1X
i=0

�
l

i

� N�1X
k=0

a[k] kl�i
!
�i0 (105)

�lk =

lX
i=0

�
l

i

�
kl�i �i0 (106)

Equation (102) may now be used to determine the polynomial coeÆcients, �l, from the
given sequence. Let M be the number of sequence values to be used in determining these
coeÆcients. Then we have a linear system of the form:

2�m=2

2
66664

�00 �10 � � � �
p�1
0

�01 �11 � � � �
p�1
1

...
... � � � ...

�0
M�1 �1

M�1 � � � �
p�1
M�1

3
77775

2
6664

�0
�1
...

�p�1

3
7775 =

2
6664

cm[0]
cm[1]
...

cm[M � 1]

3
7775 (107)

Note that we require M � p in order to determine �l. There is some exibility, however, in
the exact choice of the parameter M and this will be addressed subsequently. For M > p,
it is necessary to �rst form the normal equations, which take the form

2�m=2ATAx = ATb (108)

The normal equations yield a least squares solution of the form

x = 2m=2
�
ATA

��1
ATb (109)

Let �l;i denote the elements of the p �M matrix
�
ATA

��1
AT . Then we obtain the

following expression for the polynomial coeÆcients:

�l = 2m=2
M�1X
i=0

�l;i cm[i] ; l = 0; 1; � � � ; p� 1 (110)

We may now extrapolate the given sequence at the left boundary by substituting equation
(110) into equation (102). Then the coeÆcients of the scale m exterior scaling functions
are

cm[k] =
M�1X
i=0

�k;i cm[i] ; k = �N + 2;�N + 3; � � � ;�1 (111)
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where

�k;i =

p�1X
l=0

�l;i �
l

k ; k = �N + 2;�N + 3; � � � ;�1

i = 0; 1; � � � ;M � 1 (112)

Now consider the multiresolution decomposition equation. For an exterior scaling func-
tion at scale m� 1, equation (96) can be split into two parts:

cm�1[n] =
1p
2

�1X
k=2n

cm[k] a[k � 2n] +
1p
2

2n+N�1X
k=0

cm[k] a[k � 2n] (113)

n = �N=2 + 1;�N=2 + 2; � � � ;�1
The �rst sum only involves the exterior scaling functions at scale m. Substituting equation
(111) into the �rst sum, we arrive at the following multiresolution decomposition for the
exterior scaling functions at scale m� 1

cm�1[n] =
1p
2

2n+N�1X
k=0

cm[k] a[k � 2n] +
1p
2

M�1X
k=0

cm[k] �2n;k ;

n = �N=2 + 1;�N=2 + 2; � � � ;�1 (114)

where

�l;i =

�1X
k=l

�k;i a[k � l] ; l = �N + 2;�N + 4 � � � ;�2

i = 0; 1; � � � ;M � 1 (115)

Equation (114) represents the required modi�cation to equation (96) at the left boundary.
A similar process leads to the required modi�cation for equation (97) at the left boundary:

dm�1[n] =
1p
2

2n+N�1X
k=0

cm[k] b[k � 2n] +
1p
2

M�1X
k=0

cm[k] �2n;k ;

n = �N=2 + 1;�N=2 + 2; � � � ;�1 (116)

where

�l;i =
�1X
k=l

�k;i b[k � l] ; l = �N + 2;�N + 4 � � � ;�2

i = 0; 1; � � � ;M � 1 (117)

Note that the modifying coeÆcients �l;i and �l;i appear as localized blocks of size

(N
2
� 1)�M in the extrapolated discrete wavelet transform matrix.

6.3.2 Extrapolation at the right boundary

The extrapolation process at the right boundary is similar in principle to that at the left
boundary. However, there are a few di�erences, which arise mainly due to the asymmetry of
the Daubechies �lter coeÆcients and scaling functions. The reader is referred to Williams
and Amaratunga [21] for further details.
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6.4 Choice of the Extrapolation Parameter

The extrapolated discrete wavelet transform described above takes a sequence of length L at
scale m and transforms it into two sequences at scale m�1 whose total length is L+N �2.
The scale m � 1 sequences contain all the information that is required to reconstruct the
original scale m sequence using the standard inverse discrete wavelet transform, provided
that the extrapolation parameter, M , is suÆciently large.

For example, the smallest value of the extrapolation parameter required to solve equa-
tion (107) is M = p, where p is the number of vanishing moments. This might seem like
an appropriate choice because the polynomial coeÆcients �l will be based on an \exact"
solution to equation (107), as opposed to a least squares solution. However, when the dis-
crete wavelet transform matrix is constructed using this choice of extrapolation parameter,
we �nd that it is rank de�cient [21] i.e it does not have L linearly independent rows. This
means that we could never �nd an inverse transform which would perfectly reconstruct the
original sequence.

Our numerical experiments indicate that a suitable choice for the extrapolation param-
eter is M = N . With this choice we are always able to obtain perfect reconstruction. Of
course, it is possible to use larger values of M , e.g. to smooth out random variation in the
data, but this will limit the size of the smallest transform that can be performed with a
given �lter length, N . In general, however, the choice M = N is recommended.

6.4.1 Multiresolution reconstruction algorithm

Once the sequences cm�1[n] and dm�1[n] for n = �N=2 + 1;�N=2 + 2; � � � ; L=2 � 1 have
been fully recovered as outlined in the preceding section, the standard multiresolution re-
construction equation i.e. equation (98) may be applied to reconstruct the original sequence
values cm[n] ; n = 0; 1; 2; � � � ; L� 1.

Note that the inverse transformation described above gives perfect reconstruction of the
original data.

6.5 Comparison of the Wavelet Extrapolation Approach with Conventional
Methods

In order to compare the wavelet extrapolation approach with conventional methods, we
consider the action of the Daubechies 4-coeÆcient Discrete Wavelet Transform on a vector
of length 8. The input vector is chosen to consist of the �rst 8 scaling function coeÆcients
for the ramp function, f(x) = x, at scale m = 0, i.e.

�
0:6340 1:6340 2:6340 3:6340 4:6340 5:6340 6:6340 7:6340

�T
(118)

Note that these scaling function coeÆcients can be computed exactly using either the
moment method or the quadrature method.

The entries in the 8� 8 reduced extrapolated DWT matrix for N = 4 are:

2
66666666664

0:4830 0:8365 0:2241 �0:1294 0 0 0 0
0 0 0:4830 0:8365 0:2241 �0:1294 0 0
0 0 0 0 0:4830 0:8365 0:2241 �0:1294
0 0 0 0 �0:0085 0:0129 0:5174 0:8924

0:4441 �0:6727 0:0129 0:2156 0 0 0 0
�0:1294 �0:2241 0:8365 �0:4830 0 0 0 0

0 0 �0:1294 �0:2241 0:8365 �0:4830 0 0
0 0 0 0 �0:1294 �0:2241 0:8365 �0:4830

3
77777777775
:

(119)
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The output vector of transform coeÆcients associated with this matrix is of the form

�
c�1[0] c�1[1] c�1[2] c�1[3] d�1[�1] d�1[0] d�1[1] d�1[2]

�T
(120)

The redundant coeÆcients c�1[�1] and d�1[3] are not explicitly computed by the DWT,
since they can be recovered during the inverse transformation stage. However, we consider
the full set of transform coeÆcients when comparing wavelet extrapolation to conventional
methods.

Tables 1 and 2 compare the low pass and high pass transform coeÆcients corresponding
to the circular convolution approach, the symmetric extension approach and the wavelet
extrapolation approach. Symmetric extension was performed in two ways: with duplication
and without duplication of the boundary samples. The low pass and high pass transform
coeÆcients are also plotted in Figures 12(a) and 12(b). These results con�rm that the
wavelet extrapolation approach correctly operates on (N=2 � 1)th order polynomial data,
by producing low pass transform coeÆcients which also correspond to an (N=2�1)th order
polynomial, and high pass transform coeÆcients which are precisely equal to zero.

k Circ. Symm. ext. Symm. ext. Wavelet
conv. (with dup.) (w/o dup.) extrap.

-1 9.5206 1.2501 2.5696 -1.0353
0 1.7932 1.7932 1.7932 1.7932
1 4.6216 4.6216 4.6216 4.6216
2 7.4500 7.4500 7.4500 7.4500
3 9.5206 10.4425 10.3478 10.2784

Table 1. Low pass D4 transform coeÆcients, c�1[k], for the ramp function

k Circ. Symm. ext. Symm. ext. Wavelet
conv. (with dup.) (w/o dup.) extrap.

-1 -2.8284 -0.6124 -0.9659 0.0000
0 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 -2.8284 0.6124 0.2588 0.0000

Table 2. High pass D4 transform coeÆcients, d�1[k], for the ramp function

The changes due to wavelet extrapolation only a�ect localized blocks in the DWT
matrix: an (N/2-1)*M block at the bottom right of the low pass submatrix, and another
(N/2-1)*M block at the top left of the high pass submatrix. Both are independent of the
number of data points, L. The order of complexity of the algorithm remains linear ie. O(L).

6.6 Application to Images

In this section, examples are presented of the extrapolated DWT applied to image data.
These examples will clearly show how the extrapolated DWT eliminates visible edge e�ects
from the transformed images.

In Figure 13, a 512� 512 image was decomposed two levels with a Daubechies 10-tap
�lter, using a Discrete Wavlelet Transform based on circular convolution. Only the coarse
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(a) (b)

Figure 12. (a) Low pass D4 transform coeÆcients, c�1[k] and (b) High pass D4

transform coeÆcients, d�1[k], for the ramp function

(a) (b)

Figure 13. Coarse resolution subband after two levels of decomposition with a D10

wavelet (a) using DWTwith circular convolution (b) using extrapolated
DWT algorithm

resolution subband is shown here. Notice the presence of edge e�ects, along the right hand
edge and the bottom edge of the subband image, which result from the false discontinuity
introduced by wrapping the image around a torus. Figure 13(b) shows the result when the
same steps are performed using the extrapolated Discrete Wavelet Transform algorithm,
with all other parameters unchanged. No edge e�ects are apparent in this case.

Often in image processing applications, the image is broken down into blocks and each
block is processed separately. In this case, the presence of edge e�ects is far more apparent.
In the example of Figure 14(a), a 512 � 512 image was broken down into four blocks.
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(a) (b)

Figure 14. Composite image derived from coarse resolution subbands of four image

blocks. Each block was decomposed two levels with a D10 wavelet

(a) using DWT with circular convolution (b) using extrapolated DWT

algorithm

Each block was processed separately using a two stage Discrete Wavelet Transform using
circular convolution with a 10-tap Daubechies �lter. Shown in the �gure is a composite
image obtained by piecing together the four coarse resolution subbands. The edge e�ects in
this example are considerably more disturbing since they now produce artifacts along the
horizontal and vertical centerlines of the composite image. Using the extrapolated Discrete
Wavelet Transform algorithm, with all other parameters unchanged, these image artifacts
can be substantially eliminated, as shown in Figure 14(b).

Figure 15 shows the coarse resolution and the detail subbands resulting from a two stage
decomposition of a 512� 512 image with a Daubechies 10-tap �lter using the extrapolated
Discrete Wavelet Transform algorithm. In the detail subbands, the zero and small positive
coeÆcients appear dark, while the small negative coeÆcients appear light.

7 WAVELETGALERKIN SOLUTION OF PARTIAL DIFFERENTIALEQUA-
TIONS

In the Wavelet-Galerkin method we choose both the test function and the trial functions
to be wavelet basis functions. The solution to the di�erential equation is therefore approx-
imated by a truncated wavelet expansion, with the advantage that the multiresolution and
localization properties of wavelets can be exploited. The exact choice of wavelet basis is
governed by several factors including the desired order of numerical accuracy, computa-
tional speed and other constraints such as scale decoupling. The following attributes are
desirable:

Compact Suppport

Compact wavelets perform well at resolving high gradients. Also they can be used to
implement adaptive re�nement schemes. Shorter wavelets also allow faster computation
with the constant multiplying the order of complexity being directly proportional to the
wavelet support.
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Figure 15. Two stage decomposition of image with a D10 wavelet using extrapo-

lated DWT algorithm

Polynomial Degree

The wavelet basis can be chosen to match exactly a polynomial up to a given degree. This
is called by Strang the accuracy condition. The accuracy of the polynomial expansion that
the wavelet basis can match is reected in the number of vanishing moments of the wavelet.
It also determines the number of terms of the Taylor series which can be captured.

The Wavelet-Galerkin method usually leads to integrals involving wavelets or scaling
functions and their derivatives. Latto, Resniko� and Tenenbaum [14] refer to these integrals
as connection coeÆcients. The derivatives of wavelets and scaling functions are often highly
discontinuous functions, and the accurate evaluation of the connection coeÆcients is a key
part of the solution process. In many cases the required integrals can be evaluated exactly or
computed to within roundo� error by solving an eigenvalue problem, as described previously.

7.1 Single Scale Wavelet Galerkin Method

In the single scale Wavelet Galerkin method we seek an approximation to the true solution,
u(x) 2 L2(R), in the subspace Vm. The computed solution is constrained to be in Vm in a
Galerkin sense and therefore it will generally not be the same as the orthogonal projection,
Pmu(x), of the true solution onto Vm.

In order to demonstrate the Wavelet Galerkin method we consider the periodic one-
dimension problem:

u;xx = f x 2 [0; 1]

with u(0) = u(1) and

Z 1

0
u(x)dx = 0 (121)

We seek a solution in Vm, so that

um(x) =
L�1X
k=0

cm[k]�
p1
m;k

(x); L = 2m (122)
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where �
p1
m;k

(x) represents the periodized scaling function:

�
p1
m;k

(x) =
1X

r=�1
�m;k(x� r) (123)

with k andm being the usual translation and scaling parameters. By substituting for um(x)
and performing the Galerkin weighting using �m;n(x) as test functions, we obtain a system
of equations which involves integrals of the form


[n] =

Z 1

�1
�00(x)�(x� n)dx (124)

and

gm[n] =

Z 1

�1
f(x)�m;n(x) (125)

We note that 
 can have non zero values for �N + 2 � n � N � 2, since Daubechies
scaling function, �(x), and its derivatives are supported only on the interval 0 < x < N �1.

Using the above notation for the integrals, the Galerkin equations may be written as

22m
L�1X
k=0

cm[k]

pL[n� k] = gm[n]; n = 0; 1; 2; ::; L� 1 (126)

where 
pL[n] represents the sequence 
[n] replicated with period L:


pL[n] =
1X
�1


[n� rL] (127)

We assume here that L is suÆciently large to avoid aliasing i.e. L � 2N � 3. If we now
de�ne

wL


[n] =

8<
:


[n] 0 � n � N � 2

[n� L] L�N + 2 � n � L� 1
0 otherwise ;

(128)

we see that the above equation is in fact an L-point circular convolution:

22mcm[n] L wL


[n] = gm[n] ; n = 0; 1; 2; � � � ; L� 1 : (129)

Hence, this problem can be solved eÆciently by using the Discrete Fourier Transform (DFT).

7.2 The Orthogonal Multiscale Wavelet-Galerkin Method

In the previous section, we solved the di�erential equation at a single scale by looking for
a solution in Vm. However, we know that

Vm = Vm�1
M

Wm�1 (130)

Hence, an alternative solution strategy is to seek a numerical solution with components
in Vm�1 and Wm�1. The two components can subsequently be combined to obtain a
numerical solution in Vm. This two-scale strategy can be extended to multiple scales based
on the recursive nature of equation (130):

Vm = Vm0

M
Wm0

M
Wm0+1

M
� � �
M

Wm�1 ; m0 < m : (131)
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Consider now the multilevel Wavelet Galerkin solution to the equation

u;xx = f x 2 [0; 1]

with u(0) = u(1) and

Z 1

0
u(x)dx = 0 (132)

The solution at scale m can be expressed as the sum of the projection onto the scaling
function space Vm�1 and the projection onto the wavelet space Wm�1 i.e. um = um�1 +
vm�1.

um�1(x) =

M�1X
k=0

cm�1[k] �
p1
m�1;k(x) ; (133)

vm�1(x) =

M�1X
k=0

dm�1[k]  
p1
m�1;k(x) ; (134)

Weighting �rst with the scaling function as the test function and then with the wavelet
as the test function we get:

M�1X
k=0

cm�1[k] 
pM [n� k] +
M�1X
k=0

dm�1[k] pM [n� k] = 2�2(m�1)gm�1[n] ; (135)

M�1X
k=0

cm�1[k] �pM [n� k] +
M�1X
k=0

dm�1[k] �pM [n� k] = 2�2(m�1)sm�1[n] : (136)

where


[n] =

Z 1

�1
�00(x) �(x� n) dx ; �[n] =

Z 1

�1
 00(x)  (x� n) dx ; (137)

�[n] =

Z 1

�1
�00(x)  (x� n) dx ; [n] =

Z 1

�1
 00(x) �(x� n) dx ; (138)

gm�1[n] =
Z 1

�1
f(x)�m�1;n(x)dx ; sm�1[n] =

Z 1

�1
f(x) m�1;n(x)dx : (139)

All of these integrals may be computed using techniques described in Section 5.2.
Once the solution components um�1(x) and vm�1(x) have been determined, the total

solution may be determined as

um(x) = um�1(x) + vm�1(x) : (140)

7.3 Equivalence Between the Single Scale and Multiscale Matrix Forms

A particularly simple way to recognize the equivalence between the single scale formulation
and the multiscale formulation is to express the wavelet-Galerkin equations in matrix form.
For the single scale formulation, we may represent equation (129) as

22m 
m cm = gm ; (141)
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where 
m denotes the L-circulant matrix whose �rst column is the vector wL


[n] for n =
0; 1; 2; � � � ; L� 1.

We denote a single iteration of the orthogonal circular DWT by the matrix

W = 1p
2

�
H
G

�
; (142)

where H and G represent the highpass and lowpass �ltering/downsampling operations
respectively. Multiplying both sides of equation (141) by W and making use of the orthog-
onality condition, W TW = I, we have

22m(W
mW
T ) (Wcm) =Wgm : (143)

The term W
mW
T represents the two-dimensional DWT of 
m. Similarly, the terms

Wcm andWgm represent the one-dimensional DWTs of the vectors cm and gm respectively.
Hence equation (143) becomes

22(m�1)
�

m�1 m�1
�m�1 �m�1

� �
cm�1
dm�1

�
=

�
gm�1
sm�1

�
; (144)

where


m�1 = 2 H
mH
T ; m�1 = 2 H
mG

T ; (145)

�m�1 = 2 G
mH
T ; �m�1 = 2 G
mG

T ; (146)

Note also that 
m�1, �m�1, �m�1 and m�1 are the M -circulant matrices whose �rst
columns are respectively given by the vectors wM


 [n], wM

� [n], wM

�
[n] and wM

 [n], n =

0; 1; 2; � � � ;M � 1. Equation (144) can thus be seen to be the matrix form of the two-scale
equations.

The application of another iteration of the DWT to equation (144) will produce a system
of the form2

64 22(m�2)
m�2 22(m�2)m�2
22(m�2)�m�2 22(m�2)�m�2

22(m�1)avem�1
22(m�1)det

m�1
22(m�1)�ave

m�1 22(m�1)�det
m�1 22(m�1)�m�1

3
75
2
4 cm�2
dm�2
dm�1

3
5 =

2
4 gm�2
sm�2
sm�1

3
5 : (147)

The key observation here is to note that while the matrix 
m�1 undergoes a 2D DWT, the
matrices �m�1 and m�1 respectively undergo 1D DWTs on their rows and columns, while
the matrix �m�1 remains unchanged. The matrix in equation (147) is typically referred
to as the standard form of the wavelet-Galerkin matrix (see Reference [22].) In designing
algorithms for the solution of the multiscale equations, we may often avoid explicitly forming
the matrices �ave

m 1, �
det

m 1, 
ave

m�1 and 
det

m�1. Such algorithms lead to non-standard forms of
the wavelet-Galerkin matrix.

7.4 Di�erence Between the Computed Solution and the Orthogonal Projection
of the True Solution

The matrix form (144) can be used to explain why the numerical solution, um(x), computed
by the wavelet-Galerkin method is generally not the same as the orthogonal projection,
Pmu(x), of the true solution onto the subspace Vm. For example, if we were to formulate
the single scale equations at scale m� 1, we would have

22(m�1) 
m�1 ~cm�1 = gm�1 (148)
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and the solution would be represented by ~cm�1. A corresponding scale m � 1 multiscale
formulation would yield an equivalent result which is the DWT of ~cm�1. If we now compare
equation (148) with the scale m two-scale formulation, equation (144), we see that

cm�1 = ~cm�1 +�cm�1 ; (149)

where


m�1 �cm�1 = �m�1 dm�1 : (150)

This means that the introduction of another level of detail, dm�1, to the scale m � 1
formulation must be accompanied by an update, �cm�1, to the scale m � 1 solution,
~cm�1. Since the updated coeÆcients, cm�1, correspond to a �ner scale formulation than the
coeÆcients ~cm�1 do, we expect that cm�1 will be a better approximation to the expansion
coeÆcients of Pm�1u(x). The introduction of even more levels of detail to the scale m �
1 formulation will result in further updates to ~cm�1, so that in the limit, the updated
coeÆcients will be equal to the expansion coeÆcients of Pm�1u(x).

Note that the reason for the di�erence between cm�1 and ~cm�1 is the presence of the
term m�1 and the related term �m�1 in equation (144), which couple cm�1 to the detail
dm�1. In formulating the scale m�1 equations, we neglected both of these coupling terms.
This argument can be extended to explain the di�erence between um�1(x) and Pm�1u(x).

7.5 Iterative Methods for Solving the Multiscale Wavelet-Galerkin Equations

Decoupling of the scales in the multiscale wavelet-Galerkin equations is possible only for
a restricted class of problems. For the more general case where scale decoupling is not
possible, iterative methods of solution often perform better than direct methods. Here, we
discuss how the multiscale structure may be exploited to develop fast hierarchical iterative
algorithms. We illustrate these ideas using the model problem

u00(x) + u(x) = f(x) x 2 [0; 1] (151)

with u(0) = u(1) (152)

and we observe that an L-point discretization of the di�erential equation can be solved in
O(L) operations, even in the absence of scale decoupling. The key to obtaining an O(L)
algorithm is the use of diagonal preconditioning (Beylkin [16].)

7.6 Diagonal Preconditioning

Diagonal preconditioning has the e�ect of redistributing the eigenvalues corresponding to
a linear system of equations. A more even distribution of eigenvalues leads to a smaller
condition number, which in turn accelerates the convergence of many iterative algorithms.

Consider an L-point single scale orthogonal wavelet-Galerkin discretization of equation
(151):

(22m
m + I) cm = gm ; L = 2m : (153)

The wavelet-Galerkin matrix, Ksingle = 22m
m + I, has a condition number, �, whose

growth is experimentally determined to be O(L2). (Recall that the condition number of
the three-point �nite di�erence matrix exhibits similar growth.)

Let W denote the (m�m0)-stage orthogonal DWT, where m0 represents the coarsest
scale. Then the corresponding multiscale equations are given by

h
W (22m
m + I)W T

i
(Wcm) = (Wgm) : (154)
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Since W is an orthogonal matrix, it has condition number 1. Thus, the multiscale
wavelet-Galerkin matrix, Kmultiple = W (22m
m + I)W T , has the same condition number,
�, as the single scale matrix, Ksingle.

Now de�ne the diagonal matrix, D, whose nonzero elements are

D[k][k] =

�
1 0 < k < 2m0 � 1

1=2i 2m0+i�1 < k < 2m0+i � 1 for i = 1; 2; � � � ;m�m0 :
(155)

Using D as a diagonal preconditioner in equation (154), we obtain the preconditioned
multiscale equationsh

DW (22m
m + I)W TD
i
(D�1Wcm) = (DWgm) : (156)

The preconditioned multiscale matrix, Kprec = DW (22m
m + I)W TD, has a condition
number, �prec, whose growth is experimentally determined to be O(1). Figure 16 compares

the O(L2) growth of � with the O(1) growth of �prec. These results were obtained using
Daubechies' 6-coeÆcient wavelets, with coarsest scale m0 = 4.

Experiments were performed with a more general diagonal preconditioner of the form

D[k][k] =

�
1 0 < k < 2m0 � 1

1=P i 2m0+i�1 < k < 2m0+i � 1 for i = 1; 2; � � � ;m�m0 ;
(157)

which was applied to the multiscale wavelet-Galerkin matrix, Kmultiple, corresponding to
Daubechies' 6-coeÆcient wavelets, with m = 7 and m0 = 4. The resulting condition
numbers for P 2 [1; 3] are illustrated in Figure 17. Based on these results, we �nd that the
choice P = 2 is very close to optimal. This is the choice used by Beylkin [16].

7.7 Hierarchical Solution Using Krylov Subspace Iteration

We consider the solution of the preconditioned multiscale equations, (156), using the con-
jugate gradient method. This method requires O(

p
�prec) iterations to converge. Thus the

number of iterations required is O(1). The conjugate gradient method does not require
the explicit formation of the matrix Kprec, but instead requires the computation of matrix-
vector products of the form, Kprecy. Hence, a considerable saving in cost can be obtained
by forming the matrix-vector products using the following sequence of operations:

Kprecy = D(W (Ksingle(W
T (Dy)))) : (158)

With this approach, each matrix-vector product requires approximately (6N�1)L mul-
tiplications, where N is the wavelet �lter length. Since the conjugate gradient method
requires one matrix-vector product per iteration, the total cost of solving the precondi-
tioned multiscale equations is only O(L). By contrast, direct assembly of Kprec could

require as many as (4N + 2)L2 multiplications, in addition to the cost of forming Kprecy.

The result of solving the preconditioned multiscale equations is the vector D�1Wcm. The
computation of the solution from this vector is a trivial task.

In a non-hierarchical solution scheme we compute the solution, cm, to the discrete
form (153) for a single value of m. We use the null vector as an initial guess in the
conjugate gradient method, in the absence of better information. On the other hand,
with a hierarchical approach, the solution is computed for all resolutions up to scale m,
starting with the coarsest scale m0. Each time we progress to a new scale, we may use the
information from the previous scale as the initial guess in the conjugate gradient method.
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Figure 18. Cost comparison of hierarchical and non-hierarchical approaches us-

ing conjugate-gradient iteration. The hierarchical method has the ad-
vantage that all coarser resolution solutions are computed during the

solution process

As a particular example, we considered the solution of equation (151) with

f(x) = [16384(2x� 1)2 � 255]exp(�32(2x� 1)2) : (159)

This example was chosen because the solution, u(x), has a broad frequency spectrum,
and so each scale contributes to the computed solution. For the non-hierarchical method,
we computed the operations count for each m in the range [4; 12]. For the hierarchical
approach, we chose m0 = 4 and m = 12 and computed the cumulative operations count
for each scale. The comparative performance of the two approaches is shown in Figure 18.
This indicates that the hierarchical algorithm can compute all solutions from scale m0 to
scale m in approximately the same time that the non-hierarchical algorithm requires to
compute the scale m solution alone.

7.8 The Wave Equation in Two Dimensions

We illustrate the application of the wavelet-Galerkin method to time-dependent partial
di�erential equations by considering the two-dimensional wave equation

@2

@t2
u(x; y; t) = c2�u(x; y; t) (160)

with u(0; y; t) = u(1; y; t) ; (161)

u(x; 0; t) = u(x; 1; t) (162)

and u(x; y; 0) = u0(x; y) : (163)
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The scheme developed here uses the orthogonal Daubechies wavelet-Galerkin approach for
the spatial discretization of the problem, and a �nite di�erence approach for the temporal
discretization. The spatial numerical approximation to the solution has the form

um(x; y; t) =
L�1X
k=0

L�1X
l=0

cm[k][l] �
p1
m;k

(x)�
p1
m;l

(y) ; L = 2m ; (164)

where the expansion coeÆcients, cm[k][l], are continuous functions of time. Using the test
functions �m;p(x)�m;q(y), we obtain the wavelet-Galerkin equations

d2

dt2
cm[p][q] = 22mc2

L�1X
k=0

cm[k][q] 

pL[p� k] + 22mc2

L�1X
l=0

cm[p][l] 

pL[q � l] (165)

for p; q = 0; 1; 2; � � � ; L � 1. Here, 
pL[n] are the periodized connection coeÆcients for the
second derivative operator (see Section 7.1.) Letting Cm denote the matrix whose (p; q)th
element is cm[p][q], we have the compact matrix representation

d2

dt2
Cm = 22mc2

�

m Cm + Cm 
T

m

�
: (166)

Equation (166) represents a coupled linear system. In order to decouple this system, we
use the two-dimensional Discrete Fourier Transform (DFT). The 2D L�L-point DFT and
its inverse are de�ned by equations (167) and (168) respectively,

v[r][s] =
L�1X
p=0

L�1X
q=0

cm[p][q] w
�rpw�sq ; (167)

cm[p][q] =
1

L2

L�1X
r=0

L�1X
s=0

v[r][s] wrpwsq ; (168)

where w = ej2�=L. Applying the 2D L� L-point DFT to both sides of equation (165), we
obtain a decoupled system of the form

d2

dt2
v[r][s] = �[r][s] v[r][s] ; r; s = 0; 1; 2; � � � ; L� 1 ; (169)

where

�[r][s] = 22mc2
 
L�1X
k=0


pL[k] w�rk +
L�1X
l=0


pL[l] w�sl
!
: (170)

Assuming that L is suÆciently large to avoid aliasing i.e. L > 2N � 3, where N is the
length of the wavelet �lter, and using the fact that 
[n] = 
[�n] for the second derivative
operator, we may rewrite �[r][s] as

�[r][s] = 22mc2
(
2
[0] + 2

N�2X
k=1


[k] [cos(2�rk=L) + cos(2�sk=L)]

)
: (171)

Hence we �nd that �[r][s] lies on the real axis within the closed interval [�22mc2RN ; 0],
where RN is a positive constant which depends on the �lter length, N . Table 3 shows the
computed values of RN for various �lter lengths.
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N RN

6 28.038
8 22.331
10 20.772
12 20.186
14 19.939
16 19.831
18 19.782
20 19.759

Table 3. Values of the constant RN for various �lter lengths, N .

In order to integrate equations (169), we rewrite them as a �rst order system of ODEs,
i.e.

d

dt

�
v
_v

�
=

�
0 1
� 0

� �
v
_v

�
(172)

for each v = v[r][s] and � = �[r][s]. The matrix of equation (172) has eigenvalues �1; �2 =

�
p
�. Based on our knowledge of �[r][s], these eigenvalues lie on the imaginary axis within

the closed interval [�2mcpRNj; 2
mc
p
RNj]. The time integration scheme used to integrate

(172) must therefore have a stability region which includes this portion of the imaginary
axis.

As a particular example, we consider the trapezoidal time integration rule, which is
marginally stable for eigenvalues on the imaginary axis. The initial conditions were chosen
to be

u0(x; y) = e�200[(x�1=2)
2+3(y�3=4)2] (173)

and the wave speed, c, was taken to be 0:075 units/sec. We used Daubechies' 6-coeÆcient
wavelets, with a spatial discretization at scale m = 7 and a time step �t = 0:05 sec. The
time evolution of the inital waveform is illustrated in Figure 19.

7.9 General Solution Strategies

In general, the solution of the system of equations arising out of a single scale discretization
of a di�erential equation will be a relatively straightforward task. For example, the single
scale discretization of equation (121) resulted in the linear system, equation (141), in which
the matrix 
m has a sparse structure. In fact, this system bears a close resemblance to the
linear system arising out of a �nite di�erence discretization of the problem, if we think of

m as being a di�erence operator on the scaling function coeÆcients, cm. The solution of
equation (141) is an O(L logL) procedure when the FFT is used. On the other hand, if
the system is solved using Krylov subspace iteration, e.g. conjugate gradient or conjugate
residual, then the solution of equation (141) is typically an O(L2) procedure, since the cost
of applying 
m to an arbitrary vector is O(L), as is the number of iterations. (Note that

m is symmetric for the particular example considered in Section 7.1, but since its rows
sum to zero, it is only positive semide�nite. The nullspace of 
m has dimension 1, and it
consists of constant vectors. Therefore, Krylov subspace iteration typically returns a result
which is within a constant of the zero mean solution, cm. To get cm from this result simply
involves subtracting out the mean value.)

Multiscale discretizations tend to be more involved than single scale discretizations.
However, the multiscale approach o�ers additional exibility by facilitating hierarchical

39



282 1>.:. AlIlaral UU!-(<I aud .I.H. \\'illiallls

0.5

o

-0.5

-1
1

0.5

o

-0.5

-1
1

2.00001

0.8 1

0.6 ~

0.4 '''-",,- ~ .0.5

0.2~
o 0

0.8
OJI

0.5

-1
1

1·

0.5

o

-0.5

-1
1

0.8 0.8
0.6 "-.,.

0.4
0.2

o 0

0.5

6.0000.

0.6
0.4

0.2
o 0

0.5

8.0000 •

Figure 19. \Van>ll't.-Galerkiu Solutiou of \\"aw El111atiou

and adaptive solution strategies. Tlw discussion of tlw pl'(~ceding sections suggl'sts sl'wral
general solution strategies f(Jr solving multiscal(~ equations.

1. Nou-h:ic'f'(J,1'(;hical (J,pp1'O(J,che.'i. In a non-hierarchical approach. tlw goal is t.o COlll
putI' tlw lllllnerical solution. 1/,1/1(:1:). for a single vahw of 1T/.. wlwl'<' 'ITI. might. 1)('
chosen to' satisfy an (J, IJ7'i(wi accuracy estilllate. In cOlllputing tlw (·onlI)(HH'nt.s.
Gm (), d1llo , dmo+ I ••.. ,dm - I • of tlw solution vector. no particular prpfen~nce is given
to computing the low frequency components first. since all component.s an> lll'l~clecl

in order to determine '/lin (;r.). A non-hierarchicaJ approach can })(' illlpknwnt.(~d using
either a single scale formulation or a lllultiscah· f(H'lnulation. so consideration lH'eds
to })(' given to whether the f()l'lnation of the nlllltiscak equations is .iustifi(~d. If we
have (J, IJ7'i01"i knowledge of the behavior of the solution. as f()r eXlunph~ in t.he case
of stl'(~SS concentrations around a hole in a stressed Plastic plate. then tlw forlllation
of the multiseale equations will allow us to eliminate sonH' of tlw degrpes of fre(~d(Jlll

whkh (10 not lie within the region of high gradient.

13eylkin. Coifman and Rokhlin [22] have devPloped fast algorithms f(n' tlw applicatioll
of the multiHcale wavelet-Galerkill diffenmtial operator (awl othpl' oIH'rators) 1.0 al'-
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bitrary vectors. This can signi�cantly improve the performance of iterative solution
schemes, where the key component is typically a matrix-vector multiplication. The
algorithms focus on compressing the operator matrix by thresholding, and they pro-
duce a result which is accurate to within a prescribed tolerance. When the standard
form of the wavelet-Galerkin matrix (see Section 7.3) is used, the cost of perform-
ing the matrix-vector product is typically O(L logL) operations. A second scheme
uses a non-standard representation to perform the matrix-vector product in O(L)
operations.

Although �nite di�erence and wavelet-Galerkin matrices are usually sparse, they typi-
cally have a dense inverse. However, the inverse of the 2D DWT of the matrix, (which
is equivalent to the 2D DWT of the inverse in the case of orthogonal wavelets,) typi-
cally has a sparse representation if all elements below a predetermined threshold are
discarded. This idea has been used by Beylkin [16], who describes an O(L) algorithm
for computing a sparse approximation to the inverse of a three point �nite di�erence
matrix. The key to the success of this algorithm is the fact that diagonal precondition-
ing can be applied to the 2D DWT of a �nite di�erence or wavelet-Galerkin matrix
in order to improve the condition number from O(L2) to O(1). This con�nes the
number of iterations to O(1), so that the overall cost of the algorithm is determined
by the cost of performing the sparse matrix-vector multiplication.

2. Hierarchical approaches. In a hierarchical approach, the trade-o� between compu-
tational speed and solution accuracy is controlled by initially computing a coarse
resolution solution, um0(x), and then progressively re�ning the solution by adding in
further levels of detail, vm0(x); vm0+1(x); � � � ; vm�1(x), to obtain a �nal result, um(x).
The computation is terminated when the error, jju(x)� um(x)jj, falls below a prede-
termined threshold. In practice, the true solution, u(x), will be unknown and so it
will be necessary to use an alternative termination criterion. A more practical error
criterion, therefore, would be to specify a tolerance on the detail solution, vm�1(x),
or its wavelet expansion coeÆcients, dm�1[k].

(a) Direct methods. As explained in Section 7.4, the computation of a scale m
solution, um(x), from a previously computed scale m � 1 solution, ~um�1(x),
generally requires the computation of a correcting term, �um�1(x), in addition
to the detail solution, vm�1(x), i.e.

um(x) = ~um�1(x) +�um�1(x) + vm�1(x) : (174)

The correcting term appears due to the coupling terms �m�1 and m�1 in equa-
tion (144). Computing the correcting term can be a burden, however, especially
when direct methods are employed to solve the linear system, equation (144).
A solution strategy which facilitates direct methods of solution is to eliminate
the coupling terms altogether. Referring to Section 7.2, we see that the coupling
terms vanish if the integrals

�[n] �
Z 1

�1
�00(x)  (x� n) dx and [n] �

Z 1

�1
 00(x) �(x� n) dx

are zero. This constraint may be viewed as a statement of orthogonality with
respect to the operator d2=dx2. Unfortunately, orthogonal wavelets also require
the integral Z 1

�1
�(x)  (x� n) dx
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to be zero, so that operator orthogonality would impose a conicting constraint.
This conict can be resolved by resorting to a biorthogonal formulation. Williams
and Amaratunga [23] discuss a construction which eliminates coupling by diag-
onalizing the wavelet-Galerkin matrix. As a result of this construction, we are
able to develop an O(L) hierarchical direct method for solving a system of L
wavelet-Galerkin equations.

Note that when the coupling terms are zero, we have um(x) = Pmu(x). This
means that the scale m formulation produces a solution which is the orthogonal
projection of the true solution onto Vm.

An important advantage of scale decoupled methods is that they can be easily
implemented on a parallel computer. The absence of the coupling terms means
that interprocessor communication can be kept to a minimum.

(b) Iterative methods. The ideal scenario of a scale-decoupled system tends to be lim-
ited to one-dimensional problems involving even derivatives. In situations where
coupling cannot be eliminated, iterative methods of solution are usually prefer-
able. This suggests a solution strategy along the lines of traditional multigrid
iterative schemes. In this context, the DWT may be thought of as a restriction
operator, while the inverse DWT plays the role of an interpolation operator. The
algorithms of Beylkin, Coifman and Rokhlin [22] and Beylkin [16], which were
discussed above, are also applicable here, as is the diagonal preconditioning idea
which was used in Section 7.7 to develop a hierarchical iterative method for a
model problem.
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