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Abstract

Statistical issues arising in modeling univariate extremes of a random sample have been
successfully used in the most diverse fields, such as biometrics, finance, insurance and risk
theory. Statistics of univariate extremes (SUE), the subject to be dealt with in this review
paper, has recently faced a huge development, partially due to the fact that rare events can
have catastrophic consequences for human activities, through their impact on the natural
and constructed environments. In the last decades there has been a shift from the area of
parametric SUE, based on probabilistic asymptotic results in extreme value theory, towards
semi-parametric approaches. After a brief reference to Gumbel’s block methodology and more
recent improvements in the parametric framework, we present an overview of the developments
on the estimation of parameters of extreme events and on the testing of extreme value condi-
tions under a semi-parametric framework. We further discuss a few challenging topics in the
area of SUE.

Key words: statistics of univariate extremes; parametric and semi-parametric approaches; ex-
treme value index and tail parameters; testing issues.

1 The role of extremes in society and scope of the paper

Statistics of univariate extremes (SUE) has been successfully used in the most diverse fields, such
as finance, insurance and risk theory, where the value-at-risk (VaR) at any level p, the size of
the loss that occurred with small probability p, and the adjustment coefficient, a rudimentary
measure of risk in a collective of insurance risks, are important parameters of extreme or even
rare events. Also, in fields like biology and environment, the Weibull tail coefficient, the regular
variation coefficient of the inverse failure rate function, probabilities of exceedance of high levels
and endpoints of underlying models (life-time of human beings, ultimate records in the field of
athletics) are relevant extreme events’ parameters or functionals. Statistical problems in all these
areas have direct ethical, social, economic and environmental impact and this is one of the reasons
why statistics of extremes, in general, and SUE, in particular, have faced a huge development in the
last decades. Indeed, rare events can have catastrophic consequences for human activities, through
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their impact on the natural and constructed environments. The recent development of sophisticated
methodology for the estimation and prediction of functionals of rare events has contributed to save
endangered natural resources, to model climate, earthquakes and other environmental phenomena,
like precipitation, temperature and floods, situations where we have to deal with large risks or with
very low probabilities of over (under)-passing a high (low) level. From a theoretical point of view,
the key result obtained by Fisher & Tippett (1928) on the possible limiting laws of the sample
maxima of a random sample (X1, . . . , Xn), of independent and identically distributed (IID) random
variables (RVs), formalized by Gnedenko (1943), and used by Gumbel (1958) for applications of
extreme value theory (EVT) in engineering subjects, are some of the key tools that led to the way
statistical EVT has been exploding in the last decades. The statistical applications of EVT gave
emphasis to the relaxation of the independence condition, to the consideration of multivariate and
spatial frameworks and to a deeper and deeper use of regular variation and point process approaches.
These topics are well-documented in the books by David (1970), Galambos (1978), Leadbetter et
al. (1983), Resnick (1987), Arnold et al. (1992), Falk et al. (1994), Embrechts et al. (1997), Reiss
& Thomas (1997), Coles (2001), David & Nagaraja (2003), Beirlant et al. (2004), Castillo et al.
(2005), de Haan & Ferreira (2006), Resnick (2007), Markovich (2007), and their posterior editions.
For an overview of most of the topics in this field see the recent volumes of Extremes 11:1 (2008)
and Revstat 10:1 (2012). Among review papers in the area of SUE, we mention Gomes et al. (2007b;
2008a), Neves & Fraga Alves (2008), Hüsler & Peng (2008), Beirlant et al. (2012) and Scarrot &
MacDonald (2012).

In Section 2 of this review paper, we provide some details related to the non-degenerate limiting
behaviour of the sequence of maximum values, other top order statistics (OSs) and excesses over
high thresholds. Section 3 is dedicated to the most common parametric models in SUE and to a
discussion of the more recent semi-parametric frameworks. Estimation procedures are discussed in
sections 4, 5 and 6. In Section 7 we briefly discuss SUE for censored data. Section 8 is dedicated
to a brief reference to testing issues either under parametric or semi-parametric frameworks. In
Section 9 we make a brief reference to the estimation of the extremal index. Finally, in Section
10, we mention a few other relevant topics in the area and a few important open problems that we
think useful to be dealt with in the nearby future.

2 Probabilistic backgrounds of EVT—limiting structure of

maxima, top OSs and excesses over high thresholds

The field of EVT goes back to 1927, when Fréchet (1927) formulated the functional equation of
stability for maxima, which later was solved with some restrictions by Fisher & Tippett (1928), and
finally by Gnedenko (1943) and de Haan (1970). Let us assume that we have access to a sample,
(X1, . . . , Xn) of IID, or even stationary and weakly dependent RVs from an underlying model F ,
and let us denote by (X1:n ≤ · · · ≤ Xn:n) the sample of associated ascending OSs.

2.1 Limiting behaviour of the sequence of maximum values

Let us further assume that it is possible to linearly normalize the sequence of maximum values,
{Xn:n}n≥1, so that we get a non-degenerate limit for the sequence (Xn:n − bn)/an, with an > 0 and
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bn ∈ R. Then, Gnedenko’s extremal types theorem (ETT) assures us that such a limiting RV has a
cumulative distribution function (CDF) of the type of the extreme value distribution (EVD), given
by

EVξ(x) =

{
exp

(
−(1 + ξx)−1/ξ

)
, 1 + ξx ≥ 0, if ξ 6= 0,

exp(− exp(−x)), x ∈ R, if ξ = 0,
(2.1)

and ξ is the so-called extreme value index (EVI), the primary parameter in SUE. We then say that
F is in the max-domain of attraction (MDA) of EVξ, in (2.1), and use the notation F ∈ DM (EVξ).
The parameter ξ measures essentially the weight of the right tail-function (RTF),

F := 1− F.

If ξ < 0, the right-tail is short and light, i.e. xF := sup{x : F (x) < 1}, the right endpoint of F , is
finite. This class is called the Weibull class and contains among others the uniform and reverse Burr
CDFs. If ξ > 0, the right-tail is heavy, of a negative polynomial type, and F has an infinite right
endpoint. Examples in this class (Fréchet class) are the Pareto, Burr, Student’s, α-stable (α < 2)
and loggamma CDFs. If ξ = 0, the right-tail is of an exponential type, and the right endpoint can
then be either finite or infinite. This class (Gumbel class) encompasses the exponential, normal,
lognormal, gamma and classical Weibull CDFs, with an infinite right endpoint, but also models
with a finite right endpoint, like F (x) = C exp(−δ/{xF − x}), for x < xF , δ > 0, and C > 0.

In Gnedenko’s pioneering paper and also nowadays in many applications of EVT, the EVD, in
(2.1), is often rewritten on the three domains of attractions as follows:

Weibull : Ψξ(x) = exp
(
−(−x)−1/ξ

)
, x ≤ 0 (ξ < 0),

Fréchet : Φξ(x) = exp
(
−x−1/ξ

)
, x ≥ 0 (ξ > 0),

Gumbel : Λ(x) = exp (− exp(−x)) , x ∈ R (ξ = 0).
(2.2)

The CDFs, either in (2.1) or in (2.2), are appropriate when the data consist of a set of maxima.

2.2 Joint limiting behaviour of top OSs

Apart from the ETT and the already mentioned EVD, in (2.1), it is also sensible mentioning the
multivariate EVD (MEVD), related to the limiting distribution of the k largest values Xn−i+1:n,
1 ≤ i ≤ k, also called the extremal process (Lamperti, 1964; Dwass, 1964), with associated proba-
bility density function (PDF)

hξ(x1, x2, . . . , xk) = evξ(xk)
k−1∏
j=1

evξ(xj)

EVξ(xj)
if x1 > · · · > xk, (2.3)

where

evξ(x) =
dEVξ(x)

dx
=

{
(1 + ξx)−1/ξ−1 exp

(
−(1 + ξx)−1/ξ

)
, 1 + ξx ≥ 0, if ξ 6= 0,

exp(−x) exp(− exp(−x)), x ∈ R, if ξ = 0.
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2.3 Limiting structure of the excesses over a high threshold

Just as mentioned above, rather than the maxima, we can consider all values larger than a given
threshold. The differences between these values and a given threshold are called exceedances over
the threshold. These exceedances are typically assumed to have a GPξ(x/σ) =: GPξ,σ(x) CDF,
σ > 0, with GPξ the generalized Pareto distribution (GPD), defined by

GPξ(x) =

{
1− (1 + ξx)−1/ξ, 1 + ξx > 0, x > 0, if ξ 6= 0,
1− exp(−x), x > 0, if ξ = 0.

(2.4)

This distribution is generalized in the sense that it subsumes certain other distributions under
a common parametric form. In the GPξ,σ(x) CDF, ξ is the important shape parameter of the
distribution and σ is an additional scaling parameter.

The distribution of excesses over a high threshold u is defined to be

Fu(x) := P
(
X − u ≤ x

∣∣∣X > u
)
,

for 0 ≤ x ≤ xF − u. Depending on the field of applications, different names for Fu arise, for in-
stance excess-life or residual lifetime in reliability or medical statistics, excess-of-loss in an insurance
framework. According to Balkema & de Haan (1974) and Pickands (1975), the key result in EVT
which explains the importance of the GPD is that F ∈ DM(EVξ) iff

lim
u→xF

sup
x∈[0,xF−u)

∣∣∣Fu(x)−GPξ(x/σ(u))
∣∣∣ = 0

for some positive function σ(u). Thus, the GPD is the natural model for the unknown excess
distribution above sufficiently high thresholds. This approach based on the GPD approximation is
called the peaks-over-threshold (POT) approach.

2.4 First, second and higher-order frameworks

We further use the notations

F←(y) := inf {x : F (x) ≥ y} , y ∈ (0, 1),

for the generalized inverse function of F , Ra for the class of regularly varying functions at infin-
ity with an index of regular variation a, i.e. positive Borel measurable functions g(·) such that
g(tx)/g(t)→ xa, as t→∞, for all x > 0 (see Bingham et al., 1987, for details on regular variation),
and

U(t) := F←
(
1− 1/t

)
, t > 1,

for the tail quantile function (TQF).

A necessary and sufficient condition for F ∈ DM(EVξ), provided in de Haan (1984), is the
following

F ∈ DM(EVξ) ⇐⇒ lim
t→∞

U(tx)− U(t)

a(t)
= ϕξ(x) =:

{
xξ−1
ξ
, if ξ 6= 0,

lnx, if ξ = 0,
(2.5)
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for all x > 0, where a is a positive measurable function. Condition (2.5) is known as the first-order
condition. For instance, in the Fréchet MDA, we can choose a(t) = ξU(t) and thus F ∈ DM(Φξ) iff
limt→∞ U(tx)/U(t) = xξ, x > 0, which means U ∈ Rξ or equivalently F ∈ R−1/ξ.

However a first-order condition is in general not sufficient to study properties of tail parameters’
estimators, in particular asymptotic normality. In that case a second-order condition is required
specifying the rate of convergence in (2.5). Different types of conditions exist, some expressed in
terms of either F or U or lnU . The most common one is the following

lim
t→∞

U(tx)−U(t)
a(t)

− ϕξ(x)

A(t)
=



1
ρ

(
xρ−1
ρ
− lnx

)
, if ξ = 0, ρ 6= 0,

1
ξ

(
xξ lnx− xξ−1

ξ

)
, if ξ 6= 0, ρ = 0,

ln2 x/2, if ξ = ρ = 0,
1
ρ

(
xξ+ρ−1
ξ+ρ

− xξ−1
ξ

)
, otherwise,

(2.6)

x > 0, where ρ ≤ 0 is a second-order parameter, A is a function possibly not changing in sign and
tending to 0 as t → ∞, such that |A| ∈ Rρ (de Haan & Stadtmüller, 1996). Note that both in
(2.5) and (2.6) we could have provided a simpler limit by using the interpretation of the Box-Cox
function as the logarithm when the power equals 0. Again the rate of convergence in (2.6) can also
be specified in a third-order condition (see Gomes et al., 2002; Fraga Alves et al., 2003a,b, 2006).
Other limiting results in EVT, important for the development of parametric approaches to SUE
can be found in Gomes et al. (2008a).

3 Models in SUE

Statistical inference about rare events is clearly linked to observations which are extreme in some
sense. There are different ways to define such observations, and such definitions lead to different
alternative approaches to SUE.

3.1 Gumbel’s approach or block maxima method

When the sample size n → ∞, and due to the limiting result given before for the normalized
sequence of maximum values, i.e. the ETT, we can write

P[Xn:n ≤ x] = F n(x) ≈ EVξ ((x− λn)/δn) , (3.1)

with EVξ(x) given in (2.1) and (λn, δn) ∈ (R,R+) an unknown vector of location and scale pa-
rameters, that replaces the attraction coefficients (bn, an) in the normalized sequence of maximum
values, (Xn:n − bn)/an.

Remark 3.1. Any result for maxima (top OSs) can be easily reformulated for minima (low OSs).
Indeed, min1≤i≤nXi = −max1≤i≤n(−Xi), and consequently, when n→∞,

P[X1:n ≤ x] = 1− (1− F (x))n ≈ EV∗ξ

(
(x− λ′n)/δ

′

n

)
,

with EV∗ξ(x) = 1− EVξ(−x) = 1− exp
{
−(1− ξx)−1/ξ

}
, for 1− ξx > 0 and (λ′n, δ

′
n) ∈ (R,R+).
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The aforementioned ETT was used by Gumbel in several papers which culminated in his 1958
book, to give approximations of the type of the one provided in (3.1) but for any of the models
in (2.2). He suggested the first model in SUE, usually called the annual maxima or block maxima
(BM) model or the EV univariate model or merely Gumbel’s model. Under Gumbel’s model, the
sample of size n is divided into k sub-samples of size r (usually associated to k years, with n = r×k,
and r reasonably large). Next, the maximum of the r observations in each of the k sub-samples is
considered, and one of the extremal models in (2.2), obviously with extra unknown location and
scale parameters, is fitted to the sample of those k maximum values. Nowadays, whenever using
this approach, still quite popular in environmental sciences, it is more common to fit to the data an
EVD, EVξ((x − λr)/δr), with EVξ given in (2.1), (λr, δr, ξ) ∈ (R,R+,R) unknown location, scale
and ‘shape’ parameters. All statistical inference is then related to the above mentioned models.

3.2 Multivariate and multi-dimensional EV approaches: the method of
largest observations

Although Gumbel’s statistical procedure has proved to be fruitful in the most diverse situations,
several criticisms have been made on Gumbel’s technique, and one of them is the fact that we are
wasting information when using only observed maxima and not further OSs, if available, because
they certainly contain useful information about the RTF underlying the data. On the other hand,
in most areas of application there is no natural seasonality of the data, and in such framework the
method of sub-samples is subjective and artificial.

To infer on the right tail weight of the underlying model, it seems sensible to think of a small
number k of top OSs from the original data. Indeed, if we have daily data, some years may have
several values among those top OSs (that are for sure relevant to make inference upon the RTF), and
other years may contain none of those top values. We can thus say that such an approach provides
additional information, that has been disregarded in the traditional Gumbel’s methodology.

This approach depends on the joint limiting distributional behaviour of those top OSs. When
the sample size n is large and for fixed k, it is sensible to consider, on the basis of the PDF hξ
defined in (2.3), the approximation,

P[Xn:n ≤ x1, · · · , Xn−k+1:n ≤ xk] ≈ Hξ

(x1 − λn
δn

, . . . ,
xk − λn
δn

)
,

where Hξ is the MEV CDF associated with hξ, and λn and δn are unknown location and scale
parameters, respectively, to be estimated on the basis of the k top OSs in the sample of size n. This
approach to SUE is the so-called MEV model or largest observations (LOB) method or extremal
process. Under this approach it is easier to increase the number k of observations, contrarily to
what happens in Gumbel’s approach, where a larger number n of original observations is usually
needed. Such an approach has been introduced first, in a slightly different context, by Pickands
(1975) and was used by Weissman (1978) and Gomes (1978, 1981).

Note finally that it is easy to combine both approaches. In each of the sub-samples associated
to Gumbel’s classical approach, we can collect a few top OSs modelled through a MEV model, and
next consider the multidimensional EV model, based on the multivariate sample,

(X1, X2, . . . , Xk), where Xj = (X1j, . . . , Xijj), 1 ≤ j ≤ k,

are MEV vectors.
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3.3 The POT approach

Another approach to SUE, in a certain sense parallel to the MEV model, is the one in which we
restrict our attention only to the observations that exceed a certain high threshold u, fitting the
appropriate statistical model to the excesses over such a high level u. From the results in Section
2, we get the approximation

P [X − u ≤ x|X > u] ≈ GPξ(x/σ(u)),

with GPξ(·), the GPD in (2.4). We are then led to consider a deterministic high level u and work
with the excesses. The adequate model is then the GPD. Such a model is the so-called Paretian
excesses model or POT model, and was introduced in Smith (1987a). Here, all statistical inference
is related to the GPD. Despite the existence of an extra scale parameter σ = σ(u), the POT model
can also be regarded as a semi-parametric model whenever we work in the MDA of EVξ.

3.4 Bayesian approaches

It has recently become more and more common to use Bayesian methods within EV analysis, as
can be seen in the monographs by Reiss & Thomas (2001; 2007), by Coles (2001), by Beirlant et
al. (2004), and references therein.

3.5 Summary of parametric approaches and a link to semi-parametric
frameworks

More recently, the LOB and the POT methodologies have been considered under a semi-parametric
framework. There is then no fitting of a specific parametric model, dependent upon a location
parameter λ, a scale parameter δ and a ‘shape’ parameter ξ. It is merely assumed that F ∈
DM(EVξ), with EVξ given in (2.1), ξ being the unique primary parameter of extreme events to be
estimated, on the basis of a few top observations, and according to adequate methodology, to be
dealt with in Section 5. We now summarise the different approaches to SUE here discussed:

1. Parametric approaches:

I The univariate EV model (for the k maximum values of sub-samples of size r, n = r×k.)
(Gumbel’s classical approach or BM method).

II The MEV model or LOB method (for the k top OSs associated with the original sample
of size n).

III The multi-dimensional EV model (MEV model for the ij top observations, j =
1, 2, . . . ,m, in sub-samples of size r, m× r = n).
m = k and ij = 1 for 1 ≤ j ≤ k originates I;
m = 1 (r = n) and i1 = k originates II.

IV The Paretian model for the excesses, Xj − u, given Xj > u, 1 ≤ j ≤ k, of a high
deterministic threshold u, suitably chosen [POT approach].

V Bayesian approaches.

2. Semi-parametric approaches:
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VI Under these approaches we work with the k top OSs associated with all n observations
or with the excesses over a high deterministic or random threshold, assuming only that
the model F underlying the data is in DM(EVξ) or in specific sub-domains of DM(EVξ),
with EVξ(·) provided in (2.1). The POT approach can thus be considered under this
framework.

4 Estimation under parametric frameworks

We have now several ‘R-Packages for Extreme Values’, such as evd, evdbayes, evir, ismev,
extRemes, extremevalues, fExtremes, lmom, lmomRFA, lmomco, POT and SpatialEx-
tremes, among others, that can help us in most of the inferential procedures given below.

4.1 Gumbel’s approach or block maxima method

Computational details on maximum likelihood (ML) estimation of (λ, δ, ξ) in the EV model,
EVξ((x − λ)/δ), with EVξ(x) given in (2.1), can be found in Prescott & Walden (1980, 1983),
Hosking (1985), Smith (1985) and Macleod (1989), among others.

As the ML estimators can be numerically difficult to handle, several alternative methods have
been proposed for the estimation of (λ, δ, ξ). The probability weighted moment (PWM) method,
introduced by Landwehr et al. (1979) and Greenwood et al. (1979) is an interesting alternative to
the ML approach. The main idea of this method is to match the moments

E [Xp(F (X))r(1− F (X))s] , with p, r and s real numbers,

with their empirical versions, similarly to the classical method-of-moments. For the EVD, Hosking et
al. (1985) show that E [X(F (X))r] can be explicitly computed, which leads to the PWM estimation
of the parameters under play and, just like the ML approach, implies some restriction on the value
of ξ.

Several other estimation methods for the EVD can be found in the literature. Among them
we mention: best linear unbiased estimation (Balakrishnan & Chan, 1992); method of moments
(Christopeit, 1994); minimum distance estimation (Dietrich & Hüsler, 1996).

Robust methods for the EVD have been studied in Dupuis & Field (1998), who derived B-
optimal robust M-estimators for the case that the observations follow an EVD. Modifications of the
ML estimator are presented by Coles & Dixon (1999), who suggest penalised ML (PML) estimators,
showing that PML estimation improves the small-sample properties of a likelihood-based analysis.
The BM method has been recently revisited in Dombry (2013) and Ferreira & de Haan (2013).

4.2 Multivariate and multi-dimensional EV approaches: the method of
largest observations

For estimation procedures under these MEV approaches, see Weissman (1984), Smith (1986), Tawn
(1988) and references therein. ML estimators of the unknown parameters in the multidimensional
EV model have been studied in Gomes (1981). See also Smith (1984) and references therein. The
use of concomitants of OSs, to deal with statistical inference techniques in this model, appears
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in Gomes (1984, 1985a). A comparison of the MEV model and the multi-dimensional EV model
is performed in Gomes (1985b, 1989a). Discrimination among MEV models can also be found in
Fraga Alves (1992).

4.3 The POT approach

ML estimates of ξ and σ in a GPD, non-regular for ξ < −1/2, have been studied in Smith (1987a).
A survey of the POT methodology, together with several applications can be found in Davison &
Smith (1990).

Just as for the EVD, as the ML estimators can be numerically hardly tractable (see Grimshaw,
1993), there have been several methods, other than ML, proposed for the estimation of ξ and σ.
Hosking & Wallis (1987) suggest the use of PWM estimators (see also the comparative study of
Singh & Guo, 1997). Castillo & Hadi (1997) have proposed estimators based on the elemental
percentile method (EPM). PML estimators, containing a penalty function for the shape parameter,
are presented by Coles & Dixon (1999) and Martins & Stedinger (2000). The PML estimator
combines the flexibility of the ML estimator and the robustness of the PWM estimator. See also
Resnick (1997), Crovella & Taqqu (1999) and references therein. The estimates depend significantly
on the choice of the threshold and several authors, among whom we mention McNeil (1997) and
Rootzén & Tajvidi (1997), explicitly state that the selection of an appropriate threshold u, above
which the GPD assumption is appropriate, is a difficult task in practice.

Robust estimation for the GPD was first addressed by Dupuis (1998), who provides the
optimally-biased robust estimator for the GPD and suggests a validation mechanism to guide the
threshold selection. Peng & Welsh (2001) use the method of medians introduced by He & Fung
(1999), and get estimators of the unknown parameters of the GPD with bounded influence functions.
Juárez & Schucany (2004) implement the minimum density power divergence estimator (MDPDE),
originally introduced by Basu et al. (1998), for the shape and scale parameters of the GPD. The
MDPDE is indexed by a non-negative constant that controls the trade-off between robustness and
efficiency. Frigessi et al. (2002) suggest an unsupervised alternative to the classical POT model,
where a GPD is fitted beyond a threshold which is selected in a supervised way. They suggest to
model the data with a dynamical mixture: one term of the mixture is a GPD and the other is a
light-tailed density distribution. The weight of the GPD component is predominant for large val-
ues, and takes the role of threshold selection. A recent comparison between the BM approach (with
several block-sizes, not only annual maximum values) and the POT approach has been performed
by Engeland et al. (2004).

4.4 Bayesian approaches

We begin with some examples of the most direct use of Bayesian methodology within EV analysis:
Smith & Naylor (1987) compare Bayesian and ML estimators for the Weibull distribution; Ashour &
El-Adl (1980), Lingappaiah (1984), Achcar et al. (1987) and Engelund & Rackwitz (1992) consider
estimation for specific extremal types for maxima; Lye et al. (1993) consider estimation of the EVD;
Pickands (1994) and de Zea Bermudez & Amaral-Turkman (2003) consider estimation of the GPD.

Smith (1999) discusses predictive inference aspects of Bayesian and frequentist approaches, and
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de Zea Bermudez et al. (2001) propose the use of a Bayesian predictive approach for the choice of the
threshold, through a hierarchical Bayesian model. Stephenson & Tawn (2004) claim that in practice
the appropriate asymptotically motivated extremal model, either EVD or GPD, fitted to data that
can be regarded as maxima or exceedances of a high threshold, reduces the Gumbel (exponential)
type to a single point in the parameter space, and consequently the Gumbel (exponential) model is
never selected. They then decide to incorporate knowledge of the structure of the ETT into inference
for the EVD and the GPD. To do this, they associate the probability pξ to the parameter subspace
corresponding to the Gumbel (exponential) type. This approach requires an inference scheme which
allows switching between the full EVD (GPD) and the Gumbel (exponential) sub-model. They then
perform inference using reversible jump MCMC techniques. This Bayesian approach recognises the
possibility that the data can come from any of the three extremal types. As a by-product of the
analysis, posterior probabilities for P(ξ > 0), P(ξ = 0) and P(ξ < 0) are obtained.

Diebolt et al. (2005) propose a quasi-conjugate Bayesian inference approach for the GPD with
ξ > 0, through the representation of a heavy-tailed GPD as a mixture of an exponential and
a gamma distribution. For other papers on Bayesian approaches to, for instance, high quantile
estimation, see, e.g., Coles & Powell (1996) and Coles & Tawn (1996), who provide a detailed
review of Bayesian methods in EV modelling up to this date. See also Reiss & Thomas (1999),
Walshaw (2000), Smith & Goodman (2000), Bottolo et al. (2003), Tancredi et al. (2006), among
others.

5 Semi-parametric EVI-estimation

Just as mentioned above, under a semi-parametric framework, we do not need to fit a specific
parametric model based on scale, shape and location parameters, but only to assume that F is
in the MDA, DM(EVξ), for a suitable index ξ. Then we construct an estimator for this index
based on the k−largest observations in the sample X1, ..., Xn, where k needs to be an intermediate
sequence, i.e. such that k → ∞, k = o(n) as n → ∞. We start by reviewing the most classical
estimators proposed in the literature. Then we give their main asymptotic properties and briefly
discuss reduced-bias estimation and the choice of k.

5.1 Classical Estimators

Hill estimator. The most famous estimator of ξ > 0 is the Hill (1975) estimator

ξ̂Hk,n =
1

k

k∑
i=1

logXn−i+1:n − logXn−k:n, (5.1)

where k = k(n) → ∞ in an appropriate way, so that an increasing sequence of upper OSs is used.
One of the interesting facts concerning (5.1) is that various asymptotically equivalent versions of

ξ̂Hk,n can be derived through essentially different methods (such as the ML method or the mean
excess function approach), showing that the Hill estimator is very natural. This estimator is based
on the assumption that the RTF is of Zipf or Pareto form for large x, i.e. 1 − F (x) ∼ Cx−1/ξ as
x → ∞, for some ξ > 0 and C > 0. Hence, Hill’s estimator is only applicable in case the EVI is
known to be positive, i.e., only in case the underlying CDF exhibits a heavy tail. Another reason
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for the success of this estimator is the fact that it can be interpreted as an estimator of the slope
of the Pareto quantile plot, which is a graphical tool for testing whether the data are Pareto
distributed. Indeed as log-transformed Pareto distributed RVs are exponentially distributed, one
can visually check the hypothesis of a strict Pareto behaviour by looking at the scatterplot with
coordinates (log((n+ 1)/j), logXn−j+1:n).

Kernel estimator. A general class of kernel estimators was given in Csörgő et al. (1985),

ξ̂Kk,n =

∑k
j=1

j
k
K( j

k
)(logXn−j+1:n − logXn−j:n)

1
k

∑k
j=1K( j

k
)

.

This estimator is also restricted to the case ξ > 0. The Hill estimator is a member of this class,
since it can be obtained by taking a uniform kernel K(x). The kernel estimators can be interpreted
as weighted least squares regression estimators of the slope of the Pareto quantile plot in case one
considers regression lines passing through a fixed anchor point. Kernel EVI-estimators for a real ξ
have been studied by Groeneboom et al. (2003).

Pickands estimator. A simple estimator for the general case, ξ ∈ R, is the Pickands estimator
(Pickands, 1975)

ξ̂Pk,n =
1

log 2

Xn−bk/4c:n −Xn−bk/2c:n

Xn−bk/2c:n −Xn−k:n
,

where bxc denotes the integer part of x.

Moment estimator. Dekkers et al. (1989) have proposed an alternative estimator that is not
restricted to the case ξ > 0 and which has the following form

ξ̂Mk,n = M
(1)
k,n + 1− 1

2

(
1−

(M
(1)
k,n)2

M
(2)
k,n

)−1
,

where

M
(`)
k,n =

1

k

k∑
i=1

(logXn−i+1:n − logXn−k:n)`, (` = 1, 2)
[
M

(1)
k,n ≡ ξ̂Hk,n

]
.

Generalized Hill estimator. Beirlant et al. (1996b) proposed an estimator for ξ ∈ R by es-
timating the slope of the generalized quantile plot, (log((n+ 1)/j), logUHj,n), j = 1, ..., n where

UHj,n = Xn−j:nξ̂
H
j,n. This leads to the generalized Hill (GH) estimator defined as

ξ̂GHk,n =
1

k

k∑
j=1

logUHj,n − logUHk+1,n

further studied in Beirlant et al. (2005).

ML estimator. Conditionally on the OS, Xn−k:n, k intermediate, Xn−i+1:n − Xn−k:n, 1 ≤ i ≤ k,
are approximately the k top OSs associated with a sample of size k from GPξ(αx/ξ), ξ, α ∈ R,
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with GPξ(x) given in (2.4). The solution of the ML equations associated with the above mentioned
parameterization (Davison, 1984) gives rise to an explicit EVI-estimator, usually called the ML EVI-
estimator, that can be named PORT-ML, with PORT standing for peaks over random threshold,
after Araújo Santos et al. (2006). Such an EVI-estimator is given by

ξ̂ML
n,k := 1

k

k∑
i=1

ln(1 + α̂[Xn−i+1:n −Xn−k:n]),

where α̂ is the implicit ML estimator of the unknown ‘scale’ parameter α. A comprehensive study
of the asymptotic properties of this ML estimator for ξ > −1/2 has been undertaken in Drees et al.
(2004). As recently shown by Zhou (2009, 2010), such EVI–estimator is also valid for ξ > −1. We
can also consider the random threshold Xn−k:n replaced by a deterministic threshold u, working
then under the POT methodology.

PWM estimators. The parametric PWM method, initially derived under parametric frameworks,
and sketched in Section 4.1, can be devised under a semi-parametric framework. De Haan & Ferreira
(2006) considered the semi-parametric generalized Pareto PWM (GPPWM) EVI-estimator, based
on the sample of excesses over the high random level Xn−k:n, i.e.,

ξ̂GPPWM
k,n := 1− 2â?1(k)

â?0(k)− 2â?1(k)
,

with â?`(k) :=
∑k

i=1 ((i− 1)/(k − 1))`(Xn−i+1:n−Xn−k:n)/k , ` = 0, 1. See also Diebolt et al. (2007,
2008c). Caeiro & Gomes (2011) introduced and studied Pareto PWM (PPWM) EVI-estimators,
given by

ξ̂PPWM
k,n := 1− â1(k)

â0(k)− â1(k)
,

with â`(k) :=
∑k

i=1 ((i− 1)/(k − 1))`Xn−i+1:n/k , ` = 0, 1.

Mixed-Moment estimator. We further refer the so-called mixed moment (MM) estimator (Fraga
Alves et al., 2009), valid for all ξ ∈ R, and given by

ξ̂MM
n (k) :=

ϕ̂k,n − 1

1 + 2 min (ϕ̂k,n − 1, 0)
, with ϕ̂k,n :=

ξ̂Hk,n − L
(1)
k,n(

L
(1)
k,n

)2 ,

ξ̂Hk,n given in (5.1) and L
(1)
k,n := 1 − 1

k

∑k
i=1Xn−k:n/Xn−i+1:n. The MM EVI-estimator has a

very simple form and is asymptotically very close to the ML EVI-estimator for a wide class of
heavy-tailed models.

The mean-of-order-p EVI-estimator. A competitive generalization of the Hill estimator has
been recently introduced in the literature. Note that we can write

ξ̂Hk,n =
k∑
i=1

ln

(
Xn−i+1:n

Xn−k:n

)1/k

= ln

(
k∏
i=1

Xn−i+1:n

Xn−k:n

)1/k

, 1 ≤ k < n.
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The Hill estimator is thus the logarithm of the geometric mean (or mean-of-order-0) of U :=
{Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n} . More generally, Brilhante et al. (2013) considered as ba-
sic statistics the mean-of-order-p (MOP) of U, with p ≥ 0, i.e., the class of statistics

Ap(k) =


(

1
k

k∑
i=1

Up
ik

)1/p

, if p > 0,(
k∏
i=1

Uik

)1/k

, if p = 0,

and the class of MOP EVI-estimators,

ξ̂
Hp
k,n :=

{ (
1− A−pp (k)

)
/p, if 0 < p < 1/ξ,

ln A0(k), if p = 0,

with ξ̂H0
k,n ≡ ξ̂Hk,n, given in (5.1). See also Beran et al. (2014).

The PORT EVI-estimators. Apart from Pickands and ML’s estimators, all aforementioned
EVI-estimators are scale invariant but not location-invariant. And particularly the Hill estimator
can suffer drastic changes when we induce a shift in the data, given rise to the so-called ‘Hill horror-
plots’, a terminology used in Resnick (1997). This led Araújo Santos et al. (2006) to introduce the
so-called PORT methodology. The estimators are then functionals of a sample of excesses over a
random level Xnq :n, nq := bnqc+ 1, i.e. functionals of the sample,

X(q)
n :=

(
Xn:n −Xnq :n, . . . , Xnq+1:n −Xnq :n

)
. (5.2)

Generally, we can have 0 < q < 1, for any F ∈ DM(EVξ) (the random level is an empirical quantile).
If the underlying model F has a finite left endpoint, x

F
:= inf{x : F (x) ≥ 0}, we can also use q = 0

(the random level can then be the minimum). If we think, for instance, of Hill EVI-estimators, the
new classes of PORT-Hill EVI-estimators, theoretically studied in Araújo Santos et al. (2006), and
for finite samples in Gomes et al. (2008b), are given by

ξ̂
(q)
k,n :=

1

k

k∑
i=1

{
ln

Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n

}
, 0 ≤ q < 1. (5.3)

And a similar dependence on this extra tuning parameter q can be conceived for any other EVI-
estimator. See also Gomes et al. (2011, 2013). Other interesting location invariant EVI-estimators
for Pareto-type tails can be found in Fraga Alves (2001) and Ling et al. (2012).

5.2 Main asymptotic properties

In order to obtain weak consistency of all these estimators, we only need to assume that F belongs
to the MDA, DM(EVξ) and that k is an intermediate sequence. However, if we want to obtain
asymptotic normality, we need to strengthen this condition into a second-order one, of the form
(2.6). More precisely, assuming that

√
kA (n/k) → λ < ∞, we can expand each estimator ξ̂?k,n as

follows

ξ̂?k,n − ξ
d
= σ?

Nk√
k

+ b?A
(n
k

)
+ oP

(
A
(n
k

))
,
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where Nk is a standard normal RV and (σ?, b?) ∈ R+ ×R. Thus, with N (µ, σ2) denoting a normal
RV with mean value µ and variance σ2,

√
k(ξ̂?k,n − ξ)

d−→ N (λb?, σ?2). (5.4)

5.3 Reduced-bias estimators

The adequate accommodation of the high asymptotic bias of some of the above mentioned EVI-
estimators has recently been extensively addressed. We mention the pioneering papers by Peng
(1998), Beirlant et al. (1999), Feuerverger & Hall (1999) and Gomes et al. (2000), among others,
based on log-excesses and on scaled log-spacings between subsequent extreme OSs from a Pareto-
type distribution. In these papers, authors are led to propose second-order reduced-bias (SORB)
EVI-estimators, with asymptotic variances larger than or equal to (ξ (1− ρ)/ρ)2, where ρ(< 0) is the
aforementioned ‘shape’ second-order parameter, ruling the rate of convergence of the distribution
of the normalized sequence of maximum values towards the limiting law EVξ, in (2.1). Similar
results in the general MDA, DM(EVξ), can be found in Beirlant et al. (2005), and more recently
in Cai et al. (2013), who introduced a SORB EVI-estimator for ξ around zero, based on the PWM
methodology. For those estimators, the asymptotic mean is 0, instead of the value λb?, in (5.4),
whatever the value of λ. However, the asymptotic variance increases compared to σ?2.

For Pareto-type models, Caeiro et al. (2005; 2009) and Gomes et al. (2007a; 2008c) have been
able to reduce the bias without increasing the asymptotic variance, kept at ξ2, just as happens
with the Hill EVI-estimators. Those estimators, called minimum-variance reduced-bias (MVRB)
EVI-estimators, are all based on an adequate ‘external’ and a bit more than consistent estimation
of the pair of second-order parameters, (β, ρ) ∈ (R,R−) in A(t) = ξβtρ, done through consistent

estimators, denoted by (β̂, ρ̂), such that ρ̂−ρ = op(1/ lnn), and outperform the classical estimators
for all k. Different algorithms for the estimation of (β, ρ) can be found in Gomes & Pestana (2007),
among others. Among the most common MVRB EVI-estimators, we just mention the simplest class
in Caeiro et al. (2005). Such a class has the functional form

ξ̂Hk,n(β̂, ρ̂) := ξ̂Hk,n

(
1− β̂(n/k)ρ̂/(1− ρ̂)

)
, (5.5)

with ξ̂Hk,n the Hill EVI-estimator, in (5.1), and where (β̂, ρ̂) is an adequate consistent estimator of
the aforementioned vector of second-order parameters (β, ρ). Note that the MVRB EVI-estimator
in (5.5) is easily justified by the fact that in (5.4), bH = 1/(1−ρ). For recent overviews on reduced-
bias EVI-estimation, see Gomes et al. (2007b), Chapter 6 in Reiss & Thomas (2007), Gomes et al.
(2008a) and Beirlant et al. (2012).

5.4 Choice of k

An important problem has often hampered a wide practical use of these estimators: the number
k used in the implementation of these estimators depends strongly on the tail itself and needs
to be estimated adaptively from the data. The choice of this number is clearly a question of
trade-off between bias and variance: as k increases, the bias will grow since the tail satisfies less
the convergence criterion, while if fewer data are used, the variance increases. It is therefore
typically suggested that the optimal value of k should coincide with the value that minimizes the
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mean-squared error (MSE, the sum of the bias-squared and the variance). However it has been
theoretically shown that this optimum depends on both the sample size and the unknown values
of ξ and ρ (see Hall & Welsh, 1985, among others). Therefore, some authors have suggested to
plot the value of the ξ-estimator as a function of k and to judgementally choose a ‘stable’ point
(see Drees et al., 2000, and de Sousa & Michailids, 2004, among others). Nevertheless, this stable
part is actually lacking in many cases and the estimation problem turns into a guessing practice.
Other approaches based on bootstrap methods (Hall, 1990; Draisma et al., 1999; Danielsson et al.,
2001; Gomes & Oliveira, 2001) or on regression diagnostics on a Pareto quantile plot (Beirlant et
al., 1996c; 2002) have been proposed. We further mention interesting selection procedures based
on bias, like the ones in Drees & Kaufmann (1998) and Guillou & Hall (2001). Possible heuristic
choices are provided in Gomes & Pestana (2007), Gomes et al. (2008e) and Beirlant et al. (2011).
The adaptive SORB and MVRB EVI-estimation is still giving its first steps. We can however
mention the recent papers by Gomes et al. (2012, 2013).

6 Semi-parametric estimation of other parameters

6.1 Classical semi-parametric estimation

Despite the fact that the estimation of quantiles, return periods of high levels and exceedance
probabilities, among other parameters of extreme events, are at least as important in applications
as the estimation of the EVI, we shall only briefly refer this topic.

High quantile or VaR-estimation. In a semi-parametric framework, the most usual estimators
of a quantile VaRp = χ1−p := U(1/p), with p small, can be easily derived from (2.5), through the
approximation

U(tx) ≈ U(t) + a(t)(xξ − 1)/ξ.

The fact that Xn−k+1:n
P∼ U(n/k) enables us to estimate χ1−p on the basis of this approximation

and adequate estimates of ξ and a(n/k). For the simpler case of heavy tails, the approximation
turns out to be

U(tx) ≈ U(t)xξ,

and we get

χ̂
1−p,k,n := Xn−k:n (k/(np))ξ̂k,n ,

where ξ̂k,n is any consistent semi-parametric EVI-estimator. This estimator is of the type of the one
introduced by Weissman (1978). Details on semi-parametric estimation of extremely high quantiles
for ξ ∈ R, can be found in Dekkers & de Haan (1989), de Haan & Rootzén (1993), Ferreira et al.
(2003), and more recently in de Haan & Ferreira (2006). Fraga Alves et al. (2009) also provide,
jointly with the MM-estimator, accompanying shift and scale estimators that make high quantile
estimation almost straightforward. Other approaches to high quantile estimation can be found in
Matthys & Beirlant (2003). None of the above mentioned quantile estimators reacts adequately to
a shift of the data. Araújo Santos et al. (2006) provide a class of semi-parametric VaRp estimators
which enjoy such a feature, the empirical counterpart of the theoretical linearity of any quantile
χα, χα(δX + λ) = δχα(X) + λ, for any real λ and positive δ. This class of estimators is based
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on the PORT methodology, providing exact properties for risk measures in finance: translation-
equivariance and positive homogeneity. For Pareto-type models and a Hill EVI-estimation, they
are given by

χ̂(q)
1−p,k,n

:= (Xn−k:n −Xnq :n)
(
k/(np)

)ξ̂(q)k,n +Xnq :n,

with ξ̂
(q)
k,n the PORT-Hill EVI-estimator in (5.3).

Probability of exceedance estimation. The estimation of the probability of exceedance of a
fixed high level is the dual problem of estimation of a high quantile. It has been dealt with by Dijk
& de Haan (1992) and Ferreira (2002), among others. Again for Pareto-type underlying models, we
get for the probability of exceedance of a high level x = xn,

p̂n =
k

n

{
xn

Xn−k:n

}−1/ξ̂k,n
.

See also Caeiro et al. (2012).

Estimation of other parameters. The estimation of the endpoint of an underlying CDF has
been studied by Hall (1982), Csörgő & Mason (1989), Aarssen & de Haan (1994), among others. We
further refer to the recent article by Fraga Alves & Neves (2013), dealing with the endpoint semi-
parametric estimation of a model inDM(EV0). Estimation of the mean of a heavy-tailed distribution
has been undertaken by Peng (2001) and Johansson (2003). Estimation of the conditional tail
expectation can be found in Deme et al. (2014). Estimation of the Weibull tail coefficient dates
back to Girard (2004). See also Goegebeur et al. (2010), among others.

6.2 SORB semi-parametric estimation
Reduced-bias quantile estimators have been studied in Matthys et al. (2004) and Gomes &
Figueiredo (2006), who consider the classical SORB EVI-estimators. Gomes & Pestana (2007)
and Beirlant et al. (2008) incorporate the MVRB EVI-estimators in Caeiro et al. (2005) and Gomes
et al. (2007b) in high quantile semi-parametric estimation. See also Diebolt et al. (2008b), Beirlant
et al. (2009), Caeiro & Gomes (2009) and Li et al. (2010). For a SORB estimation of the Weibull-
tail coefficient, we mention Diebolt et al. (2008a). Finally, for a SORB endpoint estimation, we
mention Li & Peng (2009).

7 SUE for censored data

Censoring and truncation are two of the most relevant concepts in Statistics. Although conceptually
different, with the first one related to a cutting in the support of the underlying model and the
second one with a cutting of the sample, they are formally quite similar. Whenever working in the
area of SUE, and if interested in inference for large values, we are dealing under a kind of censoring,
left censoring, working only with the k top OSs. But apart from this, we can also have a random
right censoring. Censoring occurs both in industrial life-testing (i.e. investigation of the distribution
of the lifetime of manufactured components) and in medical trials and biological experiments. So
terms synonymous to a “censored observation” are “withdrawal”, a “loss”, or a “death due to a
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competing risk”, while an “uncensored observation” might be a “failure”, a “relapse”, or a “death
from the cause under study”. Statistical techniques for analyzing censored data sets are quite
well studied now, but they mostly concern central characteristics of the underlying distribution.
The framework of extreme-value analysis under censoring has not been extensively studied in the
literature. To the best of our knowledge, the first who mentioned the topic are Beirlant et al. (1996a,
Section 2.7) and Reiss & Thomas (1997, Section 6.1). Then some estimators of tail parameters have
been proposed in Beirlant & Guillou (2001) for truncated data and extended to the random-right
censoring by Beirlant et al. (2007) and Einmahl et al. (2008).

Under random censoring, there is a RV Y such that only Z = X ∧ Y and δ = I{X≤Y } are
observed, with IA denoting the indicator function of the event A. The indicator variable δ determines
whether X has been censored or not. Consequently, we have access to the random sample (Zi, δi),
1 ≤ i ≤ n, of independent copies of (Z, δ), but our goal is to make inference on the RTF of the
unknown lifetime distribution, i.e. on F

X
(x) := P(X > x) = 1 − F

X
(x), while F

Y
, the CDF of Y ,

is considered to be a non-parametric nuisance parameter. As mentioned in Einmahl et al. (2008),
all the EVI-estimators need to be slightly modified in order to be consistent for the estimation of
ξ. The following possible and simple modification is suggested in Einmahl et al. (2008) (see also
Beirlant et al., 2007)

ξ̂c,?k,n = ξ̂?k,n/p̂, with p̂ =
1

k

k∑
j=1

δ[n−j+1,n],

where ξ̂?k,n can be one of the EVI-estimators defined in Section 5, but based on the observed sample
(Z1, . . . , Zn), δ[1,n], ..., δ[n,n] are the δ’s corresponding to the Z1:n, . . . , Zn:n, p̂ being the proportion of
non-censored observations in the k−largest Z’s. Another approach to derive estimators in the case
of censoring is to adapt the likelihood to this context (see Beirlant et al., 2010). For applications
of this methodology to different sets of survival data as well as simulated data, with hints for the
adequate EVI, high quantiles and right endpoint estimation of X, see also Gomes & Neves (2011).

8 Testing issues

8.1 Statistical choice of EV models under parametric frameworks

The Gumbel type CDF, Λ = EV0, or the exponential type CDF, GP0, with EVξ and GPξ given in
(2.1) and (2.4), respectively, are favorites in SUE, essentially because of the simplicity of inference
associated with these populations. Additionally, ξ = 0 can be regarded as a change-point, because
for ξ < 0 the data come from a CDF with a finite right endpoint and for ξ > 0 the right endpoint is
infinite. Thus, any separation between EV models, with Λ playing a central and prominent position
(called ‘trilemma’ by Tiago de Oliveira), turns out to be an important statistical problem, that has
been recently considered under a semi-parametric framework. From a parametric point of view,
empirical tests of the hypothesis H0 : ξ = 0 versus a sensible one-sided or two-sided alternative,
either for the EVD or the GPD, date back to Jenkinson (1955) and Gumbel (1965). Next, we can
find in the literature:

1. Quick tests, suggested by heuristic reasons (van Montfort, 1970, 1973; Bardsley, 1977; van
Montfort & Otten, 1978; Otten & van Montfort, 1978; Galambos, 1982; Gomes, 1982, 1984;
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Tiago de Oliveira & Gomes, 1984; van Montfort & Gomes, 1985; van Monfort & Witter, 1985;
Gomes & van Montfort, 1987; Brilhante, 2004).

2. Modified locally most powerful tests (Tiago de Oliveira, 1981, 1984; Tiago de Oliveira &
Gomes, 1984; Gomes & van Montfort, 1987).

3. Locally asymptotically normal (LAN) tests (Falk, 1995a,b; Marohn, 1994, 1998a,b, 2000; Falk
et al., 2008).

4. Goodness-of-fit (GOF) tests for the Gumbel model (Stephens, 1976, 1977, 1986; Kinnison,
1989). The fitting of the GPD to data has been worked out in Castillo & Hadi, (1997) and
Chaouche & Bacro (2004). The problem of GOF tests for the GPD has been studied by
Choulakian & Stephens (2001) and Luceño (2006), among others. Further non-parametric
tests appear in Jurečková & Picek (2001).

5. Tests from large sample theory, like the likelihood ratio test and Wald test, among others
(Hosking, 1984; Gomes, 1989b).

Statistical choice in the MEV model is developed in Gomes (1984; 1987; 1989a,b), Gomes & Alpuim
(1986), Hasofer & Wang (1992), Wang (1995), Fraga Alves & Gomes (1996) and Wang et al. (1996).
Some of these authors already go beyond the extremal process, working under a semi-parametric
framework.

8.2 Semi-parametric framework

Under a semi-parametric framework, it is naturally sensible to test the hypothesis

H0 : F ∈ DM(G0) against H1 : F ∈ DM(Gξ), ξ 6= 0

or the corresponding one-sided alternatives. Tests of this nature can already be found in several
papers prior to 2000, among which we mention Galambos (1982), Castillo et al. (1989), Hasofer &
Wang (1992), Fraga Alves & Gomes (1996), Wang et al. (1996), Marohn (1998a,b) and Fraga Alves
(1999). More recently, further testing procedures of this type can be found in Segers & Teugels
(2000), Neves et al. (2006) and Neves & Fraga Alves (2007), among others. The testing of first-order
EV conditions can be dated back to Dietrich et al. (2002), who propose a test statistic to check
whether the hypothesis F ∈ DM(Gξ) is supported by the data, together with a simpler version
devised to test whether F ∈ DM(Gξ≥0). Further results of this last nature can be found in Beirlant
et al. (2006). Drees et al. (2006) deal with the testing of F ∈ DM(Gξ>−1/2). Accurate tables of
critical points of this statistic are provided in Hüsler & Li (2006). See also Canto e Castro et al.
(2011). Reviews of the topic up to the date can be found in Neves & Fraga Alves (2008) and Hüsler
& Peng (2008).

9 Dependent frameworks—a brief reference to the ex-

tremal index estimation

The same EVξ CDF, in (2.1), appears as the limiting CDF of the maximum for a large class
of stationary sequences, {Xn}n≥1, like, for instance, the ones for which the mixing condition D,
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introduced in Leadbetter et al. (1983), holds. Let us assume we have data from a stationary process
with an underlying CDF, F , and let {Yn}n≥1 be the associated IID sequence (from the same model
F ). Under adequate local dependence conditions, the limiting CDF of the maximum Xn:n of the
stationary sequence may be directly related to the maximum, Yn:n, of the IID associated sequence,
through a new parameter, the so-called extremal index (EI).

More specifically, the stationary sequence {Xn}n≥1 has an extremal index θ (0 < θ ≤ 1) if, for
every τ > 0, we may find a sequence of levels un = un(τ) such that

P (Yn:n ≤ un) −→
n→∞

e−τ and P (Xn:n ≤ un) −→
n→∞

e−θτ .

The extremal index θ may thus be informally defined by the approximation

P[Xn:n ≤ x] ≈ F nθ(x) ≈ EVξ

(
x− b′n
a′n

)
,

{
a′n = an θ

ξ

b′n = bn + an
θξ−1
ξ

,

where F (.) is the marginal CDF of a strictly stationary sequence {Xn}n≥1, satisfying adequate local
and asymptotic dependence conditions. One of the local dependence conditions which enable us
to guarantee the existence of an extremal index is the D” condition, introduced by Leadbetter &
Nandagopalan (1989). Under the validity of such a condition, the EI can also be defined as the
reciprocal of the ‘mean time of duration of extreme events’, being directly related to the exceedances
of high levels. Indeed, we have

θ =
1

limiting mean size of clusters
= lim

n→∞
P(X2 ≤ un|X1 > un),

where un is a sequence of values such that F (un) = 1 − τ/n + o(1/n), as n → ∞. Then, given a
sample (X1, . . . , Xn), an obvious non-parametric estimator of θ is immediately suggested: once a
suitable threshold u is chosen, put

θn = θn,u :=

n−1∑
j=1

I[Xj>u,Xj+1≤u]

n∑
j=1

I[Xj>u]

=

n−1∑
j=1

I[Xj≤u<Xj+1]

n∑
j=1

I[Xj>u]

.

In order to have consistency of this estimator the high level u = un must be such that
n(1− F (un)) = cnτ = τn, τn → ∞ and τn/n → 0 (Nandagopalan, 1990). And it is sensible to
replace the deterministic level u by the stochastic level Xn−k:n, and to consider the EI-estimator as
a function of k, the number of OSs higher than the chosen threshold, getting the upcrossing (UC)
EI-estimator

θ̂UCk,n :=
1

k

n−1∑
j=1

I[Xj≤Xn−k:n<Xj+1]. (9.1)

Like this, we are thus placing ourselves in a situation similar to the one we have with the semi-
parametric EVI-estimation, being consistency attained only if k is intermediate. Reduced-bias
versions of the UC EI–estimator, in (9.1), have been obtained in Gomes et al. (2008d). Limit
theorems for empirical processes of cluster functionals have been obtained by Drees & Rootzén
(2010).
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10 Other related topics and open problems

We shall next almost reproduce the discussion in Beirlant et al. (2012), since most of the topics
considered there still deserve attention. Indeed, SUE is a quite lively topic of research. Impor-
tant developments have appeared recently in the area of spatial extremes, where parametric models
became again relevant. And now, that we have access to highly sophisticated computational tech-
niques, a great variety of parametric models can further be considered. And in a semi-parametric
framework, topics like robustness and extremes, threshold selection, trends and change points in the
tail behaviour, and clustering, among others, are still quite challenging.

10.1 Penultimate approximations

An important problem in EVT concerns the rate of convergence of F n(anx+ bn) towards EVξ(x),
in (2.1), or, equivalently, the search for estimates of the difference

dn(F,EVξ, x) := F n(anx+ bn)− EVξ(x).

Indeed, parametric inference on the RTF, usually unknown, is done on the basis of the identification
of F n(anx+bn) and of EVξ(x). And the rate of convergence can validate or not the most usual models
in SUE. As noted by Fisher & Tippett (1928), despite the fact that the normal CDF, Φ ∈ DM(G0),
the convergence of Φn(anx + bn) towards G0(x) is extremely slow. They then show that Φn(x) is
‘closer’ to a suitable penultimate Weibull rather than the Gumbel CDF. Such an approximation is
the so-called penultimate approximation and several penultimate models have been advanced. Dated
overviews of the modern theory of rates of convergence in EVT, introduced in Anderson (1971), can
be seen in Galambos (1984) and Gomes (1994). More recently, Gomes & de Haan (1999) derived,
for all ξ ∈ R, exact penultimate approximation rates with respect to the variational distance, under
adequate differentiability assumptions. Kaufmann (2000) proved, under weaker conditions, a result
related to the one in Gomes & de Haan (1999). This penultimate or pre-asymptotic behaviour has
further been studied by Raoult & Worms (2003) and Diebolt & Guillou (2005), among others. Quite
recently, the role of MS penultimate approximations in reliability has been considered in Reis et
al. (2013). Dealing with regular and homogeneous parallel-series systems, these authors assess the
gain in accuracy when a penultimate approximation is used instead of the ultimate one. Other type
of penultimate approximations have been considered in the unpublished paper by Smith (1987b).
Among them, we mention a penultimate EV parametric model of the type,

PEVξ(x; r) = exp
(
−(1 + ξx)−1/ξ

(
1 + r(1 + ξx)−1/ξ

))
or the associated penultimate GP CDF,

PGPξ(x; r) = 1− (1 + ξx)−1/ξ
(
1 + r(1 + ξx)−1/ξ

)
.

This type of model surely deserves a deeper consideration under statistical backgrounds. Penul-
timate models seem to be possible and interesting alternatives to the classical models but have
never been deeply used in the literature. Shouldn’t we invest more on this type of models from an
inferential point of view?
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10.2 Max-semistable laws as alternative parametric models

We also refer the class of max-semistable (MSS) laws, introduced by Grinevigh (1992a, 1992b),
Pancheva (1992), and further studied in Canto e Castro et al. (2002) and in Temido & Canto e
Castro (2003). Such a class is more general than the class of max-stable (MS) laws, given in (2.1).
The possible MSS laws are

Gξ,ν(x) =

{
exp

(
−ν(ln(1 + ξx))(1 + ξx)−1/ξ

)
, 1 + ξx > 0 if ξ 6= 0

exp (−ν(x) exp(−x)) , x ∈ R if ξ = 0,

where ν(·) is a positive, limited and periodic function. A unit ν-function enables us to get the
MS laws in (2.1). Discrete models like the geometric and negative binomial, and some multimodal
continuous models, are in DMSS(Gξ,ν) but not in DM(EVξ). A survey of the topic can be found in
Pancheva (2010). Generalized Pickands-statistics have been used in Canto e Castro & Dias (2011),
to develop methods of estimation in the MSS context. See also Canto e Castro et al. (2011). Such
a diversity of models, if duly exploited from a statistical point of view, can surely provide fruitful
topics of research, both in parametric and semi-parametric setups.

10.3 Robustness and extremes

In most statistical applications, outliers often occur and thus can have a disproportional effect on the
estimation procedures. Some robust algorithms, replacing the classical statistical methodologies,
can be useful, leading to alternative outlier-resistant estimators. In the context of EVT, this notion
of robustness can appear at first sight as a contradiction since the aim is to reduce the influence
of extreme observations whereas EVT mainly focus on these data points (see e.g. Dell’Aquila &
Embrechts, 2006). However tail parameters can be seriously affected by these suspicious observations
and thus robust methods are required. Such a topic has been recently studied in the literature. We
can mention among others Brazauskas & Serfling (2000) and Vandewalle et al. (2007) for strict
Pareto-type distributions, Dupuis & Field (1998), Peng & Welsh (2001), and Juárez & Schucany
(2004) for EVDs or GPDs. Different approaches can be used, for instance the density power
divergence criterion introduced by Basu et al. (1998) (see Dierckx et al., 2013). Other methods
based on an adaptation of classical tail parameters, such as the Hill’s one, can be proposed (see e.g.
Beran et al., 2014). In all the cases, these estimators depend on a single parameter that controls
the trade-off between robustness and efficiency. The choice of this parameter is delicate and its
adaptive selection, depending on the data, could be a challenging open problem. From a practical
point of view, it is also difficult to be convinced of the presence or not of outliers in a data set. Thus
it is recommended to compare robust and non-robust estimators. In case of a strong discrepancy
between the estimates, we can suspect the presence of outliers in the tails.

10.4 The PORT methodology

In SUE most of the methods of estimation are dependent on the log-excesses or scaled log-spacings
and do not react adequately to changes in the location of the model underlying the data. The steps
given in PORT-estimation of parameters of extreme events are promising but still quite incomplete
at the current state-of-the-art. For PORT quantile estimation, we mention Henriques-Rodrigues &
Gomes (2009). The shift invariant versions, dependent on the tuning parameter q in (5.2), have
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properties similar to the ones of the original estimator T , provided we keep to adequate k-values
and choose an adequate tuning parameter q. Recent research on this topic can be seen in Gomes
et al. (2011, 2013), but further theoretical research is welcome. The PORT estimation of a shape
second-order parameter has been dealt with in Henriques Rodrigues et al. (2013).

10.5 Adaptive selection of sample fraction or threshold

A threshold is often set “almost arbitrarily” (for instance at the 90% or the 95% sample quantile)!
However, the choice of the threshold, or equivalently of the number k of top OSs to be used, is
crucial for a reliable estimation of any parameter of extreme events. The topic has already been
extensively studied for classical and even reduced-bias EVI-estimators, as mentioned in Section
5.4. Is it sensible to use bootstrap computational intensive procedures for threshold selection or
there will be simpler techniques possibly related with bias pattern? Is it possible to apply a similar
methodology for the estimation of other parameters of extreme events?

10.6 Other possible topics of research in SUE

Recent parametric models, like the extreme value Birnbaum-Saunders model in Ferreira et al.
(2012), can also become relevant in the area of SUE. Testing whether F ∈ DM(EVξ), for a
certain ξ, is a crucial topic, already dealt with in several articles referred in Section 8. And
what about testing second-order and even third-order conditions? Change-points detection is
also a challenging topic of research. And SUE for weakly dependent data, with all problems
related with clustering of extreme values still deserves further research. SUE for randomly
censored data and estimation of the endpoint are also still relevant topics in SUE. We mention
the recent papers by Einmahl & Magnus (2008), Li & Peng (2009), Einmahl & Smeets (2011),
Henriques-Rodrigues et al. (2011), Li et al. (2011) and Fraga Alves & Neves (2013). Moreover,
the estimation of second and higher-order parameters still deserves further attention, particu-
larly due to the importance of such estimation in SORB estimators of parameters of extreme events.

Acknowledgements. M. Ivette Gomes has been partially supported by National Funds through
FCT—Fundação para a Ciência e a Tecnologia, project PEst-OE/MAT/UI0006/2014. We also
would like to thank the reviewers and the Associate Editor for their valuable comments that im-
proved a first version of this review.

References

[1] Aarssen, K. & de Haan, L. (1994). On the maximal life span of humans. Math. Popul. Stud.,
4:4, 259–281.

[2] Achcar, A.J., Bolfarine, H. & Pericchi, L.R. (1987). Transformation of a survival data to an
extreme value distribution. The Statistician, 36, 229–234.

[3] Anderson, C.W. (1971). Contributions to the Asymptotic Theory of Extreme Values, Ph.D.
Thesis, University of London.
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Hüsler, J. & Reiss, R.-D. (1989). Extreme Value Theory, Proceedings Oberwolfach 1987, 132–
147, Springer-Verlag, Berlin, Heidelberg.

[54] Danielsson, J., de Haan, L., Peng, L. & de Vries, C.G. (2001). Using a bootstrap method to
choose the sample fraction in tail index estimation. J. Multivariate Anal., 76, 226–248.

[55] David, H.A. (1970; 1981). Order Statistics, 1st ed.; 2nd ed. Wiley, New York.

[56] David, H.A. & Nagaraja, H.N. (2003). Order Statistics, 3rd ed. Wiley, Hoboken, New Jersey.

[57] Davison, A. (1984). Modeling excesses over high threshold with an application, In J. Tiago
de Oliveira ed., Statistical Extremes and Applications, D. Reidel, 461–482.

[58] Davison, A.C. & Smith, R.L. (1990). Models for exceedances over high thresholds. J. R. Stat.
Soc. Ser. B. Stat. Methodol., 52, 393–442.

[59] Dekkers, A.L.M., Einmahl, J.H.J. & de Haan, L. (1989). A moment estimator for the index
of an extreme-value distribution. Ann. Statist., 17, 1833–1855.

[60] Dekkers, A.L.M. & de Haan, L. (1989). On the estimation of the extreme-value index and
large quantile estimation. Ann. Statist., 17, 1795–1832.

[61] Dell’Aquila, R. & Embrechts, P. (2006). Extremes and robustness: a contradiction? Fin.
Mkts. Portfolio Mgmt., 20, 103–118.

[62] Deme, E., Girard, S. & Guillou, A. (2014). Reduced-bias estimator of the conditional tail
expectation of heavy-tailed distributions. In Mason, D. (ed.), Mathematical Statistics and
Limit Theorems, to appear, Springer.

[63] Diebolt, J., El-Aroui, M.A., Garrido, M. & Girard, S. (2005). Quasi-conjugate Bayes estimates
for GPD parameters and application to heavy tails modelling. Extremes, 8, 57–78.

[64] Diebolt, J., Gardes, L., Girard, S. & Guillou, A. (2008a). Bias-reduced estimators of the
Weibull tail-coefficient. TEST, 17, 311–331.

[65] Diebolt, J., Gardes, L., Girard, S. & Guillou, A. (2008b). Bias-reduced extreme quantiles
estimators of Weibull tail-distributions. J. Statist. Plann. Inference, 138, 1389–1401.

[66] Diebolt, J. & Guillou, A. (2005). Asymptotic behaviour of regular estimators. REVSTAT,
3:1, 19–44.

25



[67] Diebolt, J., Guillou, A., Naveau, P. & Ribereau, P. (2008c). Improving probability-weighted
moment methods for the generalized extreme value distribution. REVSTAT,6:1, 33–50.

[68] Diebolt, J., Guillou, A. & Rached, I. (2007). Approximation of the distribution of excesses
through a generalized probability-weighted moments method. J. Statist. Plann. Inference,
137, 841–857.

[69] Dierckx, G.,Goegebeur, Y.& Guillou, A.(2013).An asymptotically unbiased minimum density
power divergence estimator for the Pareto-tail index. J. Multivariate Anal.,121, 70–86.
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